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We prove that all tree-level n-point supergluon (scalar) amplitudes in AdS5 can be recursively
constructed, using factorization and flat-space limit. Our method is greatly facilitated by a natural R-
symmetry basis for planar color-ordered amplitudes, which reduces the latter to “partial amplitudes” with
simpler pole structures and factorization properties. Given the n-point scalar amplitude, we first extract
spinning amplitudes with n − 2 scalars and one gluon by imposing “gauge invariance,” and then use a
special “no-gluon kinematics” to determine the (nþ 1)-point scalar amplitude completely (which in turn
contains the n-point single-gluon amplitude). Explicit results of up to 8-point scalar amplitudes and up to
6-point single-gluon amplitudes are included as Supplemental Material.
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Introduction.—Recent years have witnessed remarkable
progress in computing and revealing new structures of
holographic correlators, or “scattering amplitudes” in AdS
space, at both tree [1–10] and loop [11–17] level. Although
more focus has been on supergravity amplitudes in AdS,
explicit results have also been obtained for “supergluon”
tree amplitudes up to n ¼ 6 [18–22] in AdS super-Yang-
Mills (sYM) theories (see Refs. [23–25] for loop-level
results). In this Letter, we ask the interesting question about
the “constructibility” of higher-point supergluon ampli-
tudes purely from lower-point ones, and along the way we
reveal nice structures for these amplitudes to all n.
The natural language for holographic correlators is the

Mellin representation [26–28]. Mellin tree amplitudes are
rational functions of Mellin variables. They can be deter-
mined by the residues at all physical poles (and pole at
infinity encoded in the flat-space limit [22]), which for
sYM are given by factorization with scalar and gluon
exchanges [29]. These allowed the authors of [20,22] to
bootstrap the supergluon amplitudes up to six point.
However, naively using factorization to bootstrap higher-

point supergluon amplitudes is difficult, because we lack
data of higher-point amplitudes involving spinning

particles, which are needed to compute gluon-exchange
contributions. We overcome this problem by getting
“more” out of scalar-exchange contributions.
On one hand, we recognize a natural R-symmetry basis

(Fig. 3) built from SUð2ÞR traces compatible with color
ordering. Knowing lower-point scalar amplitudes, we are
able to isolate the gluon-exchange contributions in factori-
zation channels compatible with the trace structure. This
enables us to extract the (n − 1)-point single-gluon ampli-
tude from the n-point scalar amplitude.
On the other hand, we identify certain “no-gluon

kinematics” which is a consequence of the “gauge invari-
ance” of single-gluon amplitudes. Regardless of the precise
form of single-gluon amplitudes, at these special kinematic
points, gluon exchanges are forbidden, imposing a power-
ful constraint on the amplitude.
Combining these two realizations, we devise a recursive

algorithm (27) to obtain all-multiplicity supergluon tree
amplitudes: start from the n-point scalar amplitude, extract
from it the (n − 1)-point single-gluon amplitude, and use
these (sufficient) information to construct the (nþ 1)-point
scalar amplitude. We include explicit results of up to 8-
point scalar amplitudes and up to 6-point single-gluon
amplitudes in the Supplemental Material [30].
Organization of Mellin amplitudes.—Weare interested in

the n-point supergluon amplitudes in AdS5=CFT4, which
arise as the low energy description ofmany different theories
[19,31–33]. For concreteness, consider the D3-D7-brane
system in type IIB string theory in the probe limit (number
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Nf of D7-branes much less than number Nc of D3-branes)
[33]. On the world volume of D3-branes, we have an
N ¼ 2 SCFT, while on the world volume of D7-branes,
gravity decouples at tree level and we haveN ¼ 1 sYM on
AdS5 × S3 [34]. The system has a symmetryGF ¼ SUðNfÞ
[35], which is global on the boundary and local in the bulk.
We study the connected correlator of half-BPS operators

Oaðx; vÞ with dimension Δ ¼ 2:

GðsÞa1���an
n ¼ hOa1ðx1; v1Þ � � �Oanðxn; vnÞi; ð1Þ
Oaðx; vÞ ¼ Oa;α1α2ðxÞvβ1vβ2ϵα1β1ϵα2β2 : ð2Þ

Here, ai ¼ 1;…; dimGF are adjoint indices of GF, and vβ

(αi; βi ¼ 1; 2) are auxiliary SUð2ÞR-spinors which extracts
the R-spin-1 part of Oa;α1α2ðxÞ. The superscript ðsÞ reminds

us that GðsÞ
n is a correlator of scalar operators. For

convenience, we also introduce the single-gluon correlators

GðvÞ
n involving the Noether current J a

μðxÞ of GF, an
SUð2ÞR-singlet with dimension Δ ¼ 3:

GðvÞa1���an
n;μ ¼ hOa1ðx1Þ � � �Oan−1ðxn−1ÞJ an

μ ðxnÞi: ð3Þ
The bulk dual ofOa is ϕa

m form ¼ 1, 2, 3 (supergluon), and
the bulk dual of J a

μ is Aa
μ (“gluon”). Together, they

compose the lowest Kaluza-Klein mode of the GF gauge
field on AdS5 × S3. It can be shown that these are all the

fields needed for GðsÞ
n at tree level [36].

The color decomposition for tree amplitudes in AdS
space is identical to that for flat-space amplitudes [37]: we
have color-ordered amplitudes as coefficients in front of
traces of generators Ta in the adjoint representation:

Ga1���an
n ¼

X

σ ∈ Sn−1

trðTa1Taσ
2 � � �Taσn−1TaσnÞG1σ; ð4Þ

where σ denotes a permutation of f2;…; ng. Cyclic and
reflection symmetry of the traces implies

G12���n ¼ G2���n1 ¼ ð−ÞnGn���21: ð5Þ
We will focus on G12���n since any color-ordered amplitude
can then be obtained by relabeling.
The natural language to describe such CFT correlators is

the Mellin representation [26]. For scalar amplitudes,

GðsÞ
12���n ¼

Z
½dδ�MðsÞ

n ðfδijg; fvigÞ
Y

i<j

ΓðδijÞ
ð−2Pi · PjÞδij

; ð6Þ

and for single-gluon amplitudes [29]:

GðvÞ
12���n ¼

Z
½dδ�

Xn−1

l¼1

ðZn · PlÞMðvÞl
n

Y

i<j

Γðδij þ δli δ
n
j Þ

ð−2Pi · PjÞδijþδli δ
n
j

;

ð7Þ

where
Xn−1

l¼1

δlnM
ðvÞl
n ¼ 0: ð8Þ

Note that here δli is the Kronecker delta. We have used the
embedding formalism following [29], where Pi · Pj ¼
− 1

2
ðxi − xjÞ2 and Zn · Pl encodes the Lorentz tensor

structure of J a
μ. The Mellin variables are constrained as

if δij ¼ pi · pj for auxiliary momenta satisfying
P

i pi ¼ 0

and p2
i ¼ −τi ¼ −2, with conformal twist τi ≔ Δi − Ji (J

is the spin of an operator). Since J and O have the same
twist, they are described by the same “kinematics.”
Only the 1

2
nðn − 3Þ δij’s are independent. Inspired by

flat space [38], it proves convenient to introduce 1
2
nðn − 3Þ

planar variables (with δii ≡ −2)

X ij ≔ 2þ
X

i≤k;l<j

δkl ¼ 2þ
�X

i≤k<j

pk

�
2

; ð9Þ

where we have X i;j ¼ X j;i with special cases X i;iþ1 ¼ 0

and X i;i ≡ 2. The inverse transform that motivated the
associahedron in [38,39] reads

−2δij ¼ X i;j þ X iþ1;jþ1 − X i;jþ1 − X iþ1;j: ð10Þ

Planar variables correspond to n-gon chords (Fig. 1).
The planar variables are particularly suited for factori-

zation [29] of color-ordered amplitudes. Since all relevant
fields have τ ¼ 2, schematically,

M12���n ∼
MðmÞ

1���ðk−1ÞIM
ðmÞ
k���nI

−ðX1k þ 2mÞ ; m ¼ 0; 1; 2;…; ð11Þ

where a pole at X1k ¼ −2m corresponds to the exchange of
a level-m descendant. By induction, all simultaneous poles
of Mn consist of compatible planar variables (noninter-
secting chords), which gives a (partial) triangulation of the
n-gon dual to planar skeleton graphs (Fig. 1).
Another advantage of working with color-ordered ampli-

tude is a natural basis for the R-charge structures. Let us
define SUð2ÞR trace as Vi1i2���ir ≔ hi1i2ihi2i3i � � � hiri1i
where hiji ≔ vαi v

β
jϵαβ. The Schouten identity hikihjli ¼

hijihkli þ hilihjki enables us to expand any R structure to

FIG. 1. Planar variables and dual skeleton graph for n ¼ 5.
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products of noncrossing cycles or SUð2ÞR traces:

MðsÞ
n ¼

X

noncrossing
partition π
of f1;…;ng

� Y

cycle τ∈ π

Vτ

�
MðsÞ

n ðπÞ; ð12Þ

MðvÞl
n ¼

X

noncrossing
partition π

of f1;…;n−1g

� Y

cycle τ∈ π

Vτ

�
MðvÞl

n ðπÞ: ð13Þ

For example, (Fig. 2)

MðsÞ
4 ¼ MðsÞ

4 ð1234ÞV1234

þMðsÞ
4 ð12; 34ÞV12V34 þMðsÞ

4 ð14; 23ÞV14V23;

MðvÞl
4 ¼ MðvÞl

4 ð123ÞV123;

MðsÞ
5 ¼ MðsÞ

5 ð12345ÞV12345

þMðsÞ
5 ð12; 345ÞV12V345 þ cyclic;

MðvÞl
5 ¼ MðvÞl

5 ð1234ÞV1234

þMðvÞl
5 ð12; 34ÞV12V34 þMðvÞl

5 ð14; 23ÞV14V23:

Because a length-L trace picks up ð−ÞL under reflection,
for scalar amplitudes this cancels the sign in (5)
while for single-gluon amplitudes the net result is a minus
sign:

MðsÞ
4 ð12; 34Þ ¼ref MðsÞ

4 ð21; 43Þ ¼cycMðsÞ
4 ð14; 23Þ;

MðvÞ
5 ð12; 34Þ ¼ref −MðvÞ

5 ð21; 43Þ;
MðvÞ

5 ð12; 34Þ unrelated to MðvÞ
5 ð14; 23Þ:

For scalar amplitudes with n ¼ 6, 7, we additionally
have triple-trace R structures, and for n ≥ 8 we need
quadruple-trace R structures. The number of linearly

independent R structures for MðsÞ
n or MðvÞ

nþ1 is rn ¼
1; 3; 6; 15; 36; 91;… (Riordan numbers [40]).
Properties of Mellin amplitudes.—Factorization:

Different exchanged fields contribute to different R

structures. For a given channel, say X 1k, we distinguish
the compatible R structures π (none of the cycles τ intersect
X1k) from the incompatible ones (Fig. 3). For scalar
exchanges, (11) reads

Res
ðsÞ

X1k¼−2m
MðsÞ

n ¼ N ðmÞ
s glueR

�
MðsÞðmÞ

1���ðk−1ÞIM
ðsÞðmÞ
k���nI

�
: ð14Þ

Here, N ðmÞ
s ¼ 2, and MðsÞðmÞ

1���ðk−1ÞI is a shifted version of the

scalar amplitude MðsÞ
1���ðk−1ÞI:

MðsÞðmÞ
1���ðk−1ÞI ¼

X

nab≥0P
nab¼m

MðsÞ
1���ðk−1ÞIðδabþnabÞ

Y

1≤a<b<k

ðδabÞnab
nab!

:

ð15Þ

MðsÞðmÞ
k���nI is defined similarly. The operation glueR glues

together the traces. Note that there is the 1-1 correspon-
dence of R structures in amplitudes and the operator
product expansion (OPE):

hOðvIÞO � � �Oi ⊃ something × Via���bjI
⇕

O � � �O ⊃ something × hiai � � � hbjivðαi vβÞj Oαβ

Since hOαβOγδi ¼ 1
2
ðϵαγϵβδ þ ϵαδϵβγÞ, we have

vðαi v
βÞ
j v

ðγ
k v

δÞ
l hOαβOγδi ¼ hilihjki − 1

2
hijihlki; ð16Þ

which implies the following gluing rule:

FIG. 2. MðvÞ
5 R structures.

FIG. 3. MðsÞ
6 R structures compatible (above) and incompatible

(below) with X13.
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glueR∶ Vi���jI ⊗ VIk���l ↦ Vi���jk���l −
1

2
Vi���jVk���l: ð17Þ

We see that scalar exchanges contribute to both compatible
and incompatible R structures. R structures with more than
one cycle intersecting X1k vanish (Fig. 4).
For gluon exchanges, (11) reads

Res
ðvÞ

X1k¼−2m
MðsÞ

n ¼N ðmÞ
v

Xk−1

a¼1

Xn

i¼k

δaiM
ðvÞðmÞa
1���ðk−1ÞIM

ðvÞðmÞi
k���nI : ð18Þ

Here, N ðmÞ
v ¼ −½3=ð1þmÞ�, and MðvÞðmÞa

1���ðk−1ÞI is M
ðvÞa
1���ðk−1ÞI

shifted according to (15). We no longer need glueR
because J is R neutral; gluon exchanges contribute to
compatible R structures only.
An important consequence of gauge invariance (8) is that,

at certain no-gluon kinematics, gluon exchanges are for-
bidden completely. To see this, let us denote MðvÞðmÞa

1���ðk−1ÞI≡
LðmÞa and MðvÞðmÞi

k���nI ≡RðmÞi, and solve LðmÞ1;RðmÞk

using (8). The double sum in (18) becomes

Xk−1

a¼2

Xn

i¼kþ1

�
δai −

δaI
δ1I

δ1i −
δiI
δkI

δak þ
δaIδiI
δ1IδkI

δ1k

�
LðmÞaRðmÞi:

If all ðk − 2Þðn − kÞ coefficients vanish on the support of
X1k ¼ −2m, gluon exchanges are forbidden, regardless of
the detailed form of LðmÞ and RðmÞ. The number of
conditions equals the number of chords Xai (2 ≤ a ≤ k − 1
and kþ 1 ≤ i ≤ n) crossing X1k. Hence, the no-gluon
conditions translate to Xai taking special values X�

ai:

EðmÞ
ai ≔ Xai − X�

ai ¼ 0; ð19Þ

X�
ai ¼ m − 1þ X1a þ X1i þ Xak þ X ik

2

þ ðX1a − XakÞðX1i − X ikÞ
4ðmþ 1Þ : ð20Þ

Since gluon exchanges are forbidden at no-gluon kinemat-
ics, scalar exchanges alone fix the residue up to polynomials
of E ’s:

Res
X1k¼−2m

Mn ¼ Res
ðsÞ

X1k¼−2m
Mn

����
Xai¼X�

ai

þ polyðEðmÞ
ai Þ: ð21Þ

The special case of (18) where k ¼ n − 1 is particularly
important. From the 3-point single-gluon amplitude [41]:

MðvÞð0Þn−1
n−1;n;I ¼ iffiffiffi

6
p Vn−1;n; MðvÞð0Þn

n−1;n;I ¼−
iffiffiffi
6

p Vn−1;n; ð22Þ

we see that

Res
ðvÞ

X1;n−1¼0
MðsÞ

n ¼ −3iffiffiffi
6

p Vn−1;n

Xn−2

a¼1

ðδa;n−1 − δa;nÞMðvÞa
n−1 : ð23Þ

This is similar to the scaffolding relation in [42]. If we write
the δ’s in terms of X ’s, one can show that for each
2 ≤ a ≤ n − 2,

MðvÞa
n−1 −MðvÞa−1

n−1 ¼ ∂

∂Xan

�
i

ffiffiffiffiffiffiffiffi
2=3

p

Vn−1;n
Res
ðvÞ

X1;n−1¼0
MðsÞ

n

�
: ð24Þ

Together with (8), these ðn − 3Þ þ 1 equations completely

determine fMðvÞa
n−1gn−2a¼1. In other words, (n − 1)-point sin-

gle-gluon amplitudes can be extracted from the n-point
scalar amplitude.
Flat space limit: It is shown in [19] that, with

δij ¼ R2sij, the leading terms of MðsÞ
n in the limit R →

∞ matches the flat space color-ordered n-gluon amplitude,
with ϵi · pj ¼ 0 and ϵi · ϵj ¼ hiji2 ¼ −Vij. Equivalently,
this is the flat-space amplitude of ðn=2Þ pairs of scalars in
Yang-Mills-scalar theory [43,44], which have been com-
puted explicitly through n ¼ 12. For even n, everything is

clear, and MðsÞ
n ∼ δ2−ðn=2Þ. For example, with ϵ · p ¼ 0,

Aflat
4 ¼ ðϵ1 · ϵ2Þðϵ3 · ϵ4Þ

s12 þ s23
s12

þ ð1 ↔ 3Þ − ðϵ1 · ϵ3Þðϵ2 · ϵ4Þ: ð25Þ
Using V13V24 ¼ V12V34 þ V14V23 − 2V1234 and writing
X ij in terms of δij, we can check that this matches the
leading terms of the correct n ¼ 4 answer (up to overall
normalization):

MðsÞ
4 ¼ 2

�
1

X13

þ 1

X24

− 1

�
V1234

−
2þ X24

X13

V12V34 −
2þ X13

X24

V14V23: ð26Þ

As an aside, it is a coincidence that the number ðn − 1Þ!! of
ðϵ · ϵÞðn=2Þ terms equals rn for n ¼ 4, 6. For n ≥ 8, these
terms are not independent when translated to V. For odd n,
the flat space amplitude vanishes due to the prescription
ϵi · pj ¼ 0. The power counting s2−ðn=2Þ means that the

order δ2−bn=2c vanishes, and MðsÞ
n ∼ δ2−⌈n=2⌉. A more

FIG. 4. Vanishing R structures.
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careful argument using the formula proposed in [27] leads
to the same conclusion.
Constructing supergluon amplitudes.—It turns out that

the properties and constraints satisfied by the Mellin
amplitude discussed above are sufficient for a recursive
construction of all tree-level supergluon amplitudes MðsÞ

n

for all n. SinceMðvÞ
n−1 can be extracted fromMðsÞ

n , we need
only show that knowing ð≤ n − 1Þ-point scalar amplitudes
and ð≤ n − 2Þ-point single-gluon amplitudes, we can con-
struct the n-point scalar amplitude.
The proof starts by noticing that ð≤ n − 2Þ-point scalar

and single-gluon amplitudes completely fix the residue of

MðsÞ
n on all poles X ij ¼ −2m with ki − jk ≥ 3, where

cyclic distance ki − jk ≔ minfji − jj; n − ji − jjg.
Moreover, ð≤ n − 1Þ-point scalar amplitudes completely
fix all incompatible channels. From these data, we can

construct a rational function that can only differ fromMðsÞ
n

by terms with only X i;iþ2 ¼ 0 poles [45] and compatible
traces. Then, we can write an ansatz for the possible
difference, and completely fix it with constraints imposed
by flat space limit and no-gluon kinematics.
Specifically, suppose n ¼ 2n0 þ 1 is odd. Power count-

ing MðsÞ
n ∼ X1−n0 , together with the fact that the ansatz

only has X i;iþ2 ¼ 0 poles and compatible channels, implies
that the ansatz consists of terms of the form

constant

Xn0−1 :

The constants are fixed by scalar exchanges at no-gluon
kinematics because the polynomial remainder in (21) is
ruled out by power counting.
Supposen ¼ 2n0 is even. In the flat space limit, the leading

terms are known, so the undetermined terms are subleading
∼X≤1−n0 . Since there are at most n0 simultaneous X i;iþ2’s in
the denominator, undetermined terms are of the form

X≤1

Xn0 or
constant

Xn0−1 :

For n ≥ 6, all such terms have no fewer than 2 simultaneous
poles. To see that no-gluon kinematics is sufficient to fix the
ansatz, simply note that we cannot construct a term
ðNumeratorÞ=ðX ijX i0j0 � � �Þ that vanishes at the no-gluon
kinematics on every channel. For instance, for a term to
vanish at no-gluon kinematics in both channelsX13 ¼ 0 and
X35 ¼ 0,

Numerator ¼ c0X13 þ
X

i≠1;2;3
ci

�
X2i þ 1 −

X1i þ X3i

2

�

¼ d0X35 þ
X

j≠3;4;5
dj

�
X4j þ 1 −

X 3j þ X5j

2

�
:

Comparing both expressions, we see that these
force Numerator ¼ 0.
Therefore, from MðsÞ

3 and MðsÞ
4 (which contain contact

terms and cannot be fixed by factorization), we can

recursively construct MðsÞ
n for all n as follows:

� � � ⇝ MðsÞ
n ⇝ MðvÞ

n−1 ⇝ MðsÞ
nþ1 ⇝ � � � ð27Þ

It is satisfying to see that 3- and 4-point interactions
determine the amplitudes of all n, much like flat-space
Yang-Mills-scalar theory. As a by-product, we also obtain

MðvÞ
n . We emphasize that this is a constructive procedure,

which is quite efficient (≤ 5 min to obtain MðsÞ
8 ).

Discussion and outlook.—Based on a better organization
of R-symmetry structures which leads to a clear separation
of scalar and gluon exchanges, we have shown that all-n
supergluon tree amplitudes in AdS can be recursively
constructed (27): we extract (n − 2)-scalar-1-gluon ampli-
tude from the n-scalar amplitude, which in turn determines
the (nþ 1)-scalar amplitude. For instance, we could con-

struct MðsÞ
8 , knowing MðsÞ

≤7 and (hence) MðvÞ
≤6 . In fact, we

found in practice that even MðvÞ
≤5 suffices. Another obser-

vation is that MðsÞðmÞ
1���ðk−1ÞI ¼ 0 for m ≥ bk=2c, and

MðvÞðmÞ
1���ðk−1ÞI ¼ 0 for m ≥ bðk − 1Þ=2c, which explains the

truncation of poles X ij ¼ −2m at m ≤ bkj − ik=2c − 1 in

any MðsÞ
n . We will discuss these matters in detail in a

forthcoming paper [46].
Our results provide more data for studying color-kin-

ematics duality and double copy in AdS [9]. In addition,
knowing the higher-point amplitudes, we can search for a
set of Feynman rules. This will provide a better under-
standing of the bulk Lagrangian, as well as generalizing the
Mellin space Feynman rules for scalars [47] and pure Yang-
Mills [48,49].
Of course it would be highly desirable to apply similar

methods to tree amplitudes with higher Kaluza-Klein modes
(τ > 2), and eventually at loop level. We are also very
interested in adopting this method for bootstrapping super-
gravity amplitudes inAdS, as a generalization of the beautiful
n ¼ 5 results in [6,10]. Note that the R-symmetry basis and
flat-space results [44] are available, and an immediate target
would be the n ¼ 6 supergravity amplitude.
We observe some universal behavior of our results,

besides the “scaffolding” relation between a single gluon
and a pair of scalars. For example, we find intriguing new
structures such as “leading singularities,” i.e., maximal
residues, which take a form that resemble flat-space result
in X variables. Our results and their generalizations
strongly suggest that a possible combinatorial or geometric
picture exists for AdS supergluon amplitudes, much like
the scalar-scaffolding picture for gluons in flat space [42].
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