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Primordial black holes (PBHs) and the violation of the null energy condition (NEC) have significant
implications for our understanding of the very early Universe. We present a novel approach to generate
PBHs via the NEC violation in a single-field inflationary scenario. In our scenario, the Universe transitions
from a first slow-roll inflation stage with a Hubble parameter H ¼ Hinf 1 to a second slow-roll inflation
stage with H ¼ Hinf 2 ≫ Hinf 1, passing through an intermediate stage of NEC violation. The NEC
violation naturally enhances the primordial scalar power spectrum at a certain wavelength, leading to the
production of PBHs with masses and abundances of observational interest. We also investigate the
phenomenological signatures of scalar-induced gravitational waves resulting from the enhanced density
perturbations. Our work highlights the potential of utilizing a combination of PBHs, scalar-induced
gravitational waves, and primordial gravitational waves as a valuable probe for studying NEC violation
during inflation, opening up new avenues for exploring the early Universe.
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Introduction.—Primordial black holes (PBHs) are
powerful probes for studying the physics of the early
Universe [1–3]. In contrast to the astrophysical black holes,
which evolve from massive stars and contain masses larger
than 5M⊙ [4], PBHs can have a wide mass range from tens
of micrograms to millions of solar masses. In view of that,
PBHs can be relevant to astrophysical and cosmological
phenomena such as the origin of dark matter [5–8], and the
seeds of the supermassive black holes [9,10]. Therefore, the
formation of PBHs in the early Universe is widely studied,
see, e.g., [11–44].
In the literature, PBHs are thought to arise from over-

dense regions collapsing due to self-gravity. Inflation, as
the most widely accepted paradigm of the very early
Universe, is capable of generating primordial scalar (or
density) perturbations that are consistent with observations
of the cosmic microwave background (CMB). Therefore,
the key to PBH formation in inflationary cosmology is to
obtain a significant extra enhancement of the amplitudes of
primordial scalar perturbations on small scales (see, e.g.,
[45–57]), while simultaneously satisfying the observational
constraints on the CMB scale.
In the single-field slow-roll inflation scenario, the power

spectrum of primordial scalar perturbations is dependent on
the Hubble parameter H, the slow-roll parameter ϵ≡
−Ḣ=H2 (or its generalized formulation), and the sound
speed cs of the scalar perturbation mode. In standard
single-field slow-roll inflation, the scalar power spectrum

is nearly scale-invariant on all scales. To produce sizable
PBHs in single-field inflation models, various mechanisms
have been investigated, including (but not limited to) ultra-
slow-roll (USR) inflation [58–68], and modifications to the
dispersion relation or the sound speed cs of scalar pertur-
bations [69–72] (see also [73–77] for the mechanism of
parametric resonance). In addition to these models, many
inflationary models exhibit sudden strong enhancement of
the power spectrum on certain scales when slow-roll
conditions are violated at some stages, such as the
Starobinsky model when there is a nonsmooth potential
[78,79], which not only has the capacity to generate a
significant amount of PBHs but may also produce a large
gravitational wave (GW) background; see, e.g., [80,81].
The violation of the null energy condition (NEC), or

more precisely, the null congruence condition in modified
gravity, is closely related to potential solutions for the
singularity problem in the context of the big bang and
inflationary cosmology [82]. It may play a crucial role in
the very early Universe. Fully stable NEC violation can be
achieved in “beyond Horndeski” theories [83–88]. In this
Letter, we propose a new approach to generate PBHs in a
single-field inflation scenario by enhancing the curvature
perturbations through intermediate NEC violation.
In this scenario, the Universe transits from a first stage of

slow-roll inflation with a Hubble parameterH ¼ Hinf 1, to a
second stage of slow-roll inflation with H¼Hinf2≫Hinf1,
through an intermediate NEC violation stage (see Fig. 1 for
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an illustration). The NEC violation is able to naturally boost
the Hubble parameter H and consequently the power
spectrum. We have constructed the background evolution
of such a scenario in [89] and investigated the resulted
enhanced power spectrum of the primordial GWs in
[90,91]. Since the current bound of primordial GWs at
the CMB band indicates a tensor-to-scalar ratio r0.002 ≤
0.035 at 95% confidence level [92], the rich phenomenol-
ogy of our scenario occurs mainly on smaller scales,
including the observational windows of pulsar timing array
(PTA) and space-borne GW detectors.
In this Letter, we demonstrate that the NEC violation can

significantly amplify the abundance of PBHs in single-field
inflation through an intermediate violation of the NEC,
offering valuable insights into the NEC violation during
inflation. Moreover, we investigate the signals of scalar-
induced gravitational waves (SIGWs) arising from the
amplified density perturbations and show that our results
are consistent with current observational constraints. Our
findings present a compelling case for the study of PBHs,
SIGWs, and the primordial GWs as crucial probes for
understanding the NEC violation in the very early
Universe.
Our mechanism.—The “no-go” theorems [93,94] indi-

cate that an NEC violation will generically lead to ghost or
gradient instabilities in cosmology constructed by the
Horndeski theory. In view of that, we should realize our
scenario with theories beyond Horndeski [83–88]. For
simplicity, we will work with the effective field theory
(EFT) action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ Pðϕ; XÞ þ Lδg00Rð3Þ

�
; ð1Þ

where X ¼ ∇μϕ∇μϕ, the EFT operator Lδg00Rð3Þ ¼
½fðϕÞ=2�δg00Rð3Þ is adopted to thoroughly eliminate the
instabilities, δg00 is the perturbation of the 00th component
of the metric, Rð3Þ is the three-dimensional Ricci scalar on
the spacelike hypersurface; see, e.g., [86] for details.
The operator Lδg00Rð3Þ is irrelevant to the background

dynamics [83]. Therefore, the background evolution is
determined by the k-essence action

Pðϕ; XÞ ¼ −
g1ðϕÞ
2

M2
PX þ g2ðϕÞ

4
X2 −M4

PVðϕÞ; ð2Þ

where the details are presented in the Supplemental
Material [95]. The background dynamics of our scenario
is illustrated in Fig. 1. The evolution of the Hubble
parameter H is displayed in Fig. 2 by setting a set of
parameters. The NEC violating phase can be defined
by Ḣ > 0.
The quadratic action of scalar perturbation for the action

(1) can be written as

Sð2Þζ ¼
Z

d4xa3Qs

�
ζ̇2 − c2s

ð∂ζÞ2
a2

�
; ð3Þ

where

Qs ¼
2ϕ̇4PXX −M2

PḢ
H2

; c2s ¼
M2

P

Qs

�
ċ3
a
− 1

�
ð4Þ

and c3 ¼ a½1þ ð2f=M2
PÞ�=H; see, e.g., [83]. Obviously,

the ghost instability (i.e., Qs < 0) and the gradient insta-
bility (i.e., c2s < 0) can be easily cured with appropriate
construction of Pðϕ; XÞ and the EFT operator Lδg00Rð3Þ.
The equation of motion for ζ can be written as

v00k þ
�
c2sk2 −

z00s
zs

�
vk ¼ 0; ð5Þ

where vk ¼ zsζ and zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2a2Qs

p
, 0 ≡ d=dτ, dτ ¼ a−1dt.

In the following, we will choose specific model parameters
in Lδg00Rð3Þ such that the sound speed is canonical, i.e.,
c2s ≡ 1. The perturbation mode is in the vacuum state
initially, i.e., vk ≃ ð1= ffiffiffiffiffi

2k
p Þe−ikτ. The resulting spectrum of

ζ at the radiation domination stage is Pζ ¼ ðk3=2π2Þjζj2,
which is evaluated after the perturbation modes exited their
horizons, i.e., aH=k ≫ 1.
Since c2s ≡ 1, it can be inferred that the enhancement of

the power spectrum is due to the variation of Qs (primarily
the growth of H) during the NEC violation, which is

S S

FIG. 1. In our scenario, the Universe begins with a period of
slow-roll inflation, and then transitions into a second stage of
slow-roll inflation with a higher energy scale, after passing
through a phase of violating the null energy condition.
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FIG. 2. A numerical solution of the Hubble parameter H with
respect to time t in our model, which results in the blue curve of
Pζ in Fig. 3. We have set the Planck scale MP ¼ 1.
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intrinsically different from many other mechanisms
(including the USR inflation; see the Supplemental
Material [95] for details). The scalar power spectrum is
illustrated in Fig. 3 by numerically solving the background
evolution and Eq. (5) with four different sets of parameters.
It should be noted that, for illustrative purposes, the blue
and red curves in Fig. 3 are chosen to narrowly satisfy the
PTA constraint.
Primordial black holes.—In this Letter, we adopt the

standard paradigm of PBH formation, where PBHs origi-
nate from the gravitational collapse of overdense regions in
the early Universe. We define the density contrast as
δ≡ δρ=ρ̄, where ρ̄ is the energy density at the background
level, and δρ≡ ρ − ρ̄ is the density fluctuation. Moreover,
we assume that the comoving curvature perturbation ζ and
the density contrast δ follow a Gaussian distribution. In
Fourier space, we have

δk ¼
2

3

�
k
aH

�
2

Φk ≃
4

9

�
k
aH

�
2

ζk; ð6Þ

where Φ is the Bardeen potential in the Newtonian gauge,
Φ ≃ 2

3
ζ on superhorizon scales. Therefore, the power

spectrum of density contrast is

PδðkÞ ¼
16

81

�
k
aH

�
4

PζðkÞ: ð7Þ

In the standard Press-Schechter formalism, the mass
fraction function βðMÞ, defined as the fraction of PBHs
compared to the total energy of the Universe at the
formation time ti, is given by

βðRÞ ≃ σRffiffiffiffiffiffi
2π

p
δc

e
− δ2c
2σ2

R ; ð8Þ

where we assume a Gaussian distribution function for
density fluctuations, and σR represents the corresponding
variance. The suggested threshold for PBH formation is
0.4 ≤ δc ≤ 0.7 [101]. In our case, we will take δc ¼ 0.5.
The smoothed density field δR is defined as δRðx⃗Þ≡R
d3yWðx⃗ − y⃗;RÞδðy⃗Þ, whereW is a window function asso-

ciated with a characteristic length scale R≡ k−1. We choose
the spherically symmetric real-space top-hat window
function, i.e., Wðk;RÞ≡ 3½sinðkRÞ − kR cosðkRÞ�ðkRÞ−3,
since it requires the smallest amplitude of density perturba-
tions for a fixed PBH abundance compared to alternative
choices [102].
We have σ2R ≡ hδ2Ri, where hδ2Ri is suggested to be

[103,104]

hδ2Ri ¼
Z

∞

0

dk
k
W2

16

81
ðkRÞ4T2ðk; τ ¼ RÞPζðkÞ; ð9Þ

the scalar transfer function at the radiation dominated era
can be given by

Tðk; τÞ≡ 9
ffiffiffi
3

p

ðkτÞ3
�
sin

�
kτffiffiffi
3

p
�
−

kτffiffiffi
3

p cos

�
kτffiffiffi
3

p
��

: ð10Þ

The mass of the PBH is related to the wave number
k by [105]

M
M⊙

≃
�

γ

0.2

��
g�

10.75

�
−1
6

�
k

1.9 × 106 Mpc−1

�
−2
; ð11Þ

where M⊙ is the solar mass, γ represents the collapsing
efficiency, and g� denotes the effective number of degrees
of freedom for the energy density at PBH formation. In this
Letter, we take γ ¼ 0.2 and g� ¼ 106.75 [3]. Accordingly,
the current energy fraction, fPBHðMÞ, is given by [105]

fPBHðMÞ ¼ βðMÞ
2.70 × 10−8

�
k

1.9 × 106 Mpc−1

�
−2
: ð12Þ

We present the plot of fPBH as a function of PBH mass in
Fig. 4. The production of PBHs is efficient across various
mass scales, as indicated by the brown, magenta, and blue
curves. Notably, our model can successfully account for the
OGLE ultrashort-timescale microlensing events with spe-
cific parameter choices. Additionally, within the mass
range between the red and blue curves (approximately
4 × 10−2M⊙ ∼ 0.8M⊙) in Fig. 4, the PBH abundance
predicted by our model is constrained to be fPBH < 1%
due to the PTA constraint on Pζ, as illustrated by the red
and blue curves in Fig. 3.
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FIG. 3. The numerical results of the scalar power spectra,
Pζ , are presented for four different parameter sets. The
constraints on Pζ from Planck, Lyman-α, FIRAS, and PTA
are depicted as the shadowed regions [60]. The gray dashed
line represents the constraint Pζ ≃ 10−2, which ensures a
sufficient abundance of PBHs.
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Recently, it was claimed that the PBH formation from
single-field inflation is ruled out because the enhanced
density perturbations give too large one-loop correction to
those on CMB scales in the USR inflationary scenario [34],
while its validity is still in debate (e.g., [35] pointed out a
problem in the computation of [34] and that the large one-
loop correction disappears; see also [36]). Our scenario
might be promising to give a loophole for the argument of
this problem, due to the intrinsic differences between the
NEC violation and the USR mechanism. In our scenario,
the enhancement of Pζ results primarily from the growth of
H instead of the decrease of Ḣ (or equivalently a very tiny
ϵ ≪ 1 as in the USR inflation). In fact, we have jϵj ≫ 1
during the NEC-violating phase. Additionally, in the USR
scenario, the coefficient of the dominant term in the cubic
action and ζ almost simultaneously reach their maximum
values at the end of USR. In contrast, in our scenario, when
the coefficient functions in the cubic action reach their
maximum values, ζ or its derivatives are far from reaching
their maxima. Consequently, the argument of [34] does not
directly apply to our scenario. Using the approach outlined
in [34], we computed the one-loop corrections to the CMB
scale power spectrum for the spectra shown in Fig. 3, as
detailed in the Supplemental Material [95]. The results
indicate that our scenario may offer a potentially novel
approach to yielding smaller one-loop corrections to the
CMB scale power spectrum [95]. However, since we have
made some simplifications in the calculations, obtaining
conclusive proof that the result in [34] does not invalidate
our scenario necessitates further investigation in the future.
Scalar-induced gravitational waves.—In order to gen-

erate a significant abundance of PBHs, it is necessary to
enhance the primordial curvature perturbation. This
enhancement can potentially lead to the production of
large SIGW signals. Hence, it is crucial to examine the
corresponding SIGWs within our model to ensure

self-consistency. In our analysis, we adopt the standard
approach, where the SIGWs are generated as the scalar
perturbation modes re-enter the horizon during the radiation
domination era.
The power spectrum for SIGW is [108]

Phðτ; kÞ ¼ 576

Z
∞

0

dt
Z

1

−1
dsPζ

�
k
tþ sþ 1

2

�

×Pζ

�
k
t− sþ 1

2

� ½−5þ s2 þ tð2þ tÞ�4
ð1− sþ tÞ6ð1þ sþ tÞ6

×

��
s2 − ðtþ 1Þ2

−5þ s2 þ tð2þ tÞ þ
1

2
ln

����−2þ tð2þ tÞ
3− s2

����
�
2

þ π2

4
Θðt−

ffiffiffi
3

p
þ 1Þ

	
; ð13Þ

where Θ is the Heaviside function. It is related to the
energy density parameter per logarithmic interval of k,
ΩGWðτ; kÞ, as

ΩGWðτr; kÞ ¼
Phðτ; kÞ

24

�
k

aðτrÞHðτrÞ
�

2

¼ Phðτ; kÞ
24

; ð14Þ

where we evaluate the energy density at the horizon re-
entry (k ¼ aH) with a conformal time τr. The energy
density spectrum today for SIGW is

ΩGWðkÞh2 ¼ 0.83
�

g�
10.75

�
−1
3

Ωr;0h2ΩGWðτr; kÞ; ð15Þ

where Ωr;0h2 ≃ 4.2 × 10−5 is the current density parameter
of radiation.
In Fig. 5, we present the energy density spectra of

SIGWs for the same parameter sets as in Figs. 3 and 4. The
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FIG. 4. The current energy fractions of PBHs, fPBH, are shown
for different parameter sets. The curves of fPBH correspond to
those of Pζ with the same color as Pζ in Fig. 3. The current
constraints on PBH abundance are adopted from [106], and the
purple shaded region represents the PBH abundance inferred by
the OGLE result [107].

FIG. 5. The predicted current energy spectra of SIGWs (solid
curves) and primordial GWs (dotted curves) are shown for
different parameter sets. The curves of ΩGWh2 correspond to
those of Pζ with the same color as shown in Fig. 3. The shaded
region represents the current constraint from EPTA. We also
include the expected sensitivity curves of future GWobservations
as dashed curves, including SKA, LISA, Taiji, TianQin, DEC-
IGO, and BBO. The magenta vertical violinlike bars correspond
to the data of NANOGrav.
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SIGW signals corresponding to our parameter sets are
consistent with the constraints from the EPTA [109].
Notably, the solid blue, red, and brown curves exhibit
detectable signatures that fall within the observational
windows of future GW detectors, including those of
PTA and space-borne GW detectors. Additionally, the
red and blue curves may account for the evidence of a
stochastic common-spectrum process reported by the
NANOGrav Collaboration [110].
Distinctive features of our scenario.—Basically, the

power spectrum of primordial GWs depends primarily
on the Hubble parameter H, as long as the propagating
speed of primordial GWs is cT ≡ 1. In our scenario, H
experiences significant growth due to the violation of the
NEC, which is unique compared to other single-field PBH
formation scenarios, e.g., the USR inflation. Consequently,
the resulting primordial GWs spectrum will be significantly
enhanced on certain scale and is nearly scale-invariant on
smaller scale [89]. These distinctive features of primordial
GWs are promising to be detected by future observations
(e.g., BBO and DECIGO), allowing for distinguishing our
NEC violation scenario from the other single-field scenar-
ios of the PBH formation from an observational point
of view.
For the four sets of parameter configurations used in

Fig. 3, we have plotted the corresponding primordial GW
signals in Fig. 5 as dotted curves. The blue, red, and
magenta dotted curves predict ΩGWh2 ∼ 10−14 on small
scales, which is narrowly beyond the sensitivity of the
BBO. In contrast, the brown dotted curve predicts
ΩGWh2 ∼ 10−12 within the observation windows of BBO
and DECIGO. At this scale and smaller scales, it signifi-
cantly exceeds the corresponding SIGW signal. Therefore,
synchronized observations of PBHs, SIGWs, and primor-
dial GWs may potentially probe NEC violation during
inflation. Although some of the primordial GW back-
ground is borderline detectable in the example cases given,
the principle is intriguing and the combination of signals is
unique and characteristic for this class of models.
Conclusion and outlook.—We report a novel mechanism

capable of generating sizable PBHs in the context of single-
field inflationary cosmology, by introducing an intermedi-
ate stage of NEC violation during inflation, which offers a
unique avenue to enhance the Hubble parameter H and
consequently the primordial power spectrum. Our scenario
can be realized in the EFT framework of inflation. The
primordial curvature perturbation is significantly enhanced
in a narrow band of comoving wavelengths corresponding
to the NEC violation stage. Consequently, the primordial
density perturbation is nearly scale-invariant in both large
and small scales connected by a sharp peak. The sharp peak
leads to the generation of a sizable amount of PBHs as well
as signals of SIGW, which can be probed and tested in
future cosmological surveys. Furthermore, the distinctive
features in the power spectrum of primordial GWs (see

Refs. [89–91]) will enable our scenario to be distinguished
from other single-field PBH formation scenarios, including
USR inflation, from an observational perspective.
In this Letter, we adopted an EFTapproach in the context

of single-field inflationary cosmology, where we assumed a
sound speed cs ≡ 1 for the scalar perturbations by intro-
ducing the EFT operator Lδg00Rð3Þ. As a result, our scenario
effectively avoids issues related to large entropy fluctua-
tions and superluminality. This choice allows for indepen-
dent parametrization of scalar and tensor perturbations, as
the EFT operator does not contribute to the background
dynamics or tensor perturbations at quadratic order.
However, in realistic cosmological scenarios derived from
covariant actions, scalar and tensor perturbations are
interconnected. For instance, when implementing the
EFT operator using theories beyond Horndeski, the sound
speeds of scalar and tensor perturbations can be modified.
Therefore, to comprehensively investigate the contributions
of our scenario to the GW background and confront them
with observations, it is necessary to specify the covariant
actions and conduct a detailed analysis in future studies.
Our work highlighted the potential of utilizing a combi-

nation of PBHs, SIGW signals, and primordial GWs as a
valuable probe for exploring the NEC violation during
inflation, particularly in the era of multimessenger and
multiband observations.
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