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We argue that the well-known beta functions of quadratic gravity do not correspond to the physical
dependence of scattering amplitudes on external momenta, and derive the correct physical beta functions.
Asymptotic freedom turns out to be compatible with the absence of tachyons.
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Quadratic gravity is an extension of Einstein’s theory
whose action contains terms quadratic in curvature. In
signature −þþþ it reads

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
mP

2

2ðR − 2ΛÞ − 1

2λ
C2 −

1

ξ
R2

�
; ð1Þ

where mP ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
is the Planck mass, Λ is the cosmo-

logical constant, Cμνρσ is the Weyl tensor. We will not
consider the Euler (Gauss-Bonnet) term here. This theory is
renormalizable [1], and is a potential candidate for a full
theory of quantum gravity. In addition to the massless
graviton it propagates a massive spin-2 particle that is a
ghost and if λ < 0 it is a tachyon [2]. It also has a massive
spin-0 particle that is a tachyon for ξ > 0. In spite of these
apparent pathologies, it has attracted renewed interest
recently [3–9]. In these studies, it is suggested that it
may be possible that the ghost state is acceptable, although
tachyonic states are considered fatal.
The first attempt to compute beta functions for this

theory was made by Julve and Tonin in Ref. [10], but that
work missed the contribution of the Nakanishi-Lautrup
ghosts. This was corrected in Ref. [11] and then, with some
further corrections, in Ref. [12]. The final result is

βλ ¼ −
1

ð4πÞ2
133

10
λ2; ð2Þ

βξ ¼ −
1

ð4πÞ2
5ð72λ2 − 36λξþ ξ2Þ

36
: ð3Þ

Since then, these beta functions have been confirmed in
several calculations using different techniques [13–17].
With these beta functions, full asymptotic freedom can only
be obtained for the case of a tachyonic coupling ξ > 0. The
goal of our Letter is to recompute these beta functions as
appropriate for physical amplitudes and show that in fact
full asymptotic freedom can be obtained without tachyons.
The beta functions (2) and (3) give the dependence of

the renormalized λ and ξ on the renormalization scale μ.
We call this the μ running. However, what one is really
interested in is the dependence of the running couplings on
external momenta, that we call physical running [18].
Physical scattering amplitudes are independent of μ after
renormalization, but do depend on the momenta. In
particular, the running of λ with momenta enters the
spin-two component of the graviton propagator and that
of ξ influences the spin-zero propagator. Note that there is
no way to define a physical running for the coefficient of
the Euler term, since it does not affect the scattering
amplitudes in four dimensions.
In problems characterized by a single momentum scale

p, e.g., the total center of mass energy p ¼ ffiffiffi
s

p
, the p

dependence is usually the same as the μ dependence,
because for dimensional reasons they occur as logðp=μÞ.
In the presence of a non-negligible mass scale m, the
amplitude generally contains, in addition to terms of the
form logðp=μÞ, also terms of the form logðm=μÞ and in this
way the p dependence is no longer correctly reflected by
the μ dependence. One clear source of such spurious μ
dependence is tadpoles, Feynman diagrams that by con-
struction do not depend on the external momenta. In such
cases, the μ running is not the same as physical running.
In most familiar quantum field theories such as the

standard model this is not a problem as one can use mass
independent renormalization schemes. However, we claim
that it is not always correct in higher derivative theories.
Two of us have indeed found that in higher derivative sigma
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models the scale dependent beta functions calculated with a
ultraviolet cutoff [23] or those obtained from the depend-
ence on an infrared cutoff [24] are indeed contaminated by
tadpoles, and hence not physical [25]. In the present Letter
we claim that the same is true in quadratic gravity, and we
compute the physical beta functions.
Calculations of the beta functions so far have been based

on the background field method, expanding gμν¼ ḡμνþhμν
around a general background ḡ. In the following a bar
always indicates a quantity calculated from the background
metric. Almost all calculations used the heat kernel, which
is very convenient because it preserves manifest covariance
at all stages. These are standard techniques and there are
many textbooks and reviews approaching the subject,
see for instance [26–31].
The first step is always the linearization of the action

and the choice of a suitable gauge-fixing term, leading
to an action

Sð2Þ ¼
Z

d4x
ffiffiffiffiffi
jḡj

p
hαβHαβ;γδhγδ: ð4Þ

One can choose the gauge such that the operator governing
the propagation of gravitons has the form (suppressing
the indices)

H ¼ □
2Kþ Jμν∇μ∇ν þ Lμ∇μ þW ð5Þ

and K, J, L, W are matrices in the space of symmetric
tensors, depending on R̄ and its covariant derivatives. In
particular

K ¼ 1

4λ
Ptl þ

9

4ð3ξ − 2λÞPtr ð6Þ

where Pαβ;γδ
tr ¼ 1

4
ḡαβḡγδ is the projector on the trace part and

Ptl ¼ I − Ptr the projector on the traceless part. In flat
space, K can be viewed as a tensorial wave function
renormalization constant that gives different weights to
the spin-2 and spin-0 components of h. As usual it is
convenient to canonically normalize the fields by redefin-
ing h →

ffiffiffiffiffiffiffiffi
K−1

p
h, so that the action can be rewritten as

Sð2Þ ¼
Z

d4x
ffiffiffiffiffi
jḡj

p
hαβOαβ;γδhγδ; ð7Þ

where, suppressing again the indices,

O ¼ □
2I þ Vμν∇μ∇ν þ Nμ∇μ þ U; ð8Þ

and V ¼
ffiffiffiffiffiffiffiffi
K−1

p
J

ffiffiffiffiffiffiffiffi
K−1

p
, etc. Now V contains terms propor-

tional to R̄ and m2
P, N contains terms proportional to ∇ R̄,

whereas U contains terms proportional to R̄2, ∇2R̄, m2
PR̄,

and m2
PΛ. The logarithmic divergences, or equivalently the

1=ϵ poles in dimensional regularization, are proportional to
the heat kernel coefficient [27]

1
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24
− U
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where Rρλ ¼ ½∇ρ;∇λ� acting on symmetric tensors.
The operator (8) is of the same form as the one acting

on the scalars in the higher derivative sigma models, and
so are the divergences (9) (except for the terms trR̄V). We
can then use the same arguments of Ref. [25]. The terms
in the first line of (9) are the ones that we would get for
O ¼ □

2. Using the formula Tr log□2 ¼ 2Tr log□ one
can conclude that none of those terms could be a tadpole,
because with a standard p2 propagator a diagram must
have at least two propagators to be logarithmically
divergent.
On the other hand consider the term in Eq. (9) which is

linear in the U interaction, i.e., trU. As this only involves
one vertex, it is clear that the loop diagram involved must
be a tadpole diagram as seen in the second diagram of
Fig. 1. Some more detailed arguments lead to the
conclusion that also some of the trR̄V divergences are
due to tadpoles. This is enough to conclude that the
standard beta functions (2) and (3) cannot be the physi-
cal ones.
We thus wish to evaluate the physical beta functions.

In order to use flat space Feynman diagrams, we go back to
the original Julve-Tonin approach and assume that the
background is itself a small deformation of flat space
ḡμν¼ημνþfμν. Expanding around flat space, the action (7)
gives rise to an operator of the form

O≡⊡2I þDμνρσ
∂μ∂ν∂ρ∂σ þ Cμνρ∂μ∂ν∂ρ

þ Vμν
∂μ∂ν þN μ

∂μ þ U; ð10Þ

where ⊡ is the flat Laplacian, D and C come from the
expansion of

ffiffiffī
g

p
□

2, and V,N and U are equal to V , N and
U plus terms coming from the expansion of

ffiffiffī
g

p
□

2. Each
of these terms is an infinite series in f. Recall that the

FIG. 1. Diagrams contributing to the two-point function:
bubbles (left) and tadpoles (right). The thin line can be the h
propagator or one of the ghosts, the thick line is the f propagator,
with momentum p. The vertices can come from expanding any
one among D, C, V, N , U.
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functional trace of the logarithm of an operator can be
approximated by

tr logO ¼ tr log ð⊡2 þ AÞ

≈ tr

�
2 log⊡þ A

1

⊡2
−
1

2
A

1

⊡2
A

1

⊡2
þ � � �

�
: ð11Þ

In the above expansion, A generically represents the
remaining contributions to O appearing in Eq. (10), and
again we are suppressing Lorentz indices for brevity.
Furthermore, the first term in the perturbative expansion
of Eq. (11) corresponds to tadpole integrals, while the
second term can be evaluated as a bubble Feynman
diagram. Our discussion here concerns how to compute
terms proportional to logp2.
The physical running of λ and ξ comes from terms

bλC̄μνρσ log□C̄μνρσ þ bξR̄ log□ R̄ ð12Þ

in the effective action, and the beta functions are

βλ ¼ −4bλλ2; βξ ¼ −2bξξ2:

In flat space contributions to the coefficients bλ and bξ can
be read from the two point function of the background
fluctuation f, which is represented graphically by the
diagrams in Fig. 1.
The two h-h-f vertices in the bubble diagrams are

obtained by expanding D, C, V, N , and U to first order,
while for the tadpole one has to expand to second order.
Being logarithmically divergent, the tadpole contributes to
the μ running but not to the p dependence that we are
interested in. Thus the bulk of the calculation consists of
working out the Feynman integrals for each of the 15
possible pairs of vertices in the bubble and then evaluating
the result for the specific form of the operator (10).
The calculation is simplified by neglecting the terms

proportional to mP. This is justified in the UV limit, as seen
explicitly in the case of the simple shift-invariant scalar
model [19]. The calculation of the relevant Feynman
integrals becomes straightforward and the results are given
in the Supplemental Material [32], where we also present all
possible pairs of vertices appearing in the bubble integral.
In the calculation one sees in detail how it happens that

the μ running differs from the physical running. In dimen-
sional regularization the log μ terms always appear together
with the 1=ϵ pole, so the μ running just traces the log
divergences of the theory. We have checked that putting
together all the bubble and tadpole diagrams one recon-
structs the covariant expression (12) with the coefficients
leading to the standard beta functions (2) and (3). If we just
drop the tadpoles, the resulting function of f is not the
linearization of a covariant expression. Thus, the physical
running cannot be obtained from the μ running by just

dropping the tadpole contribution. Instead, there are
other contributions.
As we have explained earlier, in the presence of a mass,

the μ dependence does not correctly describe the amplitude.
In our theory the only mass is the Planck mass and one
would expect that in the limit p ≫ mP, it becomes
negligible. However, in this theory with four-derivative
propagators the Planck mass also keeps the theory infrared
finite. If we neglectmP in the limit p ≫ mP limit, one finds
infrared divergences. This is a new phenomenon that does
not occur in standard two-derivative theories. There are
then two simple ways to deal with this situation. One is to
continue to use dimensional regularization to regulate also
the IR divergences which appear in the mP → 0 limit. In
this case all the logs are again of the form logp2=μ2, but in
addition to the UV logs there are now also IR logs, that
change the beta function. As we explain more fully below,
summing all the logp2 terms now gives again a covariant
expression, but with a different coefficient. This is the
physical beta function. One could alternatively reintroduce
artificially a small mass m as an IR regulator by letting
q4 → q4 þm2q2 [33]. The presence of the regulator mass
leads to terms of the form logp2=m2, and we are interested
in the logp2 effects. We have checked that both procedures
lead exactly to the same result. Notice that the small-time
expansion of the heat kernel always gives only the UV
divergences.
In our diagrams the IR divergences always appear with

powers of the external momentum p in the denominator
and therefore give rise to apparently nonlocal 1=□ or 1=□2

terms. However, since the interactions always involve
derivatives, they are offset by an equal number of powers
of p in the numerator. Because of differential identities
such as

∇μ∇νR̄μνρσ∇α∇βR̄
αβ
ρσ ¼ R̄μν□

2R̄μν −
1

4
R̄□2R̄þOðR̄3Þ;

ð13Þ

or their linearized versions, these momenta always appear
in the combination p2 and cancel the inverse powers of p.
In this way also the logs of infrared origin appear as
coefficients of local operators. However, these operators are
not by themselves the linearization of a covariant expres-
sion. It is only when one adds them to the UV logs that they
give rise to a covariant expression as in (12). Both types of
logs are physical and both are needed to maintain general
covariance.
These points can be seen easily by considering the

vertex U. It enters the heat kernel calculation linearly,
see Eq. (9), corresponding to a tadpole. It is only the part
of U quadratic in curvature that contributes to the beta
functions (2) and (3) describing μ running. By contrast in
our calculation we need two powers of U and hence only
the part proportional to ∇∇ R̄ contributes at order f2.
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These U − U bubbles are UV finite but contain logp=m
contributions coming from the IR region. These come with
a factor p4 in the denominator, from the propagators, but
also p4 in the numerator from the vertices. Thus they
contribute to the terms (12).
Finally we observe that with our choice of gauge, the

Faddeev-Popov ghost operators are of second order in
derivatives and none of these exotic phenomena can
happen. Thus their contribution can be taken from tradi-
tional heat kernel calculations.
Putting everything together, our final result is

βλ ¼ −
1

ð4πÞ2
ð1617λ − 20ξÞλ

90
; ð14Þ

βξ ¼ −
1

ð4πÞ2
ξ2 − 36λξ − 2520λ2

36
: ð15Þ

The flow lines around the free fixed point λ ¼ ξ ¼ 0 are
shown in Fig. 2.
There are three separatrices, along which the motion is

purely radial. The line λ ¼ 0 is UV repulsive for ξ > 0 and
UV attractive for ξ < 0; the line s1 is defined by

ξ ¼ 569þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
386761

p

15
λ ≈ 79.4λ ð16Þ

and is attractive for λ > 0 and repulsive for λ < 0, and the
line s2 is defined by

ξ ¼ 569 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
386761

p

15
λ ≈ −3.53λ ð17Þ

and is repulsive for λ > 0 and attractive for λ < 0. Thus the
region that is attracted towards the free fixed point is the
upper right quadrant, plus a triangular slice of the lower
right quadrant that lies above the separatrix s2.
Recall that absence of tachyons requires λ > 0 and

ξ < 0. There is a unique trajectory that is asymptotically
free and lies entirely in the tachyon-free area, and that is the
separatrix s2. This behavior is to be contrasted with the flow
related to μ running in Eqs. (2) and (3), for which the
analog of the separatrix s2 is the only asymptotically free
trajectory, but with a positive slope, with the result that it
lies entirely in the tachyonic region. The physical running
couplings allow asymptotic freedom without tachyons.
Moreover there may be an additional possibility. The pole
in the spin-zero propagator appears at p2 ¼ −ξðp2Þm2

P,
so that one can also have asymptotically free trajectories
where the coupling ξðp2Þ is negative at the pole in order to
avoid a tachyonic state, but has a positive sign at higher
momenta. One can see such trajectories above s2 which
have ξ > 0 in the far UV but eventually cross into ξ < 0
when one goes towards the IR.
In summary, a key result of our work is that asymptotic

freedom can be obtained in quadratic gravity without
tachyons. This is because the physical running with the
momenta is the appropriate running coupling to be used in
amplitudes. We have noted the difference between this
running and that which just follows log μ when applied to
theories with higher derivatives, and have developed new
methods to calculate the physical running in the gravita-
tional theory. The possibility of tachyonless asymptotic
freedom makes quadratic gravity more plausible as a
complete renormalizable theory of quantum gravity.
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