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Recent work has shown that loop corrections from massless particles generate 3
2
logTHawking corrections

to black hole entropy which dominate the thermodynamics of cold near-extreme charged black holes. Here
we adapt this analysis to near-extreme Kerr black holes. Like AdS2 × S2, the near-horizon extreme Kerr
(NHEK) metric has a family of normalizable zero modes corresponding to reparametrizations of boundary
time. The path integral over these zero modes leads to an infrared divergence in the one-loop approximation
to the Euclidean NHEK partition function. We regulate this divergence by retaining the leading finite
temperature correction in the NHEK scaling limit. This “not-NHEK” geometry lifts the eigenvalues of the
zero modes, rendering the path integral infrared finite. The quantum-corrected near-extremal entropy
exhibits 3

2
logTHawking behavior characteristic of the Schwarzian model and predicts a lifting of the ground

state degeneracy for the extremal Kerr black hole.
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Introduction.—To an outside observer, a black hole
appears to be an ordinary quantum mechanical system
with finite entropy and highly chaotic internal dynamics.
According to this picture, the exponential of the
Bekenstein-Hawking entropy eSBH represents the smooth
(coarse-grained) leading approximation to the density of
states of the black hole Hilbert space, whose average level
spacing is expected to be e−SBH .
Although black holes are believed to be “ordinary”

quantum mechanical systems, their thermodynamics is
not generic. Black holes that spin or carry charge can be
very large and very cold, and in the leading order semi-
classical approximation to the black hole density of states
there is an enormous ground state degeneracy eS0 for these
systems. In theories with unbroken supersymmetry, the
existence of these ground states is sensible due to the huge
degeneracy at zero coupling where there is enhanced
symmetry, but in less symmetric models (like the black
holes in our Universe) the degeneracy is surprising and one
wants to know if it is merely the consequence of an
approximation or not. This Letter addresses this question
for Kerr black holes of spin J, which are extremal when
J ¼ M2 with entropy S0 ¼ 2πJ.
This question is related to another old puzzle about cold

black holes [1]. For a black hole near extremality,

semiclassical analysis predicts that the specific heat
becomes order 1 at temperatures T ∼ J−3=2. Since the
specific heat controls the size of thermodynamic fluctua-
tions in nonequilibrium processes, below this temperature
the emission of a thermal Hawking quantum causes large
fluctuations in temperature and cannot be treated as a near-
equilibrium process. The authors of [1] noted that the
leading semiclassical approximation must receive large
corrections at low temperatures and therefore cannot be
trusted, but a derivation of the behavior in this regime was
not given.
There are two proposed behaviors, both of which appear

to have realizations in different models. The authors of [1]
suggested that the black hole spectrum might have a gap
Egap ∼ J−3=2 above extremality, below which thermody-
namics obviously no longer applies. For black holes with
known microscopic descriptions (all of which are super-
symmetric) this gap indeed exists [2–8].
The second possibility is that the large ground state

degeneracy is an artifact of the leading order calculation,
and that quantum corrections become more relevant at low
temperatures and cause these states to spread out over a
dense energy band above the vacuum. This is what one
would naively expect for a nonsupersymmetric system like
the Kerr black hole, the focus of this Letter. Although the
exact spectrum of the black hole can only be computed
nonperturbatively (the expected eigenvalue spacings in this
part of the spectrum are e−SBH ∼ e−1=GN ), in this scenario one
hopes to compute a perturbative correction to the density of
states and determine whether or not ρcorrðEÞ → 0 as E → 0.
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Calculating this correction directly using the full Kerr
geometry is a formidable task so far unachieved for any
near-extremal black hole. However, there is another
approach for studying the low temperature thermodynam-
ics of spinning black holes that makes use of the emergent
near-extremal throat (NHEK) and its approximate decou-
pling from the far region. At exact extremality the throat is
infinitely long, and its asymptotic boundary serves as an
effective stretched horizon for the black hole system. In this
limit the far region decouples [9] and one expects that the
relevant part of the black hole Hilbert space can be
equivalently captured by gravitational dynamics in the
throat according to the Kerr/CFT correspondence. The
analogous formalism, when applied to spherically sym-
metric black holes, has led to precise matches of bulk
gravitational calculations and microscopic counts [10,11].
However, using this approach to study the excited near-

extremal microstates is subtle. Because of the strong
backreaction effects present in low-dimensional systems
with long-range forces, quantum gravity with exactly AdS2
boundary conditions is believed to only describe ground
states [16,17]. Calculations involving excited states are
beset with infrared (IR) divergences, indicating a failure of
the black hole to fully decouple from the far region.
In fact, as first noted by Sen [18], even the ground-state

calculations can suffer from subtle divergences. The sim-
plest IR divergence manifests in the one-loop correction to
the Euclidean partition function in the extremal throat. In
the process of calculating logarithmic corrections to
extremal black hole entropy, Sen identified a set of normal-
izable zero modes in the NHEK throat corresponding
to DiffðS1Þ=SLð2;RÞ diffeomorphisms with noncompact
support. Since these fluctuations are normalizable they
must be integrated over, and since the domain of integration
is infinite dimensional with no suppression the partition
function diverges

ZNHEK ∝
Z

DiffðS1Þ=SLð2;RÞ

½Dh� ¼ ∞: ð1Þ

The dependence of the measure on S0 can be unambigu-
ously determined, so these zero modes contribute a known
logarithmic (in S0) correction to the extremal entropy,
assuming that it exists. However, the IR divergence of the
partition function due to the unsuppressed fluctuations of
the zero modes signals a subtlety in the calculation. As we
will see, a proper treatment of these zero modes can remove
the ground state degeneracy entirely. Instead of a system
with tremendous entropy at zero temperature, one encoun-
ters a system with a dense energy band of eS0 states spread
out above the vacuum to which standard thermodynamics
applies.
This resolution to the puzzle raised by (1) was first

proposed for the analogous problem in the AdS2 throat of

extreme Reissner-Nordström in [7,19], and our analysis
follows theirs closely. The strategy adopted in these papers
amounts to turning on a small but finite temperature T, which
necessitates the retention of subleading corrections to the
metric in the near-extremal throat. These metric corrections
lift the zero mode degeneracy and lead to log T corrections to
thenear-extremal entropy that agreewith results derivedusing
the Schwarzian model [20]. Laplace transforming this result
to obtain the density of states, one finds that the ground state
degeneracy vanishes. It is this prescription that we adapt for
the near-extreme Kerr black hole, as described below.
The standard scaling limit into the throat of the extreme

Kerr black hole takes the form

t̂¼ t
2πT

; r̂¼ rþðTÞþ4πr20Tðr−1Þ; ϕ̂¼ϕþ t
4πr0T

− t;

ð2Þ

with T → 0, leading to the decoupled NHEK metric

ds2 ¼ Jð1þ cos2θÞ
�
−ðr2 − 1Þdt2 þ dr2

r2 − 1
þ dθ2

�

þ J
4sin2θ

1þ cos2θ
ðdϕþ ðr − 1ÞdtÞ2: ð3Þ

Here J is the spin, rþðTÞ is the radius of the outer horizon,
r0 is the radius of the extremal horizon and we take the limit
in Boyer-Lindquist coordinates ðt̂; r̂; θ; ϕ̂Þ. The Euclidean
continuation of this metric has zero modes which lead to
the infrared divergence (1). If one retains the leading OðTÞ
correction to this metric in the scaling limit (2), one obtains
a distinct geometry which we will term the “not-NHEK”
metric [21]

gnot-NHEK ¼ gNHEK þ δg; ð4Þ

with δg ∼ T. Unlike (3), this metric is not an exact solution
to the four-dimensional Einstein equation, although one can
view it as a perturbative (in T) approximation to a solution
whose nonlinear completion is the asymptotically flat finite
temperature black hole. It is easy to see that the zero modes
of (3) that lead to the divergence of (1) are lifted by the
perturbation (4). The normalizable zero modes identified
by Sen are metric deformations generated by non-normal-
izable diffeomorphisms with noncompact support, meaning
that they can be written

hðnÞ ¼ LξðnÞgNHEK ð5Þ

for non-normalizable vector fields ξðnÞ. However, they are
not diffeomorphisms of the not-NHEK metric

hðnÞ ≠ Lζgnot-NHEK: ð6Þ
They therefore acquire temperature-dependent eigenvalues
at first order in perturbation theory. These perturbed

PHYSICAL REVIEW LETTERS 133, 021601 (2024)

021601-2



eigenvalues can be used to obtain an approximation for the
small-T (zeta-regularized) Euclidean partition function in
the not-NHEK geometry. Interpreted as a correction to the
black hole partition function, these new terms predict a
lifting of the extremal ground state degeneracy for the Kerr
black hole and a resolution of the puzzle described in [1].
There are many subtleties both in the calculation of

logarithmic corrections to (near)-extreme black hole thermo-
dynamics and in the physical interpretation of the results.
There are both gauge and geometric ambiguities in the
“gluing” of the decoupled near horizon geometry to the
asymptotically flat region. The superradiant instability of
the NHEK throat leads to travelling waves with imaginary
conformalweights and a complex partition function, and calls
into question the exact decoupling of the two regions, as does
the nonexistence of a global vacuum for Kerr. Black holes in
asymptotically flat spacetimes have finite lifetimes and are
thereforemetastable resonances rather than eigenstates. Since
the “eigenvalue” spacing for these black holes is roughly e−S0
while the lifetime is polynomial in S0, the widths are naively
much larger than the spacings and it is not clear whether it is
sensible to discuss a discrete density of states.
While not all of these issues have been definitively

settled, it is nevertheless clear that significant recent
progress has been made in the understanding of logarithmic
corrections to near-extreme charged black hole thermody-
namics and extreme Kerr thermodynamics. The purpose of
this Letter is to fill in the missing analysis of near-extreme
Kerr thermodynamics by simply adopting both the assump-
tions and methodology used for the Reissner-Nordström
case in the seminal papers [7,19]. Although the details
differ, at the end we interestingly find a numerically
identical entropy shift of 3

2
logT, compatible with the

Schwarzian dynamics [22–24]. Our main mathematical
results are formulas for the finite temperature eigenvalues
of the NHEK zero modes in the not-NHEK geometry (33),
whose detailed form leads to the factor 3

2
in (37).

Near-extreme Kerr.—The Kerr metric in Boyer-
Lindquist coordinates is

ds2 ¼ −
Δ
Σ

�
dt̂ − asin2θdϕ̂

�
2 þ Σ

Δ
dr̂2 þ Σdθ2

þ sin2θ
Σ

�ðr̂2 þ a2Þdϕ̂ − adt̂
�
2; ð7Þ

with

Δðr̂Þ ¼ r̂2 − 2Mr̂þ a2; Σðr̂;θÞ ¼ r̂2 þ a2cos2θ: ð8Þ

The spin of the black hole is given by J ¼ aM, the inner
and outer horizons occur at r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, and the

area of the outer event horizon is

A ¼ 4πðr2þ þ a2Þ ¼ 8πM
�
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðJ=MÞ2

q �
: ð9Þ

The Hawking temperature and angular velocity of the
horizon are

T ¼ 1

4πM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðJ=MÞ2

p
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðJ=MÞ2

p ; ΩH ¼ a
2Mrþ

: ð10Þ

In the extremal limit M2 → M2
0 ¼ J, the horizons coalesce

at r0 ¼ M0, T vanishes, and ΩH → ð1=2r0Þ.
At fixed angular momentum J ¼ r20, we parameterize

small deviations from extremality by their temperature T.
The relation (10) defines the thermodynamic energy
MðJ; TÞ, which has the small temperature expansion

MðT; JÞ ¼ J1=2 þ 4π2J3=2T2 þ 32π3J2T3

þ 264π4J5=2T4 þ… ð11Þ

Similarly, the horizons r�ðTÞ at fixed T have the small
temperature expansion

rþðTÞ¼J1=2þ4πJTþ20π2J3=2T2þ128π3J2T3þ…;

r−ðTÞ¼J1=2−4πJT−12π2J3=2T2−64π3J2T3þ… ð12Þ

The near-extremal entropy is then linear in T

SðT; JÞ ¼ S0 þ 8π2J3=2T þOðT2Þ; ð13Þ

and the average thermodynamic energy above extremality
scales quadratically with temperature as

EðT; JÞ ¼ MðT; JÞ −M0 ¼ 4π2J3=2T2 þOðT3Þ: ð14Þ

The NHEK throat: For a generic Kerr black hole, there
is nomeaningful geometric separation between the region of
spacetime associated to the hole and the spacetime belong-
ing to the far region: the two systems are coupled and the
interactions between them cannot be ignored. The exception
occurs when the black hole is near extremal, in which case a
long throat of length j logTj develops just outside of the
horizon. In the limit of infinite proper depth, this region is
believed to approximately decouple from the far region,
although this itself is a subtle statement. This region of
spacetime is generally associated to the black hole.
In practice, it is possible to isolate the extremal throat by

taking a scaling limit that zooms into the near horizon
region of a family of cold Kerr geometries. The change of
coordinates

t̂ ¼ 2r0
εðTÞ t; r̂ ¼ rþðTÞ þ r0εðTÞðcosh η − 1Þ;

ϕ̂ ¼ ϕþ t
εðTÞ − t; εðTÞ ¼ 4πr0T; ð15Þ

followed by the limit T → 0, results in a spacetime that
solves the Einstein equation in its own right:
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ds2 ¼ Jð1þ cos2θÞð−sinh2ηdt2 þ dη2 þ dθ2Þ

þ J
4sin2θ

1þ cos2θ
½dϕþ ðcosh η − 1Þdt�2: ð16Þ

This geometry, found by Bardeen and Horowitz in [26], is
known as near-horizon extreme Kerr (NHEK) [27]. It is the
analog of the Robinson-Bertotti universe obtained from the
scaling limit of the near-extremal Reissner-Nordström
black hole. The metric has SLð2;RÞ ×Uð1Þ symmetry
with generators

L�1 ¼
e∓t

sinh η
½cosh η∂t � sinh η∂η þ ðcosh η − 1Þ∂ϕ�;

L0 ¼ ∂t þ ∂ϕ; W ¼ ∂ϕ: ð17Þ

It is commonly believed that at least part of the quantum
mechanics of the Kerr black hole is captured by gravita-
tional dynamics in this throat in analogy with the better-
understood black holes with near-horizon AdS regions.
Quantum corrections to the throat thermodynamics.—

There is to date no top-down microscopic construction of
the four-dimensional Kerr black hole [28]. However, in
accord with the usual assumptions we will identify the
analytically continued gravitational path integral in the
NHEK throat with the statistical partition function of the
dual quantum mechanics. Following Sen [18] we analyti-
cally continue t ¼ −iτ in (16) which gives

ds2 ¼ Jð1þ cos2θÞðdη2 þ sinh2ηdτ2 þ dθ2Þ

þ 4Jsin2θ
1þ cos2θ

½dϕ − iðcosh η − 1Þdτ�2: ð18Þ

Regularity of the geometry at η ¼ 0 requires the periodicity
τ ∼ τ þ 2π. The partition function in the near-horizon
region of Kerr is given formally by an integral over metrics
subject to a certain set of boundary conditions [18]

Z ¼
Z

½Dg�e−I½g�; I½g� ¼ −
1

16π

Z
M

d4x
ffiffiffi
g

p
Rþ Iboundary:

ð19Þ

The boundary conditions and corresponding boundary
terms in the action determine the statistical ensemble
computed by the path integral.
The geometry (18) is a classical saddle-point for the

integral (19) satisfying the appropriate boundary condi-
tions, and therefore provides the leading approximation

Z ≈ exp ð−I½gNHEK�Þ to the black hole partition function.
In [18] it was shown that this saddle-point approximation,
including the correct boundary contributions, reproduces
the semiclassical entropy S0 of the extremal Kerr black
hole. However, the path integral (19) is not well-defined
beyond the leading saddle point approximation: it is beset
with UV divergences, and the instability of the NHEK
throat due to superradiance means that any sensible
definition of the integral will necessarily make Z complex.
Nevertheless, in [18] Sen managed to extract some uni-
versal information about the dependence of (19) on S0
through a careful analysis of the 1-loop determinant of
massless fields on the background (18).
Quantum corrections to NHEK entropy and zero modes:

The determination of the logarithmic corrections to the
extremal Kerr entropy requires path-integration over the
massless fields propagating on the NHEK throat.
Expanding about the saddle-point g ¼ ḡþ h, with ḡ given
by (18) and h a normalizable perturbation, the 1-loop
approximation is controlled by the linearized kinetic
operator for h

Z ≈ exp ð−I½ḡ�Þ
Z

½Dh� exp
	
−
Z

d4x
ffiffiffī
g

p
hD½ḡ�h



: ð20Þ

Calculations are performed with the gauge fixing term

LGF ¼ 1

32π
ḡμν

�
∇αhαμ −

1

2
∇μhαα

��
∇βhβν −

1

2
∇νhββ

�
;

ð21Þ

which, when combined with the Einstein-Hilbert action,
yields the linearized kinetic term [31] for NHEK:

hαβD
αβ;μν
NHEKhμν

¼ −
1

16π
hαβ

�
1

4
ḡαμḡβν□ −

1

8
ḡαβḡμν□þ 1

2
R̄αμβν

�
hμν:

ð22Þ

The determinant of this operator cannot be calculated
exactly due to the reduced symmetry of the problem, but
the terms contributing logarithmic corrections in S0 can be
extracted indirectly through the heat kernel expansion.
Importantly, the operator appearing in (22) supports a
family of normalizable zero modes

hðnÞμν dxμdxν¼ 1

4π

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjðn2−1Þ

q ð1þcos2θÞeinτðsinhηÞjnj−2
ð1þcoshηÞjnj

�
dη2þ2i

n
jnjsinhηdηdτ−sinh2ηdτ2

�
; jnj>1; ð23Þ
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which are not correctly accounted for by the heat kernel
and which must be treated separately [32]. These
metric perturbations are zero modes precisely because
they are generated by large diffeomorphisms left unfixed
by harmonic gauge (21). In other words, they obey
hðnÞ ∝ LξðnÞgNHEK, with the vector field given by

ξðnÞ ¼ einτtanhjnjðη=2Þ
�
−
jnjðjnj þ cosh ηÞ þ sinh2η

sinh2η
∂τ

þ inðjnj þ cosh ηÞ
sinh η

∂η þ
iðcosh ηþ 1þ jnj − n2Þ

cosh ηþ 1
∂ϕ

�

ð24Þ

and satisfying □ξðnÞ ¼ 0. Repackaging these modes
ξ ¼ P

n fnξ
ðnÞ and defining fðτÞ ¼ P

n fne
inτ, one finds

the large η behavior

ξ ≈ −fðτÞ∂τ þ f0ðτÞ∂η þ ifðτÞ∂ϕ: ð25Þ

These diffeomorphisms therefore correspond to boundary
time reparametrizations that send τ → τ − fðτÞ, η →
ηþ f0ðτÞ, and ϕ → ϕþ ifðτÞ and resemble vector fields
appearing in Kerr/CFT [34–37]. The path integral (20) is
therefore proportional to an integral over the (infinite-
dimensional, non-compact) coset DiffðS1Þ=SLð2;RÞ. The
quotient by SLð2;RÞ arises because the n ¼ 0;�1 pertur-
bations, which would correspond to diffeomorphisms gen-
erated by (17) (i.e., LL�1;L0

ḡ) vanish due to the isometries of
the background metric. This symmetry breaking pattern,
explicated in [20], is known to control many aspects of the
near-extremal thermodynamics of spherically symmetric
black holes. Since the mode (25) costs no action and has
infinite volume, the one-loop approximation to the path
integral suffers from an infrared divergence

Z ∝
Z

DiffðS1Þ=SLð2;RÞ

½DfðτÞ� ¼ ∞; ð26Þ

which is totally independent of any UV completion and
completely controlled by the low energy fields in the model.
The not-NHEK metric: The infinity (26) is an infrared

divergence, which arises from low energy modes of low
energy fields, and is therefore a physical effect. Its
existence calls into question the basic assumption that
the NHEK path integral computes the zero-temperature

black hole partition function. One way to settle this
question would be to define and compute the finite
temperature partition function for the black hole and then
to take the T → 0 limit. In other words, we would like to
know if limT→0Z½T�Black Hole reproduces ðZNHEKÞreg, a
properly regulated version of the throat partition function
with quantum fluctuations taken into account.
The issue is that “Z½T�Black Hole” is itself difficult to

define, let alone compute, at finite temperature in asymp-
totically flat space. The most obvious definition would
involve a Euclidean path integral with the standard asymp-
totically flat boundary conditions and a periodic identi-
fication of asymptotic Euclidean time. This calculation
cannot be performed explicitly for the near-extreme Kerr
black hole beyond the leading saddle-point approximation.
The authors of [7,19] adopt a different definition

of Z½T�Black Hole for the low temperature Reissner-
Nordström black hole, and their main conclusion is
that in the absence of supersymmetry, ðZAdS2×S2Þreg≡
limT→0Z½T�Black Hole ≠ eS0 . We review these calculations
in the Supplemental Material [33], Appendix A, which
includes Refs. [38,39]. We extend the analysis to the Kerr
black hole below.
The main assumption underlying their definition of

Z½T�Black Hole is that, for small temperatures, one can simply
correct the throat geometry (18) rather than perform the full
asymptotically flat path integral. It is not obvious that this is
mathematically equivalent to taking the small T limit of the
full path integral with asymptotically flat boundary con-
ditions, but it seems physically plausible that the leading
corrections to the low temperature thermodynamics arise
from dynamics near the throat. Either way, since the full
finite temperature black hole certainly does not support the
infinite set of zero modes (23), it is clear that the IR
divergence will disappear in either prescription. Whether
the form of the correction is the same is less obvious.
At a technical level, the prescription amounts to perform-

ing the diffeomorphism (15), and then expanding the
resulting metric in powers of T instead of taking the strict
T → 0 limit. The leading term is of course the NHEK
metric (18). The subleading term represents a (non-
normalizable) gravitational perturbation of NHEK whose
nonlinear completion is the asymptotically flat finite
temperature Kerr black hole, as in [23,24]. The OðTÞ
correction to the Wick-rotated metric [denoted by δg in (4)]
in our conventions is given by

δgμνdxμdxν

4πJ3=2T
¼ ð1þ cos2θÞð2þ coshηÞtanh2 η

2
ðdη2 − sinh2ηdτ2Þ þ sin2θ coshηðdη2 þ sinh2ηdτ2Þ þ 2 coshηdθ2

þ 2
sin2θ

1þ cos2θ
ðcoshη− 1Þ

�
ðsin2θsinh2η− 3Þ− 4

cos2θ
1þ cos2θ

coshηðcoshη− 1Þ
�
dτ2

þ 2i
sin2θ

1þ cos2θ

�
ðsin2θsinh2η− 3Þ− 8

cos2θ
1þ cos2θ

coshηðcoshη− 1Þ
�
dτdϕþ 8 coshη

sin2θcos2θ
ð1þ cos2θÞ2 dϕ

2: ð27Þ
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Importantly, LL0
δg ¼ 0 while LL�δg ¼ g� with g� non-

normalizable, so that one is still not integrating over the
n ¼ 0;�1 modes that would correspond to SLð2;RÞ
diffeomorphisms. As noted in (6), the NHEK zero
modes (23) do not result from diffeomorphisms of this
corrected geometry, so we expect their eigenvalues to pick
up corrections of order T.
Eigenvalue corrections to the extremal zero modes and

logT corrections to the entropy: The correction (27) to the
NHEK metric induces a correction δD to the NHEK kinetic
operator D̄ in (22). This in turn modifies the extremal
eigenfunctions h0 and their eigenvalues Λ0. Expanding
everything to first order in T,

ðD̄þ δDÞðh0n þ δhnÞ ¼ ðΛ0
n þ δΛnÞðh0n þ δhnÞ; ð28Þ

and isolating the OðTÞ terms, we get

D̄δhn þ δDh0n ¼ Λ0
nδhn þ δΛnh0n: ð29Þ

Taking the inner product with h0m, using orthonormality of
the 0th order eigenfunctions, and restoring indices, the 1st
order correction to the eigenvalue takes the form

δΛn ¼
Z

d4x
ffiffiffī
g

p ðh0nÞαβδDαβ;μνðh0nÞμν: ð30Þ

The corrected one loop determinant is therefore

logZ ¼ −
1

2

X
n

logðΛ0
n þ δΛnÞ; ð31Þ

with δΛn ∼ T. This makes it clear that modes that have
nonzero extremal eigenvalues (Λ0

n ≠ 0) produce sublead-
ing, polynomially suppressed T dependence relative to the
modes whose extremal eigenvalues vanish. The latter are
precisely the real and imaginary parts of (23). The leading
order correction to the kinetic operator is

δDαβ;μν ¼ −
1

16π
δ

�
1

4
gαμgβν□ −

1

8
gμνgαβ□þ 1

2
Rαμβν

�

ð32Þ

with gnot-NHEK ¼ ḡþ δg. The operator itself is utterly
intractable, but the quantity (30) with h0n given by the real
and imaginary parts of (23) simplifies dramatically and
takes the form

δΛn ¼
3nT

64J1=2
; n ≥ 2: ð33Þ

As an aid to readers we record the following intermediate
result, where the first term is the Riemann contribution and
the second term comes from the Laplacian:

Z
d4x

ffiffiffī
g

p ðh0nÞαβδDαβ;μνðh0nÞμν ¼ −
3nðn2 − 1ÞT
128J1=2

Z
∞

0

dη

	
16ðπ − 2Þ coth ηcsch2ηtanh2n

�
η

2

�
− csch3ηsech4

�
η

2

�

× ððπ − 2Þ cosh 3ηþ ½4ðn − 2Þnþ 7π − 30� cosh η − 2ðn − 2π þ 4Þ cosh 2η

þ 2nð4nþ 7Þ þ 4πÞtanh2n
�
η

2

�

: ð34Þ

The contribution of the extremal zero modes to the
not-NHEK partition function is therefore

δ logZ¼2 ·ð−1=2Þ
X
n≥2

logδΛn¼ log

�Y
n≥2

64J1=2

3nT

�
; ð35Þ

where the factor of 2 comes from including the identical
contributions from the real and imaginary parts of the
perturbations. Using zeta function regularization to com-
pute the infinite product

Y
n≥2

α

n
¼ 1ffiffiffiffiffiffi

2π
p 1

α3=2
; ð36Þ

the final answer takes the form

δ logZ ¼ log

� ffiffiffiffiffi
27

p

512
ffiffiffiffiffiffi
2π

p T3=2

J3=4

�
∼
3

2
logT: ð37Þ

We conclude that at low temperatures

Z½T�Black Hole ∼ T3=2eS0 þ higher order terms: ð38Þ

It remains to understand the regime of validity of this
expression and its physical content. Obviously, once the
small T-dependent prefactor begins competing with the
large temperature independent exponential, the approxi-
mation is not valid. This occurs when T3=2 ∼ e−S0 . Below
this temperature, the partition function is so small that other
saddles will begin competing with the computation per-
formed here. Similarly, when T ∼ J−1=2 the linear term
in (13) competes with the leading S0 term and the near-
extremal approximation breaks down. Equivalently, the
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correction term (27) becomes as large as the NHEK metric
(16) throughout the throat and the small-T approximation
of the geometry completely breaks down.
The fact that the partition function vanishes as T → 0

means that ρðEÞ → 0 as E → 0. There is no exponential
ground state degeneracy or thermodynamic mass gap [1].
Rather, thewould-beground states are spread out over a dense
energy band above the vacuum. Hence, standard thermo-
dynamics still applies in the range Ja1e−a2S0 ≲ T ≲ J−1=2,
where a1, a2 are expected to be Oð1Þ numbers.
This interpretation is subtle because spontaneous emis-

sion of superradiant particles from a zero temperature Kerr
black hole serves to spin down the black hole [40]. Once
lifted from extremality, the normal Hawking evaporation
process takes over, so the lifetime for an extremal Kerr
black hole is not qualitatively different from that of
Schwarzschild. This effect is partially observable within
the NHEK geometry, which supports superradiant modes
(not treated in this Letter) which are oscillatory near the
boundary and which carry away energy and angular
momentum [26].
Although the decay rate can likely be estimated using

these modes in the throat, the precise coefficient is not
calculable since the ergosphere extends far from the mouth
of the throat. Calculating the widths of the Kerr microstates
therefore likely requires the full Kerr geometry, and we do
not address this aspect of the spectrum in this Letter. A
proper mathematical description of the microstates of a
Kerr black hole connected to an asymptotically flat region
really involves a density of resonances in the complex
energy plane, and we can ask about the distribution of
energies in the real and imaginary directions. While the
widths of the states with J ∼M2 require calculations in the
full Kerr geometry, the distribution along the real axis near
extremality is controlled by the throat calculation per-
formed in this Letter.

Note added.—Recently, we became aware that similar
results are in preparation by Rakic, Rangamani, and
Turiaci [25].
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