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Strongly interacting massive particles π have been advocated as prominent dark matter candidates when
they regulate their relic abundance through odd-numbered 3π → 2π annihilation. We show that successful
freeze-out may also be achieved through even-numbered interactions XX → ππ once bound states X among
the particles of the low-energy spectrum exist. In addition, X-formation hosts the potential of also
catalyzing odd-numbered 3π → 2π annihilation processes, turning them into effective two-body processes
πX → ππ. Bound states are often a natural consequence of strongly interacting theories. We calculate the
dark matter freeze-out and comment on the cosmic viability and possible extensions. Candidate theories
can encompass confining sectors without a mass gap, glueball dark matter, or ϕ3 and ϕ4 theories with
strong Yukawa or self-interactions.
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Introduction.—The several decades-long efforts to detect
dark matter (DM) nongravitationally have, to a significant
degree, been fueled by a relic density argument: the
couplings of DM to the standard model (SM) that allow
for phenomenological exploration also successfully gen-
erate the DM abundance in the early Universe through
thermal two-body annihilation of DM into SM states. As
has been realized more recently, when the link between DM
and SM becomes too weak, DM may still regulate its
abundance through 3 → 2 DM-only processes [1]; also
[2–4]. This offers a pathway of DM as a thermal relic even
when being partially secluded from the SM. The odd-
numbered 3 → 2 reaction is naturally realized through the
Wess-Zumino-Witten (WZW) five-point interaction of a
strongly interacting dark sector [5]. The possibility of a DM
number-depleting process that proceeds without participa-
tion of additional degrees of freedom is hence very
attractive and has led to a flurry of further exploration,
see Refs. [6–28] among others.
In this Letter, we show that bound states X ≡ ½ππ� among

strongly interacting massive particles (SIMPs), denoted as
π, impact relic abundance predictions, potentially altering
the conventional understanding of the “SIMP mechanism.”
In particular, X may lead to a catalysis of freeze-out
reactions by adding new channels

catalyzed 3 → 2 annihilation∶ π þ X → π þ π; ð1aÞ

catalyzed 4 → 2 annihilation∶ X þ X → π þ π: ð1bÞ

The last two are effective 2 → 2 processes and compete
with the free 3π → 2π and 4π → 2π counterpart reactions
in depleting the overall DM mass density. Moreover,
whereas 3π → 2π and (1a) are related through the same
underlying odd-numbered interaction, the final process
XX → ππ can be entirely due to even-numbered inter-
actions, such as the four-point self-interaction. This
releases a requirement on the interaction structure of the
theory and opens the door to a SIMP mechanism without
relying on anomaly-mediated interactions.
Of course, the prospect of catalyzed reactions (1a) and

(1b) taking place requires X to be part of the low-energy
spectrum. Once the theory allows for the existence of
sufficiently long-lived X, their formation is guaranteed
through the radiationless exoergic process

guaranteedX formation∶ π þ π þ π → π þ X: ð2Þ

This reaction may also be mediated through even-num-
bered interactions, and in its effective strength, it is not
suppressed relative to the standard 3 → 2 process. Hence,X
may form efficiently, and it shows that already for models
of SIMPs in isolation, the role of bound states calls to be
studied; see Fig. 1 for illustration.
Exemplary SIMP model.—To allow for a paralleling

exposition close to the original papers on the SIMP-
mechanism [1,5], we shall consider the low-energy

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 133, 021003 (2024)

0031-9007=24=133(2)=021003(7) 021003-1 Published by the American Physical Society

https://orcid.org/0000-0002-4931-388X
https://orcid.org/0000-0002-9165-4813
https://ror.org/039shy520
https://ror.org/03anc3s24
https://ror.org/05qbk4x57
https://ror.org/03prydq77
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.021003&domain=pdf&date_stamp=2024-07-12
https://doi.org/10.1103/PhysRevLett.133.021003
https://doi.org/10.1103/PhysRevLett.133.021003
https://doi.org/10.1103/PhysRevLett.133.021003
https://doi.org/10.1103/PhysRevLett.133.021003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


effective theory of a ¼ 1;…; Nπ massive pseudo-
Goldstone bosons πa as the DM candidates emerging from
a confining dark non-Abelian gauge group of Nf fermion
fields. The dynamics discussed is not exclusive to this
choice and further possibilities will be commented on.
In the construction of the chiral Lagrangian, πa are

written as fluctuations of the orientation of the chiral
condensate Σ0, Σ ¼ eiπ=fπΣ0eiπ

T=fπ , with π ¼ P
n πnT

n

where Tn are the Nπ broken generators of the flavor
group with normalization Tr½TaTb� ¼ δab=2. Expanding
in terms of Σ yields the canonically normalized kinetic
terms, masses, and even-numbered interactions of π.
Considering a flavor-degenerate quark mass matrix M
with entries m, their universal mass is given by
m2

π ¼ �2μ3m=f2π; fπ is the decay constant, and the plus
(minus) sign applies to Spð2NfÞ [SUðNfÞ or SOðNfÞ]
residual flavor symmetry. Interactions are given by

Leven
int ⊃ −

1

3f2π
Trð½π; ∂μπ�½π; ∂μπ�Þ þ

m2
π

3f2π
Tr½π4� ð3Þ

plus higher order terms Oðπ6=f6πÞ. Odd-numbered inter-
actions in form of a nonvanishing WZW term are only
present for symmetry-breaking pattern with coset spaces
with nontrivial fifth homotopy groups [29]. The leading
order WZW Lagrangian then reads,

Lodd
int ¼ 2Nc

15π2f5π
ϵμνρσTr½π∂μπ∂νπ∂ρπ∂σπ�: ð4Þ

In the picture of strongly interacting theories, X would be
a “meson molecule” or “tetraquark” of mass mX ¼ 2mπ −
EB and EB > 0. For the exposition of our ideas, we assume
a shallow bound molecule with κ ≡ EB=mπ ∼ 0.1 so that it
can be treated as a nonrelativistic bound state [30]. This
points to a theory with m=Λ≲ 1 where Λ ≃ 2πfπ [31].
Theories with m=Λ ≪ 1 such as for light quarks in QCD
have a mass-gap whereas for m=Λ ≫ 1, the lowest lying
states are expected to be gluonia. The general ideas
presented here also apply to deeper bound systems, but
their treatment requires advanced field theoretical tools,
greatly complicating matters. Even if we are far from the
chiral limit, using (3) and (4) allows for a most direct
comparison with the original SIMP idea. In the following,

we shall take an Spð2NcÞ gauge theory (Nc ¼ 2) for
concreteness with Nf ¼ 2 fundamental Dirac fermions.
After chiral symmetry breaking, the vacuum alignment is
Σ0 ¼ E, where E is the unitized invariant matrix of the
remaining Spð4Þ flavor symmetry group. A detailed study
of this choice is presented in [32] (see also previous lattice
studies [33,34]) and there are works studying the existence
of X in such scenarios, e.g., [35–38]. Another strongly
interacting option is taking m=Λ ≫ 1 with glueball DM
[13,39–41] and to consider their bound states [42]. This is
left for future work [43].
Bound state-assisted SIMP annihilation.—Before a

detailed analysis, simple estimates may convince us that
bound state formation and X-assisted annihilation are both
efficient and may even supersede odd-numbered inter-
actions. The parametric ratio of rates of X formation to
odd-numbered annihilation reads,

Γ3π→πX

Γ3π→2π
¼ hσ3π→πXv2i

hσ3π→2πv2i
≈
jψð0Þj2f2π

m5
π

x2f : ð5Þ

Here hσiv2i are the thermally averaged collision integrals of
the respective processes. The dimensionful factor that
relates both “cross sections” is the square of the bound
state wave function at the origin jψð0Þj2; x2f ≡ ðmπ=TfÞ2 ∼
400 is an enhancement factor that accounts for the different
velocity scalings of rates, D wave for 3π → 2π and S wave
for 3π → πX, at nonrelativistic freeze-out temperature
Tf ∼mπ=20. Taking as an estimate jψð0Þj2 ¼ 1=a3B with
the Bohr radius aB ¼ 2=ðα0smπÞ given in terms of the dark
strong coupling constant α0s ¼ Oð1Þ shows that the ratio in
(5) easily exceeds unity on account of mπ=fπ ¼ Oð1Þ in
strongly interacting theories [44].
We may also convince ourselves that X-assisted anni-

hilation competes with its free counterpart. Naive dimen-
sional analysis suggests that, for a pair of π particles, it is
more likely for them to meet as constituents of a bound
state than as free particles,

nXjψð0Þj2
n2π

≈ 2
ffiffiffi
2

p
π3=2x3=2f eκxf

jψð0Þj2
m3

π
; ð6Þ

where we used nonrelativistic Maxwell-Boltzmann statis-
tics for nπ and nX. Note that 2

ffiffiffi
2

p
π3=2x3=2f ≈ 103 for

xf ¼ 20. Thus, the ratio in (6) may easily exceed unity
and suggests on general grounds that XX → ππ dominates
over 4π → 2π, and that πX → ππ dominates over 3π → 2π
when odd-numbered interactions are present. This is what
we mean by “catalysis.”
Cross sections.—We now calculate the relevant cross

sections from (3) and (4) and first consider the X-formation
cross section ðσ3π→πXv2Þ [46]. In the approximation that we
are working in, the amplitude for a bound state process is
obtained from the free amplitude as follows. Following the

FIG. 1. X-formation; X-assisted annihilation via two 4-point
interactions; catalyzed 3 → 2 annihilation.
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notation of [47] and calling hk⃗1; k⃗2; k⃗3jT f…gjp⃗1; p⃗2; p⃗3i
the matrix-element of 3π → 3π with respective incoming
and outgoing momenta p⃗i and k⃗i, the amplitude for the
bound state formation 3π → πX is obtained from

ffiffiffiffiffiffiffiffiffiffi
2MX

p
2mπ

Z
d3q⃗
ð2πÞ3

�
K⃗
2
− q⃗;

K⃗
2
þ q⃗; k⃗3jT f…gjp⃗1; p⃗2; p⃗3

�
ψ̃ðq⃗Þ:

ð7Þ

Here, K⃗ is the three-momentum of X; ψ̃ðq⃗Þ is the Fourier
transform ψ̃ðq⃗Þ ¼ R

d3x⃗ψðx⃗Þe−iq⃗·x⃗ of the wave function
that is a solution to the nonrelativistic Schrödinger equation
with confining potential VðrÞ, where r ¼ jx⃗j is the sepa-
ration of the constituent SIMPs.
On general grounds, many terms contribute to the

integral in (7). They can be classified by the power of
the Cartesian components of qi that enter through the
matrix element, enforcing a selection rule on ψðx⃗Þ.
Decomposing the latter into angular and radial parts,
ψðx⃗Þ ¼ Ylmðx̂ÞRðrÞ, constant terms ðqiÞ0 yield for the
integral ψðx⃗ ¼ 0Þ which is only nonvanishing for S states
l ¼ 0 where Rð0Þ ¼ ffiffiffiffiffiffi

4π
p jψð0Þj ≠ 0. This is our most

important case, as it concerns the ground state of X.
Terms proportional to qi yield the derivative of the radial
wave function at the origin, R0ð0Þ≡ dR=drjr¼0, so the
lowest contributing angular momentum state is P wave
with l ¼ 1. We will encounter this case for the WZW
interaction below. Finally, terms quadratic in qi yield
nominally divergent integrals in (7), probing the short
distance behavior of the theory. In dimensional regulari-
zation one may show that ∇2Rð0Þ ¼ −mπEBRð0Þ holds
[50,51]. Since we take EB ≪ mπ , this becomes subleading
in processes involving S states, and we are hence allowed to
neglect such contributions.
For the bound state formation process 3π → πX, there

are then various diagrams to consider. During nonrelativ-
istic freeze-out, the dominant processes are t- and u-
channel type diagrams of the sort depicted in Fig. 1 where
two 4-point interactions are connected via a SIMP propa-
gator. The denominators of the propagators are enhanced
by a matching kinematic condition k2 −m2

π ∝ −EBmπ .
This renders other diagrams irrelevant. The cross section
is then given by

hσ3π→πXv2i ≃
57 041

1 310 720
ffiffiffi
3

p
π2

R2
Sð0Þ
f8π

�
mπ

EB

�
3=2

: ð8Þ

The prefactor depends on the gauge group and symmetry
breaking pattern and is averaged all possible incoming and
summed over all outgoing flavor combinations so that
n3πhσ3π→πXv2i yields the total number change per time. In
obtaining the result, we used a nonrelativistic expansion,
assuming that the typical incoming kinetic energy satisfies

mπhv2i=2≲ EB. This is equivalent to demanding Tf ≲ EB.
The thermal average over a Maxwell-Boltzmann ensemble
was taken in the final step. When comparing with (5) we
observe an additional enhancement by a factor of
ðmπ=EBÞ3=2 in the ratio of rates relative to the WZW-
mediated 3π → 2π annihilation. Detailed calculations of all
cross sections are provided in the Supplemental Material
[46] to this Letter.
Similarly, we may proceed with the calculation of the

annihilation cross section for XX → ππ. A general com-
putation would be a formidable challenge, but we may
again profit from the imposed selection rules, focusing on
S-wave initial bound states. There are six t- and u-channel
diagrams, which become related in the limit that we neglect
the internal motion of the constituents. The final result
reads

hσXX→ππvi ≃
2 529 757

424 673 280
ffiffiffi
3

p
π3

R4
Sð0Þ
f8π

; ð9Þ

where we have again summed over all flavor combinations.
Finally, when considering odd-numbered 3 → 2 inter-
actions enabled by (4), we obtain the cross section for
the related πX → ππ process as

hσπX→ππvi ≃
ffiffiffi
5

p
N2

cm3
π

512π6f10π x
R02
P ð0Þ: ð10Þ

Importantly, the process requires X to be in a P-wave state
XP with l ¼ 1.
Abundance evolution.—We are now in a position to solve

the evolution equations for the two populations, free π and
X. Their respective total comoving number densities,
normalized to the total entropy density s, are given by
Yπ;X ¼ nπ;X=s, where s is the total entropy density of the
Universe and a sum over all flavors is implicit. We assume
that kinetic equilibrium with SM is maintained; we develop
this in the next section. At high temperatures (small x), π
and X follow their equilibrium distributions, Yπ;X ¼ Yeq

π;X,
due to fast number-changing processes. Their chemical
decoupling happens at x1 ∼ 20 when n2XhσXX→ππvi=nπ≃
Hðx1Þ. Subsequently, considering only even-numbered
interactions, assuming dominance of XX → ππ over the
free 4π → 2π counterpart and neglecting the inverse
process, a particularly simple form of the Boltzmann
equation is found for the combination Yπ þ 2YX [52],

dðYπ þ 2YXÞ
dx

¼ −
2hσXX→ππviY2

XsðxÞ
xHðxÞ ðx > x1Þ: ð11Þ

The immediate evolution that ensues for x > x1 is non-
trivial because bound state formation 3π ↔ πX is still
operative. This maintains a detailed balance between the X
and π populations,
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YX ¼ Y2
πY

eq
X

ðYeq
π Þ2 ¼ Y2

π
NX

N2
π
ð2πxÞ3=2eκx

�
mX

mπ

�
3=2 sðxÞ

m3
π
; ð12Þ

where Nπ ¼ 5 and NX ¼ ðNπ þ 1ÞNπ=2 ¼ 15 are the
possible flavor combinations. Together, (12) and (11)
determine the evolution of Yπ and YX for as long as their
detailed balance holds until bound state formation freezes
out at x2 > x1 when Γ3π→πX ≡ n2πhσ3π→πXv2i ¼ Hðx2Þ.
Using (12) in (11) with YX ≪ Yπ and neglecting

dYX=dx, the Boltzmann equation becomes one for
dYπ=dx that can be integrated. To leading order in x1=x2
we obtain the following solution,

Y−3
π ðx2Þ ≃

256
ffiffiffi
2

p
π8g5=2� mπMPhσXX→ππvi

6075
ffiffiffi
5

p
x42

N2
X

N4
π

× ½8ðκx2Þ4Eið2κx2Þ
− e2κx2ð3þ 2κx2 þ 2κ2x22 þ 4κ3x32Þ�; ð13Þ

where Ei is the exponential integral function andMP is the
reduced Planck mass and g� are the effective degrees of
freedom at x2. This approximation works for κx1 ≳ 1,
which is congruent with assuming EB > T at chemical
decoupling. In writing the solution, we have also taken
Y−3
π ðx1Þ ≪ Y−3

π ðx2Þ. To within a factor of 2, we may then
put the solution in suggestive form,

Ωeven
π ∼ 0.2

�
200 κx52
e2κx2

bn=GeV
hσXX→ππvi=mπ

mπ

GeV

�
1=3

: ð14Þ

This is a central result. First, note that the relic density
depends on x2, i.e., the moment of freeze-out of bound state
formation, and not x1. Second, we observe a strong
dependence on κ, and with x2 typically between 50 to
100, κ ¼ 0.1 suggests sub-GeV DM with cm2/gram self-
interactions—in the same ballpark as the odd-numbered
SIMP case. Finally, when compared to ordinary 2 → 2
freeze-out, the inverse dependence on the annihilation cross
section is softened by the cubic root.
The top panel of Fig. 2 shows the full numerical solution

for Yπ and YX as a function of x for the parameters given in
the caption. The evolution contains three steps as discussed
above. First, chemical decoupling happens at x1 ≃ 20 when
XX ↔ ππ freezes out. Both X and π develop a chemical
potential and keep a detailed balance via 3π ↔ πX until
x2 ≃ 115. For x > x2 free π have reached their relic density
value while YX keeps decreasing further, as the rate of
XX → ππ with respect to nX is still larger than the Hubble
rate, nXhσXX→ππvi > Hðx2Þ. The evolution of YX is shown
in the bottom panel. Figure 3 shows that with bound states,
even-numbered interactions can achieve the observed DM
abundance with bn/GeV-scale self-scattering and reach
mπ > GeV with perturbative couplings [53].
Odd-numbered case.—We now turn our attention to the

scenario when we are additionally afforded odd-numbered

interactions. As calculated in (10), the efficiency of πXP →
ππ entirely hinges on the availability XP, which must be
present in the low energy spectrum. Since the path to
collisional excitation is open, one may consider the detailed
balancing relation nXP

=nXS
¼ 3 exp½−jκ − κPjx� as an esti-

mate for the number density nXP
of excited states; κP ¼

EP=mπ with EP being the P-wave binding energy. As we
shall see now, the impact of bound states X can also be
substantial. Even with the bottleneck of P-wave states for
WZW interactions, πXP → ππ supersede the free 3π → 2π
scenario, and is generally stronger than XX → ππ.

FIG. 2. Evolution of the DM abundance Yπ þ 2YX ≃ Yπ for
mπ ¼ 0.2 GeV, mπ=fπ ¼ 5, κS ¼ 4κP ¼ 0.1, Rð0Þ ¼ 0.3m3=2

π ,
and dRð0Þ=dr ¼ 0.06m5=2

π . Thin solid and dotted lines show the
equilibrium and detailed balance abundances. Top: even-num-
bered case where XX annihilation freezes out at x1 ≃ 20 (left
vertical line) and bound-state formation freezes out at x2 ≃ 115
(right vertical line); corresponding rates normalized to H are
shown as labeled. Middle: odd-numbered WZW interactions
included. XP annihilation freezes out comparatively later (left
vertical line), maintaining longer chemical equilibrium. Free
4 → 2 and 3 → 2 freeze-out are shown for comparison in the
top and middle panel. Bottom: associated bound state abundances
with matching colors. For the choice of parameters, the DM abun-
dance is reached for the odd case; using instead Rð0Þ ¼ 1.4m3=2

π

yields the DM abundance for the even case.
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For the odd-numbered case, the chemical decoupling
happens when nXP

hσπXP→ππvi ≃Hðx1Þ. For x ≥ x1, the
right-hand side of (11) is replaced by −shσπXP→ππviYπYXP

=
ðxHÞ. Since YXP

=YXS
, and thus the rate of πXP → ππ,

decrease exponentially for x > x1, Yπ already freezes out
at x1. If 3π → πX decouples later, x2 > x1, (12) allows
us to estimate the yield from neqXP

hσπXP→ππvi=Hðx1Þ≃
ðYeq

π Þ2=Y2
πðx1Þ. This gives

Ωodd
π ≃ 0.2

�
x1
20

�
5=4

�
e−κPx110−3 bn=GeV
hσπXP→ππvi=mπ

�
1=2

: ð15Þ

The middle panel of Fig. 2 shows the full numerical
freeze-out solution. In comparison with the even-numbered
case, the stronger πXP → ππ reaction maintains longer
chemical equilibrium. At the same time, with p-wave states
diminishing more rapidly with temperature, there is no
distinct intermediate phase, and freeze-out happens in one
step [unless considering large values for dRð0Þ=dr]. Also
shown is the standard SIMP scenario through free 3 → 2
reactions, and we observe an order of magnitude smaller
freeze-out yield for the chosen set of parameters when X is
considered (catalysis). This softens the notorious tension
between maximum permissible elastic scattering cross
section and relic density requirement in SIMP models
[54], and for the shown case, both requirements are indeed
satisfied. The leading order elastic scattering cross section
is σLOel =mπ ¼ 0.2 bn/GeV, receiving higher order correc-
tions in the chiral expansion [54] as well as from the bound
state in the spectrum. For the latter, we may estimate an
S-wave scattering length of the order 1=ðκSm2

πÞ1=2 [55],
leading to resonant-induced σel=mπ ∼ 1=ðκSm3

πÞ. For mπ ¼
0.2 GeV and κS ∼ 0.1 adopted here, it suggests an elastic
scattering in the same ballpark and below bn/GeV.
Within the exemplary scenario of pseudo-Goldstone

bosons making X, we may also comment on the influence
of additional low-lying states, such as ρ mesons of mass

mρ ≲ 2mπ. Additional annihilation channels become avail-
able, such as 3π → πρ� → ππ [20] or 3π → πρ [28]. For the
parameter region of interest and unless one considers a
finely-tuned resonance regionmρ ≃ 2mπ , we find that these
processes are generally subleading to the X-mediated ones
and we are allowed to neglect them.
Coupling to SM and longevity of X.—As is pertinent to

all SIMP scenarios that freeze out through self-depletion,
kinetic equilibrium with radiation must be maintained to
achieve a cold DM scenario. An elastic scattering process
πSMi → πSMi with rate ΓπSM ¼ hσπSMcini > H, which
brings SM and dark sector into kinetic equilibrium
during freeze-out, generally also enables ππ → SMiSMi
annihilation. The SIMP mechanism then requires
Γann ¼ nπhσannvi < H, where σann is the cross section
for ππ → SMiSMi. On the account of ni=nπ ≫ 1, where
ni is the number density of a relativistic SM species, both
conditions are generically satisfied [1]. In the current
context, interactions of π with SM may also destabilize
X through X ¼ ½ππ� → SMiSMi and we must ensure that
for the decay rate ΓX < H holds until after freeze-out.
Assuming σannv≃ const. and noting that jψð0Þj2v has

units of particle flux, we may estimate the induced decay
width of X as ΓX ∼ jψð0Þj2ðσannvÞ, where ðσannvÞ is the
ππ → SMiSMi annihilation cross section. The longevity
requirement ΓX=H < 1 thereby translates into an upper
limit on the annihilation cross section,

σannv≲ 10−3 pb x−2
�

mπ

100 MeV

�
2 MeV3

jψð0Þj2 : ð16Þ

In the simplest cases, such as contact interactions through a
heavy mediator, elastic and annihilation cross sections are
additionally related and in the same ballpark, σπSMc∼
σannv. We may then use the bound in (16) to estimate
the implied ceiling on the elastic scattering rate,

1≲ ΓπSM

H
≲ 106

x3

�
mπ

100 MeV

�
3 MeV3

jψð0Þj2 : ð17Þ

This can be easily satisfied at freeze-out for jψð0Þj < m3=2
π .

We hence conclude that it is possible to retain kinetic
equilibrium while maintaining sufficient longevity of X and
paired with sub-Hubble two-body annihilation. Therefore,
the model-building requirements for coupling the dark
sector to the SM are not escalated compared to the standard
SIMP mechanism, and one may use the options already
entertained in the original work [1].
Finally, additional X formation and breakup reactions

may open when introducing couplings to SM. It is
important to note that the detailed balancing condition
(12) between X and π—being a Saha equation—remains
unaltered. If the new processes dominate over 3π ↔ πX,
(12) retains its validity longer, x2 will be larger, and the

FIG. 3. Contours of observed DM abundance in the even-
numbered case for κ ¼ 0.1 and Rð0Þ=m3=2

π ¼ 0.3, 1, 3, respec-
tively. The colored region (dotted line) shows the DM self-
scattering constraint σLOel ≥ 2 ð0.2Þ bn=GeV. The free 4π → 2π
counterpart would require mπ=fπ > 4π for mπ > 1 MeV.
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relic density smaller. Hence, if anything, the introduction of
SM interactions harbor the potential to make X-assisted
freeze-out even more efficient, adding a level of richness,
without jeopardizing the overall picture.
Conclusions.—Bound-state-assisted self-depletion offers

a novel approach to DM relic density generation. It
supports an even-numbered relic SIMP mechanism and
enhances odd-numbered counterparts. Both are realized in
strongly interacting theories. A broader study of the many
aspects mentioned in this Letter, as well as the exploration
of other particle-physics realizations giving rise to X, such
as glueballs or strong Yukawa forces, will be the subject of
upcoming work [43].
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