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Flavor-dependent neutrino transport is described by a well-known kinetic equation for occupation-
number matrices in flavor space. However, in the context of fast flavor conversion, we identify an
unforeseen predicament: the pivotal self-induced exponential growth of small inhomogeneities strongly
violates conservation of neutrino-neutrino refractive energy. We prove that it is traded with the huge
reservoir of neutrino kinetic energy through gradients of neutrino flavor coherence (the off-diagonal piece
of the flavor density matrix) and derive the missing gradient terms. The usual equations remain sufficient to
describe flavor evolution, at the cost of renouncing energy conservation, which cannot play any role in
explaining the numerically observed final state.
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Introduction.—Flavor evolution in a dense neutrino
environment is often described by a kinetic equation for
the flavor density matrices ρðp;x; tÞ, where the diagonal
entries are the occupation numbers [1–11]. In the homo-
geneous case, they are defined as the expectation values
of the number-operator matrices Dαβ ¼ a†β;paα;p with the

flavor indices α and β and a†α;p the creation operator for a
left-handed neutrino of flavor α with momentum p. In the
limit of vanishing neutrino masses and flavor mixing,
nontrivial flavor evolution can still arise through classical
instabilities that would engender strong flavor correlations
[12–16]. Dubbed “fast flavor evolution,” this subject has
been intensely studied in view of practical consequences for
neutrino flavor transport in stellar core collapse and binary
neutron star mergers [17–28].
Predicting the consequences of fast conversions is thus a

central question. In tackling this problem, a key role must
be played by conserved quantities, which are the only exact
guide into the final state reached after conversions. One
such quantity must be energy. However, we show that the
usual equations of motion (EOMs) do not conserve energy.
In their often-used form, they are

ð∂t þ v · ∇rÞρp;r;t ¼ −i½Hp;r;t; ρp;r;t�; ð1Þ

where Hp;r;t ¼
ffiffiffi
2

p
GF

P
p0 ρp0;r;tð1 − cos θp;p0 Þ is a matrix

driving flavor evolution by neutrino-neutrino refraction.

The advection term proportional to v ¼ p=jpj quantifies a
drift in coordinate space caused by inhomogeneities. This
term allows for p-dependent instabilities, so even an
initially homogeneous system can develop flavor disturb-
ances growing exponentially and drifting to ever smaller
scales [15,29–34].
As detailed later, even an elementary example of two

colliding beams consisting initially of νe and νx reveals that
the refractive interaction energy changes dramatically as
soon as initial seeds of inhomogeneity grow. The solution
of this puzzle is that one cannot look at flavor evolution in
isolation. Inhomogeneities in the weak potential exert a
force and trade refractive interaction energy with the huge
reservoir of neutrino kinetic energy. We here derive the
missing terms in Eq. (1) and show that to lowest order in a
gradient expansion, the energy exchange can be exactly
accounted for.
Interaction energy.—We first define the ν–ν interaction

energy. The starting point is the many-body Hamiltonian
H ¼ H0 þ U, where H0 ¼

P
α;p ϵpa

†
α;paα;p is the kinetic

energy operator with ϵp ¼ jpj in the massless limit.
Moreover, the interaction energy is

U¼
ffiffiffi
2

p
GF

8

X
fpg;α;β

a†α;p1
aα;p2

a†β;p3
aβ;p4

ūp1
γμup2

ūp3
γμup4

; ð2Þ

where GF is Fermi’s constant,
P

fpg is performed over all
momenta such that p1 þ p3 ¼ p2 þ p4, and up is the spinor
of a left-handed massless neutrino with momentum p,
normalized such that ūpγ0up ¼ 2.
The energy of the system is the expectation value of H

over the quantum state. In particular, the kinetic energy is
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K ¼ hH0i ¼
R
d3r

P
p ϵpTrðρpÞ. For the interaction

energy, we need to determine the average value of a string
of four creation and annihilation operators. We use mean
field approximation, where the quantum state is assumed
to be the product of single-particle states. The expecta-
tion value factorizes as ha†1a2a†3a4i ¼ ha†1a2iha†3a4i þ
ðδ2;3 − ha†3a2iÞha†1a4i. In this way we define a potential
energy of interactionU ¼ hUi. For a homogeneous system,
it is

U ¼
ffiffiffi
2

p
GF

2

Z
d3r

X
p;p0

�
TrðρpÞTrðρp0 Þ þ Trðρpρp0 Þ�

× ð1 − cos θp;p0 Þ; ð3Þ

where we neglect an irrelevant (infinite) renormalization of
the neutrino chemical potential.
In the two-flavor case, the density matrices are often

decomposed into their trace and trace-free part as

ρp ¼ P0
p1þ P⃗p · σ⃗

2
; ð4Þ

where 1 is a unit matrix, P0
p ¼ TrðρpÞ, σ⃗ a vector of Pauli

matrices, and P⃗p a polarization vector. (P⃗ is a vector in
flavor space, p one in phase space.) Exactly one particle in
mode p implies P0

p ¼ jP⃗pj ¼ 1. Only P⃗p evolves by
oscillations, whereas the trace (total particle number in a
pmode) is conserved. The oscillatory part of the interaction
energy is

Uosc ¼
ffiffiffi
2

p
GF

4

Z
d3r

X
p;p0

ð1 − cos θp;p0 ÞP⃗p · P⃗p0 ; ð5Þ

corresponding to that part of Eq. (3) that depends on the
trace-free parts of the ρ matrices.
For simplicity we assume in the following a system that

remains homogeneous in all but the spatial z direction and
use v ¼ vz. The standard EOM Eq. (1) falls into pieces for
particle number and flavor polarization as

∂tP0
p þ v∂zP0

p ¼ 0; ð6aÞ

∂tP⃗p þ v∂zP⃗p ¼
ffiffiffi
2

p
GFðP⃗0 − vP⃗1Þ × P⃗p; ð6bÞ

where we use the angular moments P⃗0 ¼
P

p P⃗p and

P⃗1 ¼
P

p vP⃗p. Thus, the usual equations decouple the
neutrino number from their flavor evolution.
Different from a neutrino gas subject to collisions with

matter (see, e.g., Refs. [35–44]), where energy is not
conserved anyway, Eqs. (6) describe a closed system that
admits a conserved energy. The kinetic part K ¼R
d3r

P
p ϵpP

0
p is seen to be conserved from Eq. (6a).

Also the nonoscillatory part of the interaction energy is
separately conserved. Uosc ¼ ð ffiffiffi

2
p

GF=4Þ
R
d3rðP⃗2

0 − P⃗2
1Þ,

which follows from Eq. (5), must then be conserved as
well. In the homogeneous case, this is indeed the case; the
dynamics is periodic and described by a fictitious pendu-
lum whose conserved energy coincides with Uosc [45–48].
However, Eq. (6b) immediately reveals that the conserva-
tion breaks down for inhomogeneous settings

dUosc

dt
¼ −

ffiffiffi
2

p
GF

2

Z
d3rðP⃗0 · ∂zP⃗1 − P⃗1 · ∂zP⃗2Þ; ð7Þ

where P⃗2 ¼
P

p v
2P⃗p. Therefore, the traditional EOMs are

not consistent.
Two-beam example.—The nonconservation of Uosc is a

large effect as we show in a simple example of two opposite
beams along the z axis (v ¼ �1). The energies and number
densities are equal, one beam initially occupied with νe, the
other with νx. As usual, the beams represent many
neutrinos with p’s close enough that the small spread is
unimportant on the relevant timescales. Therefore, we
represent the flavor polarization of each beam by a highly
occupied ρ matrix and concomitant polarization vector
P⃗�ðz; tÞ. We thus need to solve

ð∂t þ ∂zÞP⃗þ ¼ 2P⃗− × P⃗þ; ð8aÞ

ð∂t − ∂zÞP⃗− ¼ 2P⃗þ × P⃗−; ð8bÞ

where the interaction strength was absorbed in the units of
time and space. For ∂zP⃗� ¼ 0 there is no instability, but the
system has unstable inhomogeneous modes.
We can show energy nonconservation analytically in the

initial linear regime. In this limit, it is convenient to express
the x–y part of the polarization vector (the off-diagonal
element of the density matrix) in the form ψ� ¼ Px

� þ iPy
�

and initially we take Pz
�ðz; 0Þ ¼ ζ� to be constant. The

linearized EOMs (jψ j ≪ jζj) are

ð∂t þ ∂zÞψþ ¼ 2iðþζ−ψþ − ζþψ−Þ; ð9aÞ

ð∂t − ∂zÞψ− ¼ 2ið−ζ−ψþ þ ζþψ−Þ: ð9bÞ

These EOMs are most easily solved for the spatial Fourier
modes ψ̃�ðk; tÞ ¼ L−1

RþL=2
−L=2 dzψ�ðz; tÞe−ikz for a periodic

box of length L where k ¼ 2πn=L with integer n is a
discrete wave vector. Equations (9) shows that a k mode is
unstable if k1 < k < k2 with k1;2 ¼ ζ− − ζþ ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ζ−ζþ

p
.

The corresponding eigenfrequencies are ωk ¼ ω0 � iγk,
where the precession frequency ω0 ¼ −ζ− − ζþ does
not depend on k and the growth rate is γk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk − k1Þðk2 − kÞp

. In particular, the maximum growth
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rate is attained for k̄ ¼ ζ− − ζþ ¼ ðk1 þ k2Þ=2 and
is γ̄ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ζþζ−

p ¼ ðk2 − k1Þ=2.
The oscillation energyUosc ¼

R
dzP⃗þ · P⃗− has one piece

from the initial z component, Uoscð0Þ ¼ ζþζ−L that is
conserved in the linear regime, and a piece from the
off-diagonal terms ΔUosc ¼

R
dzðψþψ�

− þ ψ�þψ−Þ=2 ¼
ðL=2ÞPkðψ̃þ;kψ̃

�
−;k þ ψ̃�

þ;kψ̃−;kÞ, where in the continuous
limit

P
k ¼

R
dk=2π. This piece can grow exponentially if

there are small seeds for the unstable Fourier modes. If we
decompose the v ¼ �1 modes in terms of the eigenmodes
of the linear analysis, the k modes evolve as

�
ψ̃þ;kðtÞ
ψ̃−;kðtÞ

�
¼ αk

�
kþ ω0 þ iγk
k − ω0 − iγk

�
eðγk−iω0Þt

þ βk

�
kþ ω0 − iγk
k − ω0 þ iγk

�
e−ðγkþiω0Þt: ð10Þ

Matching this expression with the initial conditions
ψ̃�;kð0Þ ¼ ψ̃0

�;k reveals for the growing piece

αk ¼
ðγk þ iω0Þ

�
ψ̃0
þ;k þ ψ̃0

−;k
�
− ik

�
ψ̃0
þ;k − ψ̃0

−;k
�

4kγk
: ð11Þ

Substituting in the transverse part of the oscillation energy,
we finally find

ΔUoscðtÞ ¼ L
Xk2
k¼k1

2kðk − k̄Þjαkj2e2γkt; ð12Þ

where we restrict the summation to the range of unstable
eigenmodes. Notice that the most unstable eigenmode
k ¼ k̄ does not contribute to energy nonconservation due
to the vanishing prefactor. Otherwise, an exponential
growth appears already at the linear level.
For more than two beams, from Eq. (7) it follows that

dUosc=dt ∝
P

k kvP⃗vðkÞ · P⃗�
v0 ðkÞð1 − vv0Þ, and thus it is

still true that the energy change grows with e2γ̄t, provided
that k ≠ 0; homogeneous modes, with k ¼ 0, do not lead to
energy change due to the prefactor kv.
For a numerical solution that extends to the nonlinear

regime, we use periodic boundary conditions on a box of
length L ¼ 100, divided in N spatial bins. As initial
conditions, we use Pz

�ð0Þ ¼ ζ� ¼ �1=2. These parameters
imply that the range of unstable modes is delimited by
k1 ¼ −2 and k2 ¼ 0, the maximum growth rate obtains for
k̄ ¼ −1 and is γ̄ ¼ 1, and the initial oscillation energy is
Uoscð0Þ ¼ ζ−ζþL ¼ −25. The transverse components Px;y

�
are seeded with randomly sampled functions with a spatial
dependence

Px;y
� ¼

XNmax

n¼−Nmax

cx;y�;ne
iϕx;y

�;nþi2πnzL ; ð13Þ

where the amplitudes are sampled from a normal distri-
bution with a variance σ2 ¼ 10−8 and the phases are
uniformly sampled from 0 to 2π; the functions are real
and so cn ¼ c−n and ϕn ¼ −ϕ−n. We use arbitrarily
Nmax ¼ 100 to avoid seeds at too small scales.
Numerical stability requires keeping fluctuations at the
scale of the grid spacing as small as possible.
Figure 1 shows the solution for a single realization of

initial seeds. The upper panel shows contours of the νx
content of the beam initially occupied with νe, as a function
of z and t. The lower panel shows UoscðtÞ in units of
Uoscð0Þ. On the shown timescale, the range of unstable
modes −2 < k < 0 grows nonlinear and then keeps oscil-
lating, with beats between different modes causing an
irregular pattern that in detail depends on the choice of
seeds. In the longer run, these nonlinear modes feed higher-
k modes and flavor variations will obtain on ever smaller
scales. If we had used a larger box, or equivalently averaged
over more than one realization of the initial conditions, the
amplitude of the oscillations in the final state would shrink.
Nevertheless, the bulk of the nonconservation of Uosc
happens in the initial phase, and is clearly a large effect.
Inhomogeneous kinetic equations.—The lack of refrac-

tive-energy conservation questions the validity of the
traditional EOMs. The strategy for their derivation is a
perturbative expansion in three small parameters: (i) the
mass-to-energy ratio rm ¼ mν=ϵp, where mν is the neutrino

FIG. 1. Solution of our two-beam example for one realization
of initial seeds. Top: contours of νx content of v ¼ þ1 beam as a
function of z and t. Bottom: evolution of oscillation energy
UoscðtÞ in units of Uoscð0Þ.
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mass, but in our fast flavor limit we do not worry about it.
(ii) The fractional refractive energy shift rμ ¼ μ=ϵp, where

μ ¼ ffiffiffi
2

p
GFnν is a scale for the ν–ν interaction energy. For

T ≃ 5 MeV in the decoupling region of a supernova,
nν ≃ 1033 cm−3, μ ≃ 0.2 meV, and rμ ≃ 10−11 and thus
indeed very small. (iii) The scale of density variations l
in units of the neutrino de Broglie wavelength
rl ¼ ðljpjÞ−1 ≪ 1. Density variations are on scales much
larger than jpj−1. The EOMs are typically derived to lowest
order in all of these small ratios, notably neglecting terms of
the order of rlrμ, which causes the nonconservation of
energy.
To augment Eq. (1) with the missing terms, we note

that in an inhomogeneous setting, the space-dependent
occupation-number matrix is defined by a Wigner distri-
bution [49], the expectation value of

Dαβðr;pÞ ¼
X
k

a†β;pþk=2aα;p−k=2e
−ik·r: ð14Þ

Here, the Fourier wave vector kmeasures the typical length
scale over which the density matrix is changing, and is
therefore jkj ∼ l−1 ≪ jpj. The time derivative is obtained
using Heisenberg’s equations. The commutator with the
kinetic energy is easily established as

�
∂Dαβ

∂t

�
0

¼ i
X
k

a†
β;pþk

2

aα;p−k
2
e−ik·r

�
ϵpþk

2
− ϵp−k

2

�

≃ −v · ∇rDαβ; ð15Þ

recovering the usual advection term.
For the interaction part, we here outline the general

strategy and report details in the Supplemental Material
[50]. The commutator ½D;U� produces strings of four
creation and annihilation operators, or four-point correla-
tion functions. The average of these combinations are
evaluated again using the mean field approximation. In
the homogeneous limit, when taking the expectation value
of ha†1a2i, the momenta of state 1 and 2 must be equal. We
go one step further and include the inhomogeneity to first
order in k. The final result, fully derived in the SM, is

∂tρp;r þ v · ∇rρp;r þ
1

2

n
∇pΩ

ð0Þ
p;r;∇rρp;r

o

−
1

2

n
∇rΩ

ð0Þ
p;r;∇pρp;r

o
¼ i

�
ρp;r;Ωp;r

�
; ð16Þ

where we introduce

Ωð0Þ
p;r ¼

ffiffiffi
2

p
GF

X
p0

ð1 − cos θp;p0 Þ�ρp0;r þ Trðρp0;rÞ1
� ð17Þ

that coincides with the standard Hp;r stated after Eq. (1)
except for the additional trace term that drops out in

commutators, but not in the anticommutators on the left-
hand side. Moreover,

Ωp;r ¼ Ωð0Þ
p;r þ

ffiffiffi
2

p
GF

X
p0

pþ p0

p2p02 ðp × p0Þ

·
�
∇rρp0;r þ Trð∇rρp0;rÞ1

�
; ð18Þ

where p ¼ jpj and p0 ¼ jp0j.
Ωp;r is the renormalized quasiparticle energy, in general

a matrix in flavor space, analogous to the renormalized
quasiparticle energy in Landau’s theory of a Fermi
liquid [51]. This induces a renormalization in the group

velocity ∇pΩ
ð0Þ
p;r (only the zero order terms must be kept

which already contain one gradient) and a weak force field

−∇rΩ
ð0Þ
p;r.

All additional terms are small, of the order of rμrl, and
thus will not produce quantitatively large flavor-conversion
effects. However, as a qualitatively new effect, the renor-
malized group velocity causes a slow spatial drift of
neutrinos; the order of magnitude of the velocity is

j∇pΩ
ð0Þ
p;rj ∼ rμ. Since rμ ∼ 10−11, this is completely negli-

gible compared to the standard neutrino velocity.
The most significant impact comes from the weak force

−∇rΩ
ð0Þ
p;r, which can change the neutrino kinetic energy.

Part of this force originates from gradients in the neutrino
number density. Our new insight is that an additional
component originates from gradients in flavor composition.
To see this clearly, we rewrite the EOMs as

∂tρp;r þ v · ∇rρp;r ¼ i½ρp;r;Ωp;r� þ ∇r ·Φp;r − ∇p · Fp;r;

ð19Þ

where

Φp;r ¼
ffiffiffi
2

p
GF

2

X
p0

ð1 − cos θp;p0 Þ

×
�fρp0;r;∇pρp;rg þ 2Trðρp0;rÞ∇pρp;r

� ð20Þ

is the number flux of neutrinos passing through a surface
element of coordinate space at phase-space location fp; rg,
as seen from the structure analogous to a continuity
equation, whereas Fp;r is the same in momentum space,
given by the same expression with ∇p → ∇r. This term
couples the trace of the density matrix with the polarization
vector; taking the trace, we find

TrðFp;rÞ ¼
ffiffiffi
2

p
GF

2

X
p0

ð1 − cos θp;p0 Þ

×
�
3P0

p0;r∇rP0
p;r þ P⃗p0;r · ∇rP⃗p;r

�
: ð21Þ
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Thus, spatial gradients of the polarization vectors can
feed ν kinetic energy. This term implies a net rate of energy
gain or loss of order dϵp=dt ≃ μ=l. Over a timescale l, the
energy that a ν can accumulate is of order μ ≪ ϵp, so we
recover that this is a small effect relative to ϵp, but large
relative to the interaction energy. It provides the missing
channel by which kinetic and refractive energy can be
traded. Even a small amount of energy μ lost (gained) from
the large ν kinetic energy explains the large change in the
refractive energy, since Uosc=K ≃ μ=ϵp.
With the new kinetic equations, we can directly prove

that to first order in rμ and rl, the total energy is conserved.
After integrating by parts, we find

dK
dt

¼
Z

d3r
X
p

Trðv · Fp;rÞ: ð22Þ

Substituting the polarization vector part of Eq. (21) in
Eq. (22), we find that it precisely balances the rate of
change in the oscillation energy found in Eq. (7).
Discussion.—We have shown that the usual kinetic

equation for mixed neutrinos Eq. (1) is nonconservative
in the inhomogeneous case. We have illustrated this point
with a simple two-beam example, where the ν–ν interaction
energy strongly changes, and we have also shown this
effect analytically in the linear regime. Deriving missing
gradient terms beyond Eq. (1), we have shown that the
refractive energy gained or lost is precisely traded with
neutrino kinetic energy that usually is not followed. In our
two-beam example, the monochromatic initial energy
distribution develops small space-time dependent shifts
that account for the missing energy. We have not tried to
study this effect numerically because it requires many p
modes around the original one, but we have proven energy
conservation analytically.
The usual EOMs correctly account for flavor evolution,

meaning the trace-free part of the density matrices often
described by polarization vectors. On the other hand, the
particle number in a given p mode is conserved, corre-
sponding to the trace part of the EOM, where the left-hand
side of Eq. (1) is a continuity equation. Therefore, the trace
part of the EOM must be expanded to higher order in the
gradients to capture nontrivial evolution. The reshuffling of
neutrinos among p modes is a small effect relative to the
large kinetic energies, yet precisely absorbs the missing
refractive energy.
These novel terms come from the gradients of the

neutrino self-energy. With hindsight, that they would affect
neutrino evolution, is obvious from the viewpoint of
physical kinetics, and implicitly present in previous formal
derivations [2,3,5–7], but usually assumed to be a small
effect. Our new insight is that fast conversions sponta-
neously break homogeneity, magnifying the gradients of
the trace-free density matrix, making these terms large

enough to explain completely the apparent nonconservation
of energy.
We note that Eq. (1) conserves entropy and including the

new gradient terms, this is also the case, i.e., entropy is
conserved order by order in the gradient expansion (see
Supplemental Material). On the practical level, the con-
servation of entropy, but not of energy, could be used to test
numerical stability. Even more importantly, in making
predictions on the final state induced by conversions,
energy conservation cannot be used in practice, unless
the new terms are kept.
Our finding may shed new light on a recent proposal that

the final outcome of fast conversions may be some sort of
thermalized state [52]. The quasisteady state generically
observed in numerical simulations of fast conversions
[53–58] is only determined by the oscillatory part of the
density matrix, yet its dynamics does not admit a separately
conserved energy. Thus, it cannot separately thermalize,
since it exchanges energy with the kinetic energy of
neutrinos.
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