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Dark photons have emerged as promising candidates for dark matter, and their search is a top priority in
particle physics, astrophysics, and cosmology. We report the first use of a tunable niobium superconducting
radio-frequency cavity for a scan search of dark photon dark matter with innovative data analysis
techniques. We mechanically adjusted the resonant frequency of a cavity submerged in liquid helium at a
temperature of 2 K, and scanned the dark photon mass over a frequency range of 1.37 MHz centered at
1.3 GHz. Our study leveraged the superconducting radio-frequency cavity’s remarkably high quality
factors of approximately 1010, resulting in the most stringent constraints to date on a substantial portion of
the exclusion parameter space on the kinetic mixing coefficient ϵ between dark photons and electro-
magnetic photons, yielding a value of ϵ < 2.2 × 10−16.
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Introduction.—The quest for new physics in fundamen-
tal research has required increasingly precise measurements
in recent years, specifically in detecting feeble signals from
dark matter, whose existence is of utmost importance in
understanding the structure and evolution of the Universe.
Ultralight bosons, such as axions [1–3] and dark photons
[4,5], which are predicted in many extra dimension or
string-inspired models [6–9], have become notable exam-
ples of such candidates. A dark photon, a hypothetical
particle from beyond the standard model of particle

physics, serves as the hidden gauge boson of a U(1)
interaction. Through a small kinetic mixing, dark photons
can interact with ordinary photons, thus providing one of
the simplest extensions to the standard model.
The detection of ultralight dark photon dark matter

(DPDM) capitalizes on the tiny kinematic mixing, which
contributes to weak localized effective electric currents and
enables experimental probing of these elusive particles.
Various search techniques for DPDM have been employed,
such as dish antennas [10–12], geomagnetic fields [13,14],
atomic spectroscopy [15], radio telescopes [16], and atomic
magnetometers [17]. Additionally, due to similarities with
axion detection [18–22], axion-photon coupling constraints
have been reinterpreted to set bounds on the kinetic mixing
coefficient of dark photons [23,24].
Haloscopes serve as a crucial tool for detecting ultralight

dark matter. In these devices, the ultralight dark matter field

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 133, 021005 (2024)

0031-9007=24=133(2)=021005(7) 021005-1 Published by the American Physical Society

https://orcid.org/0000-0002-2507-8272
https://orcid.org/0000-0003-2545-7974
https://orcid.org/0000-0001-6653-1574
https://orcid.org/0000-0001-8429-949X
https://orcid.org/0000-0003-0222-2478
https://orcid.org/0000-0001-6569-403X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.021005&domain=pdf&date_stamp=2024-07-12
https://doi.org/10.1103/PhysRevLett.133.021005
https://doi.org/10.1103/PhysRevLett.133.021005
https://doi.org/10.1103/PhysRevLett.133.021005
https://doi.org/10.1103/PhysRevLett.133.021005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


is converted into electromagnetic signals within a cavity.
The ongoing rapid advancements in quantum technology
are anticipated to significantly bolster the sensitivity
of these experimental setups [25–35]. Superconducting
radio-frequency (SRF) cavities in accelerators [36] boast
exceptionally high quality factors, reaching Q0 > 1010,
allowing for the accumulation of larger electromagnetic
signals and reduced noise levels [34,35,37,38]. Unlike axion
detection,DPDMdetection does not require amagnetic field
background, enabling the full potential of superconducting
cavities to be exploited.Notably, the sensitivity to the kinetic
mixing coefficient of the dark photon can experience
enhancement by a factor of Q−1=4

0 in scenarios where
Q0 > QDM [37]. Here, QDM ≈ 106 characterizes the fre-
quency spectrum of ultralight bosonic fields originating
from a virialized velocity dispersion of ∼10−3 c.
Exploring the extensive and as yet unexplored domain

within the DPDM parameter space necessitates a detector
capable of systematically scanning the mass window. This
imperative calls for the incorporation of a frequency tuning
structure, which marks an advancement over prior inves-
tigations focused on individual bins [34,35,37]. An SRF
tuning structure was recently employed in a “light-shining-
through-wall” experiment for conducting broadband
searches concerning dark photons [38]. In this study, for
the first time, we conducted scan searches for DPDM by
mechanically tuning the SRF cavity. Furthermore, a novel
data analysis strategy tailored for the Q0 > QDM regime
was employed. This approach allowed us to access
the deepest region of DPDM interaction across a majority
of the scanned mass window, covering a total span
of 1.37 MHz centered around a resonant frequency of
1.3 GHz. This effort represents the inaugural run of the
Superconducting cavity as High-frequency gravitational
wave, Axion, and other New Hidden particle Explorer
(SHANHE) collaboration.
II. A tunable SRF cavity for dark photon dark matter.—

Dark photon field, denoted as A0
μ, can kinetically mix with

the electromagnetic photon Aμ with a form ϵF0
μνFμν=2,

where ϵ is the kinetic mixing coefficient, and F0
μν, Fμν are

the corresponding field tensors. When a coherently oscil-
lating DPDM field is present within a cavity, it generates an
effective current denoted as J⃗eff ¼ ϵm2

A0 A⃗
0 that pumps

cavity modes, where mA0 is the dark photon mass. The
DPDM field consists of an ensemble sum of nonrelativistic
vector waves, with frequencies distributed in a narrow
window approximately equal to mA0=ð2πQDMÞ centered
around mA0=ð2πÞ.
If the resonant frequency f0 of a cavity mode falls within

the frequency band around mA0=ð2πÞ, excitation of the
electromagnetic field in that mode occurs, resulting in a
signal power proportional to ϵ2mA0VCρA0 , where V is the
cavity volume, C is the form factor that characterizes the
overlap between a cavity mode and the DPDM wave

function along a specific axis (see Supplemental
Material for detail [39]), and ρA0 ≈ 0.45 GeV=cm3 is the
local dark matter energy density. On the other hand, both
internal dissipation of the cavity and amplifiers introduce
noise, Pn ¼ Pth þ Pamp. Pth represents the power of ther-
mal noise in the cavity and is proportional to Tf0=Q0,
where T is the temperature of the cavity. The signal and
thermal noise are distributed within the same bandwidth
≈ðβ þ 1Þf0=Q0 in the limit that the cavity’s quality factor
Q0 is much greater than QDM. Here, β is the dimensionless
cavity coupling factor representing the ratio between the
power transferred to the readout port and the internal
dissipation. The noise from the amplifier is characterized
by its effective noise temperature Tamp. The spectrum of the
amplifier noise is flat within a frequency range Δf0, which
is the range over which the cavity’s resonant frequency can
be kept stable. Consequently, the amplifier noise dominates
over the thermal noise when Tamp ≈ T.
The signal-to-noise ratio (SNR) of each scan step’s

search can be estimated by using the Dicke radiometer
equation: SNR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tintΔf0
p

Psig=Pn [48], where tint denotes
the integration time. This estimation enables us to deter-
mine the level of sensitivity toward ϵ,

ϵ ≈ 2.8 × 10−16
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where ξ≡ Δf0Q0=f0, and we require SNR ¼ 1.64, and
take β ≈ 1, and T ≈ Tamp, as calibrated in this study,
and ρA0 ¼ 0.45 GeV=cm3. Equation (1) shows that high
quality factors improve sensitivity to ϵ, as ϵ ∝ Q−1=4

0 . SRF
cavities are therefore powerful transducers for detecting
DPDM [37].
In this Letter, we used a single-cell elliptical niobium

SRF cavity, as illustrated in Fig. 1. The cavity has a volume
V ≃ 3.9 L. We employ the ground mode TM010 at
f0 ≃ 1.3 GHz, resulting in a form factor of C ≃ 0.53. To
search DPDM within a reasonable mass range, it is
imperative to scan the cavity at various resonant frequen-
cies. To achieve this, a double lever frequency tuner
[49,50], as depicted in Fig. 1, was installed on the cavity.
This tuner includes a stepper motor with a tuning resolution
of approximately 10 Hz, and a piezo actuator capable of
fine-tuning at a level of 0.1 Hz. A detailed schematic of this
tuner is provided in the Supplemental Material [39]. The
cavity, along with the tuning apparatus and the experi-
mental platform, has undergone extensive testing over
several years [51–56].
Experimental operation.—Before carrying out DPDM

searches, it is essential to calibrate the relevant cavity and
amplifier parameters. All calibrated parameters and the
corresponding uncertainties are presented in Table I. Both
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the volume of the cavity and the form factor of the TM010

mode are calculated numerically, with < 1% uncertainty
for effective volume Veff ≡ VC=3. This uncertainty orig-
inates from the slight discrepancy between the simulated
resonant frequency and the experimentally measured one,
along with potential effects such as thinning due to acid
pickling procedures. Here, the factor of 1=3 accounts for
the random distribution of DPDM polarization.
We present the experimental setup in which the micro-

wave electronics are depicted in the right panel of Fig. 1.
The cavity is positioned within a liquid helium environment
at a temperature T ≃ 2 K and is connected to axial pin

couplers. The amplifier line consists of an isolator, which
serves to prevent the injection of amplifier noise into the
cavity, a high-electron mobility transistor (HEMT) ampli-
fier, and two room-temperature amplifiers. Initially, we
used a vector network analyzer (VNA) to measure the net
amplification factor Gnet of the amplifier circuit, which
considers the sequential amplification and potential decays
within the line. Next, we conducted decay measurements
with a noise source that went through the cavity, the
amplifier line, and the spectrum analyzer, to calibrate the
cavity loaded quality factor, QL ≡Q0=ðβ þ 1Þ. The cavity
coupling factor, β, was calibrated in combination with the
results of the standard vertical test stand.
For each scan step, we used the noise source to calibrate

the resonant frequency f0 of the cavity by locating the peak
of the power spectral density. This injected noise, featuring
a spectrum wider than the cavity’s bandwidth, serves as an
effective stand-in for synthetic signals, ensuring that our
data analysis procedures are well-suited for accurate signal
detection. Immediately after calibration, we switched off
the noise source and inserted a 30 dB attenuator to prevent
the external noise from entering the cavity. We then used
the spectrum analyzer to record the time-domain signals
from the SRF cavity and amplifiers. Each scan took
tint ¼ 100 s. After each scan, the value of f0 was adjusted
by approximately 1.3 kHz and the calibration of f0 was
restarted. A total of Nbin ¼ 1150 scans were conducted,
covering a frequency range of approximately 1.37 MHz.
The highest resonant frequency, denoted by fmax

0 , occurred
when the frequency tuner was not applied. The calibration
process for Gnet, QL, and β was conducted multiple times
during the whole scan process, with uncertainties given by
the measurement deviation.
One key challenge of DPDM searches using SRF is to

ensure any potential signal induced from DPDM is within
the resonant bin, as f0 may drift with time or oscillate due
to microphonics effect [38,50]. To determine the stability
range of f0, denoted as Δf0, we measured the drift of f0
every 50 scans, matching the integration time tint of a single
scan step, and also assessed the effect of microphonics over
the same duration (see Supplemental Material [39]). The
microphonics effect produces a resonant frequency distri-
bution with a root mean square of δfrms

m ¼ 4.1 Hz, which is
dominant over the drift with a maximum deviation of
1.5 Hz. To account for any potential deviations in f0, we
conservatively selected Δf0 to be 2.8δfrms

m ≃ 11.5 Hz,
taking into consideration an efficiency of 84% for the
recorded signal to optimize the SNR.
Data analysis and constraints.—In this Letter, each scan

was focused on the frequency bin centered at the resonant
frequencyf0, which had a bandwidth ofΔf0. For every scan,
we obtained N ¼ tintΔf0 samples at the resonant bin and
computed their average value and standard deviation. We
checked the Gaussian noise property by ensuring that the
ratio between these two values was close to 1 at each step.

TABLE I. Calibrated parameters for SRF cavities and ampli-
fiers used are shown, including their mean values, uncertainties,
and fractional uncertainties on DPDM-induced power, Fj.

Value Fractional uncertainty

Veff ≡ VC=3 693 mL < 1%
β 0.634� 0.014 1.4%
Gnet (57.30� 0.14) dB 3.1%
QL ð9.092� 0.081Þ × 109 =
fmax
0 1.299 164 379 5 GHz =

Δf0 11.5 Hz =
tint 100 s =

FIG. 1. Left: Single-cell SRF cavity equipped with frequency
tuner. Right: Schematic of the microwave electronics for DPDM
searches. The VNA measures the net amplification factor Gnet of
the amplifier circuit consisting of an isolator, a HEMT amplifier,
and two room-temperature amplifiers. The noise source and the
spectrum analyzer calibrate the resonant frequencies fi0. The
time-domain signals from the SRF, with sequential amplification,
are finally recorded by the spectrum analyzer.
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The average values of different scans provided an indication
of the total noise in each resonant bin. The amplifier noise,
Pamp, was found to be nearly constant over the entire
frequency range tested. Furthermore, the subdominant
thermal noise was observed to be linearly proportional to
the resonant frequency, with a variation much smaller than
the standard deviation. Therefore, we expected the noise in
the resonant bins to be independent of the resonant fre-
quency. To reduce the potential effects of environmental
variation, such as helium pressure fluctuations andmechani-
cal vibrations, we aggregated every 50 contiguous bins to
ensure environmental stability within each group. For each
group, we computed a constant fit for different bins and
presented the normalized power excess in Fig. 2. The right
panel of the figure shows a comparison between the counts
of normalized power excess and the standard normal
distribution to confirm its Gaussianity. No deviation over
3σ appears in any bin. Note that the scan steps do not
progress in a strictly monotonic order by frequency, as
continuously tuning the frequency in a single direction can
induce additional drift of f0. Monotonic progression is
maintained only within groups of 50 consecutive bins.
Compared to the analysis strategies employed by tradi-

tional haloscopes with Q0 ≪ QDM, our resonant bins cover
only a fraction of the entire frequency band, Δf0QDM=f0.
However, we can still test the DPDM with masses
within this range and thereby maximize the scan rate.
Furthermore, our simple fit function results in attenuation
factor of 98%. This value is less suppressed when com-
pared to low Q0 experiments, where higher-order fitting
functions are utilized to account for the frequency-
dependent cavity response during each scan.
There are two sources of uncertainty that affect the

sensitivity toward DPDM searches. In addition to the fit
uncertainty caused by Gaussian noise, there are also uncer-
tainties in calibrated parameters that may contribute to a
biased estimate for DPDM-induced signals. We present the
measurement uncertainties of parameters Veff ; β; Gnet and

their corresponding fractional influences on signal power in
Table I (see Supplemental Material [39]). To compute the
probability function for a potentialDPDMsignal,wemultiply
the contributions from different bins. However, because the
DPDMwidth≈mA0=ð2πQDMÞ ismuch larger than the narrow
bandwidth Δf0, we only consider the two nearby bins in
practice. Figure 3 shows the 90% upper limits on the kinetic
mixing coefficient ϵ for a given DPDM mass mA0 . The high
quality factor of SRF significantly boosts sensitivity, leading
to themost stringent constraints compared to other limitations
across a wide range of investigated masses. The reached
sensitivity is well-estimated by Eq. (1). For comparative
analysis, we present the outcomes of a single-bin search
conducted in Superconducting Quantum Materials and
Systems Center (SQMS) [37] in the top panel. Both inves-
tigations utilized a conventional 1.3 GHz elliptical cavity,
yielding akin parameters encompassing Veff , f0, β, and QL.
The primary distinction between our parameters and theirs
lies in the bin size and integration time. Specifically, our tint is
10 times shorter than theirs. We conservatively selected
Δf0 ¼ 11.5 Hz, whereas their choice is only 0.15 Hz. The
bottom panel presents a comparison across a wider frequency
rangewith other experiments, clearly demonstrating that SRF
experiments achieve the deepest sensitivity.

FIG. 3. Top: The 90% exclusion on the kinetic mixing
coefficient ϵ of DPDM based on SRF scan searches performed
in this study (red). Other constraints including FAST radio
telescope (gray) [16], distortion of cosmic microwave back-
ground (blue) [5], and SQMS prototype (yellow) [37] are shown
for comparison. Bottom: A comparison of our results within the
broader context of existing constraints, adapted from [57].

FIG. 2. The blue dots show the normalized power excess δi ≡
ðP̄fi

0
− P̄Þ=σP̄ at each scan step i. Its distribution is shown on the

right panel, which can be well fit by a standard normal
distribution.
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Conclusion.—In this Letter, we utilized a tunable single-
cell 1.3 GHz elliptical cavity to search for DPDM. Our
findings establish the most stringent exclusion limit across
a majority of the scanned mass window, achieving a depth
of sensitivity of up to ϵ ∼ 2.2 × 10−16. This result demon-
strates that employing cavities with high quality factors
significantly enhances the sensitivity toward the kinetic
mixing coefficient of DPDM. Our experiment presents the
first scan results using a tunable SRF cavity, which covers a
frequency range of 1.37 MHz within DPDM’s mass
window, beginning from an initial resonant frequency of
approximately fmax

0 ≃ 1.299 GHz. Our scan steps are set at
intervals corresponding to 10−6 of the resonant frequency,
aligning with the dark matter bandwidth to optimize the
scan rate. To investigate any potential excess from a
suspicious signal, we can simply adjust the resonant
frequency slightly away from the bin indicating excess.
Conducting a comprehensive scan of the surrounding
region allows for the reconstruction of the frequency
spectrum of DPDM, providing valuable insights into the
mechanisms of dark matter formation.
In the upcoming phase of our DPDM search, our

foremost goals are to broaden the tuning range and boost
sensitivity. We are in the process of designing a new tuning
mechanism—a plunger tuner—that will adjust the beam
pipe’s end face at one end of the cavity. This adjustment is
projected to enhance the tuning range to approximately
1=10 of the resonant frequency. To further augment
sensitivity, our strategy includes mitigating microphonics
effects and diminishing amplifier noise, utilizing dilution
refrigeration and nearly quantum-limited Josephson para-
metric amplifiers. Additionally, by employing coupled-
cavity designs, we anticipate increasing the cavity volume
tenfold while maintaining the same resonant frequency.
With these advancements combined, we are optimistic
about setting new constraints on the kinetic mixing coef-
ficient ϵ, potentially below 10−17.
The exceptionally high quality factors of SRF cavities

open avenues for additional enhancements in detection
sensitivity. For example, coupling a single cavity mode to a
multimode resonant systems with nondegenerate para-
metric interactions [25–28] can broaden the effective
bandwidth of each scan without losing sensitivity within
it. One can also exploit squeezing technology [29–33] or
nondemolition photon counting [34,35] to go beyond the
standard quantum limit. A network of DPDM detectors
simultaneously measuring at the same frequency band will
not only increase the sensitivity [26,58], but also reveal
macroscopic properties and the microscopic nature of the
DPDM sources, such as the angular distribution and
polarization [59,60].
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