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Single-System-Based Generation of Certified Randomness Using Leggett-Garg Inequality
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We theoretically formulate and experimentally demonstrate a secure scheme for semi-device-indepen-
dent quantum random number generation by utilizing Leggett-Garg inequality violations, within a
loophole-free photonic architecture. The quantification of the generated randomness is rigorously estimated
by analytical as well as numerical approaches, both of which are in perfect agreement. We securely
generate 919 118 truly unpredictable bits at a rate of 3865 bits/ sec. This opens up an unexplored avenue
toward an empirically convenient class of reliable random number generators harnessing the quantumness

of single systems.
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Introduction.—The production and characterization of
true random numbers as a resource for various applications
is currently a cutting-edge topic attracting considerable
studies. In particular, the encryption schemes used in all
protocols for secure communication, including quantum
cryptography, rely on genuinely unpredictable random
numbers. This is necessary to ensure that an adversary
cannot decipher the encrypted message. Furthermore, the
desired security must be guaranteed even in the presence of
device imperfections or any tampering by an adversary.
Strikingly, these key requirements for ensuring reliable
private randomness are not currently satisfied by any
random number generator (RNG).[1-4]

On the other hand, studies over the last decade have
opened up an avenue for developing fully secure device-
independent RNGs Table I based on using quantum
entangled states and certifying genuine randomness by using
quantum nonlocality evidenced through the statistical vio-
lation of Bell inequality [5—16]. But an empirical impediment
in realizing practically viable such device-independent
RNGs is the requirement of adequate spatial separation
between two parties while making the Bell inequality testing
measurements on their joint state by preserving their entan-
glement across distance [17]. To obviate this difficulty, we
provide in this Letter a proof of concept demonstration of
how the quantumness of an individual system, as evidenced
through the observable violation of the temporal counterpart
of Bell inequality [18-20], viz., the Leggett-Garg inequality
(LGI), can be harnessed to certify and quantify genuine
randomness.

Ever since LGI was formulated [21,22] as a conse-
quence of the assumptions characterizing the notion of

0031-9007/24/133(2)/020802(10)

020802-1

macrorealism, studies related to LGI have largely focused
on using LGI for testing and probing ramifications of the
quantum mechanical (QM) violation of macrorealism [23—
37]. On the other hand, in the present work, we focus on a
specific applicational feature of LGI. Apart from being
derivable from macrorealism, LGI can also be derived from
the conjunction of the assumptions of perfect predictability
and no signaling in time (NSIT) [38], the latter condition
meaning that measurement does not affect the outcome
statistics of any later measurement, analogous to the way
the Bell-CHSH (Clauser-Home-Shimony-Holt) inequality
was earlier derived from predictability and no signaling
across spatial separation [39]. This feature suggests that if an
experimentis set up by choosing the relevant parameters such
that the measurement outcomes obtained violate LGI and
satisfy the NSIT condition, then these outcomes would be
guaranteed to be inherently unpredictable. For quantifying
such generated randomness, our treatment will be based on
the specifics of the recent experimental test using single
photons [40] that has demonstrated LGI violation by plug-
ging all the relevant loopholes and rigorously satisfying the
relevant NSIT conditions.

The assumptions invoked have been specified with
respect to the setup used for the experimental study
mentioned earlier, whose key relevant features have been
discussed in detail in the Appendix. Thus, the randomness
certified in this way is to be regarded as semi-device-
independent, being dependent on the extent to which the
assumptions invoked have been satisfied.

The scheme.—Consider a single time-evolving sys-
tem with measurements at various instants of a dicho-
tomic variable Q having eigenvalues +1 and —1. The

© 2024 American Physical Society
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Leggett-Garg inequality can be written down as

(0102) +(0:03) = (0:105) < 1, (1)

where Q; = Q(t;) is the outcome of the measurement made
at time ¢; with the flow of time given by, #; < t, < #5. The
correlation functions are defined as

<Qin> = Z aiajp(ai»aj|Qi’Qj)v (2)

aj,a;==1

where P(a;, a;|Q;,Q;) is the probability of getting the
outcomes a; and a; at times Q; and Q;, respectively. The
QM violation of this inequality (with the upper bound of
1.5) is attributed to the violation of the assumptions
characterizing the notion of macrorealism from which
LGI is usually derived [21,22]. However, interestingly,
as mentioned earlier, LGI can also be derived from the
conjunction of the following assumptions of predictability
and no signaling in time. The assumption of predictability
implies that for any given state preparation procedure, all
the observable results of measurements at any instant can
be uniquely predicted. In this context of a single time-
evolving system we are considering, this assumption can be
expressed as

P(a;,a;|Q;, Q;) €10, 1}. 3)

The assumption that a measurement cannot affect the
observable results of any later measurement is known as
the no-signaling-in-time condition (also known as the no-
disturbance condition) [41], which can be expressed as

P(aj|Qj) = Zp(aivalei:Qj)' 4)

Relevant to the three-time LGI given by Eq. (1), the
NSIT conditions are as follows:

P(+]05) = P(++]01. Q2) + P(—=+|01. 05)
P(+]03) = P(++]0y. 03) + P(=+|0;. 03)
P(+]0Q3) = P(++]0Q2. 03) + P(=+|0,.03).  (5)

From this derivation of LGI, it can be argued that in an
experimental context where LGI is violated while ensuring
the validity of NSIT, the LGI-violating observable out-
comes are inherently unpredictable. For obtaining the
guaranteed lower bound of the LGI-certified randomness
in a semi-device-independent way, we make the following
assumptions in the context of our specific experimental
setup. First, note that the assumption that the selection of
the measurement time is independent of the system’s state,
implicit in the derivation of LGI, is satisfied in our setup by
ensuring considerable randomness in the choice of the
blockers used in the different subsets of runs corresponding
to different measurement times. Then the other assumptions
invoked in our evaluation of the LGI-certified randomness
bound with respect to our setup are listed below.

The dimension of the system is 2. This assumption
clearly follows from our setup since the measurements are
performed on the spatial degrees of freedom, and there are
two paths in the optical setup. Therefore, the state of the
photon or system is parametrized using the three param-
eters ny, n,, n, and can be written down as

p=1/2(I+1-0), = (n,n,n,)eER> (6)

x0 fhys Iz
such that n} + nj 4+ n? < 1. The measurements at times 7,
and t, are the projective measurements defined up to
unitary transformations,

S N R

This assumption is sensible here as blockers (pieces of metal)
are used for the measurements at ¢, 7,. For the measurements
at t; we invoke the general form of +1—outcome positive
operator-valued measure (POVM) measurement,
M. :%((1 +a)l iE-E), beR},  acR, (8)
where [5| < 1 and |b| + |a| < 1. The measurements at time
t; are carried out by detectors, which are devices with
complicated internal workings, unlike the blockers (which
are in principle 100% efficient detectors as has also been
characterized in [40]). Hence, we take the general form of the
POVM measurement given by Eq. (8), which involves an
implicit assumption that the blockers do not signal as the
POVM at t; does not depend on the placement of the
blockers. The initial state is not correlated with any other
system thus excluding the possibility of the eavesdropper
having any information about the initial state.

Bound on genuine randomness.—We quantify the ran-
domness generated using the minimum entropy [14,42] of
the probability distribution, which is defined as

Hy(ABIXY) = —log{max,,,, P(a;, a;|0;. )}
= —minal_’aj log{P(a;,a;|0;, Q;)}. 9)

‘We now relate the amount of randomness quantified using the
minimum entropy to the observed LGI violation. This is done
by finding a lower bound on minimum entropy as a function
of the LGI violation. We obtain this bound on minimum
entropy by solving the following optimization problem

P*:maxp(ai’aﬂQi’Qj)
subjectto
(010:)+(0:05)—(0:105)=1+a
P(+]02)=P(++(01,02) + P(=+]01.0,)
P(+]Q3)=P(++(01,03) + P(=+]0Q1.03)
P(+[Q3)=P(++02,03) + P(=+]0,.03), (10)
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where a € (0, 0.5]. Now the minimal value of the minimum
entropy, which is compatible with the LGI violation 7, is
given by

H,(AB|XY) = —log, P*, (11)

where P* is the solution to the above optimization problem.
We derive a bound on minimum entropy as stated in the
theorem that follows.

Theorem [.—Subject to the conditions stated earlier
being satisfied, if the three NSIT (5) values are zero and the
LGI (1) value is 1 + a where a € (0,0.5], then

P*z%(l%—(ﬂ—M)- (12)

Therefore, the guaranteed random bits concerning the
amount of violation is given by

(1 +a+ V1 —Za)
—log, .

- (13)

We briefly outline the proof here, with detailed calcu-
lation of the analytical proof of Theorem 1 and Theorem 2
being presented in the Supplemental Material (SM) [43].
We use the expressions for the joint probabilities in terms of
the parameters defining the unknown state, unitaries, and
the measurement at 5 to obtain the expressions for the LGI
and NSITs. By suitably utilizing the fact that the NSIT
expressions are zero, we establish some relations between
the parameters that simplify the LGI expression. The
problem then simplifies to maximizing the joint probabil-
ities, under the only constraint that the simplified LGI
expression is (1 +a). We observe that three distinct
expressions within the simplified LGI expression are
crucial in determining the joint probabilities for the three
pairs of measurements. Employing the Lagrange multiplier
method, some functional analysis, and intricate mathemati-
cal calculations, we identify the maximum values of these
three expressions while satisfying the constraint that the
simplified LGI value is (1 + a). Consequently, these
maximum values help us to compute the upper bounds
for all 12 joint probabilities from which we obtain an upper
bound on P* Fig. 1. Finally, we present a quantum strategy
involving a specific quantum state, unitaries, and measure-
ments that attain this upper bound.

Security against state preparation.—To ensure security
against an adversary, say Eve, accessing initial state
information, we adapt our scheme. Firstly, if the user’s
initial state is entangled with Eve’s qubit in a Bell state, Eve
can predict the user’s measurement outcome by performing
her own measurement, compromising security. In this case,
the key point is whether we can still ensure an appreciable
amount of guaranteed random bits. Secondly, another
possible scenario is when the initial state is a mixture of
different pure quantum states fed randomly into each
experimental run. Here, the worst-case scenario from a
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FIG. 1. Bound on the genuine randomness (minimum entropy)

for the three-time Leggett-Garg setup. This treatment includes the
assumption that the system’s initial state is not correlated with
any other system, thus generating randomness from the joint
probabilities P(a;,a;|Q;,Q;). The blue line is the analytical
bound (12) on the minimum entropy, and the red dots are the
numerical data from solving the optimization problem. The
amount of randomness for the maximal LGI violation is 1.41.

security viewpoint is when Eve can predict the initially
prepared state with maximum success. Even in such a
scenario where Eve can maximally guess the outcome of
the user’s first measurement, we need to ensure that the
choice of relevant parameters violates the Leggett-Garg
inequality while satisfying all the relevant NSIT conditions,
thereby enabling the generation of certified random bits. To
achieve the desired security against adversarial attacks, we
employ postprocessing by quantifying randomness based
on user’s second measurement outcomes conditioned on
first, evaluating guaranteed randomness amount using
maximized conditional probability of joint outcome instead
of earlier joint probabilities, i.e., evaluating the maximized
conditional probability given by P*,

P*=  max

Pa»a,», i ;
{a;,a;,0:,0;} (]| ¢ Q])

subject to constraints in Eq. (10), (14)

where the mathematical constraints given by Eq. (10)
correspond to violating LGI and satisfying the three
relevant NSIT conditions, and the conditional probability
is given by

P irUj i j
Plojar. 0. 0) =" UEL) 15

This procedure is based on considering that, for example, in
the extreme case of a maximally entangled state shared
between Eve and the user, Eve will be able to guess with
certainty the outcome of the first 6, measurement by the
user using the outcome of her own ¢, measurement, which
is obviated by the use of conditional probabilities. This is
possible only when the first measurement is a perfect o,
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FIG. 2. Bound on the genuine randomness (minimum entropy)
for the three-time Leggett-Garg setup with full security against
state preparation procedure. This is done by solving the opti-
mization problem using the conditional probabilities. The blue
line is the analytical bound (16) on the minimum entropy, and the
red dots are the numerical data from solving the optimization
problem. The amount of randomness for the maximal LGI
violation is 0.41, which is, as expected, less than the 1.41 that
was earlier obtained assuming secure state preparation. In both
these cases, genuine randomness increases monotonically as the
LGI violation increases.

measurement, which is ensured by the 100% efficiency of
our blockers. The next key question is whether the amount
of certified randomness generated by this conditional
probability based scheme will be still appreciable, although
maybe less than that obtained by the procedure based on
joint probabilities discussed earlier. It is this question that is
addressed by the following Theorem 2.

Theorem 2.—Subject to the conditions stated earlier
being satisfied, if the three NSIT (5) values are zero and the
LGI (1) value is 1 + a where a € (0,0.5], then

P*:%(1+a+M)- (16)

Therefore, the amount of guaranteed random bits as a
function of a is given by

1+a+\/1—2a>' (17)

i) = —togs (-5

The proof is essentially an extension of the proof for
Theorem 1, and the relevant details are given in Sec. IB of
SM. Comparing Egs. (16) and (12), it follows that P* =
2P* and from Eq. (17) it follows that the randomness with
respect to the maximum LGI violation (i.e., @ = 1/2) is
0.415 as compared to 1.41 in the earlier case Fig. 2. Thus an
appreciable amount of certified randomness is ensured to
be secure against state preparation.

This bound is sensitive to the NSIT constraint as shown
in the SM, where we solve the optimization problem with a
small NSIT violation. A higher threshold value of LGI
violation is necessary for meaningful randomness

generation as NSIT violation becomes more pronounced.
Nonetheless, even with a relatively high NSIT violation, a
meaningful quantity of random bits can still be obtained as
the LGI violation approaches its maximum value.

Memory effect and experimental results.—To estimate
the violation of the LGI, it is necessary to generate data
from the device multiple times. However, the device may
exhibit variations in performance across different uses, one
of the cases being the memory effect, where the output of a
particular iteration might depend on the outcome of the
previous outputs, hence making it necessary to use a
statistical method to account for such memory effects.
‘We have shown in Sec. II of the SM [43] how to determine
the randomness produced by the devices without making
any assumptions about their internal behavior by combin-
ing the previously derived bound with a statistical
approach.

Because of the memory effect the exact value can be
lower than the observed value / up to some e, with some
small probability 6,

2

omen(xgp) 09

where [, is the maximum inequality violation allowed by
quantum theory, ¢ = min{ p(t,, t,), p(t;,t3), p(t5, t3)} and
e is fixed by the maximum LGI violation /,,, the probability
of the inputs ¢ and the number of runs n, as has been
defined in Sec. II of SM. So the minimum entropy bound of
the n bit string generated is

Ho(R[S) 2 nf(I-e) (19)

with probability at least 1 — §. With a confidence level of
1 — 6 = .99 and the experimentally observed LGI violation
I = 1.31, we have plotted the minimum entropy bound for
n runs. In Fig. 3, we show that we start getting a substantial
amount of randomness only after a certain number of runs
due to the presence of the memory effect. Using n = 107
runs yields a genuine randomness of 3673 bits, correspond-
ing to 0.03673/bit in the presence of the memory effect.
This is lower than expected from the genuine randomness
bound derived above, for which we expect a genuine
randomness of 0.05406/bit for an LGI violation of
I = 1.31. Moreover, using biased measurement settings
increases the threshold for getting an appreciable amount of
randomness, as shown in Fig. 3.

A series of eight experiments were conducted to evaluate
various coincidence measurements. Each experiment was
repeated multiple times, and the coincidence counts were
recorded for 10 s in separate runs. A total of 1000 coincidence
datasets were collected for each experiment to estimate the
LGI violation Table II. The estimated LGI violation from the
experiment is / = 1.32 £ 0.04. Considering experimental
nonidealities, the corresponding QM prediction is Igy =
1.34 4 0.06. In addition, another experiment was employed

020802-4



PHYSICAL REVIEW LETTERS 133, 020802 (2024)

TABLE I. Comparison of generation rate, type of experiment (proof of concept, loophole-free, and randomness expansion), and the
spatial separation of Bell inequality (BI) based randomness generation experiments with our case of LGI-based randomness generation
experiment. Unlike the Bl-based experiments, which require spatial separation or some sort of shielding to ensure no signaling, this
spatial separation is irrelevant in our case since we can design our experimental setup in a tabletop experiment to ensure NSIT. Bl-based
experiments evolved from proof of concept to loophole-free experiments, enhancing generation rates and expansion. Our LGI-based
demonstration, a loophole-free proof of concept experiment, provides the base with an appreciable generation rate. Further
improvements and work on expansion schemes for our protocol will boost LGI-based state-of-the-art random number generation.

Performed experiments No. of Bits Rate (bits/ sec) Type Spatial Sep (m)
Pironio et al. [14] 42 Not mentioned Proof of concept, not loophole-free, uses shielding 1

P. Bierhorst et al. [8] 1024 Not mentioned Loophole-free, randomness generation 187

Liu et al. [13] 6.2469 x 107 181 Randomness generation 200

Shen et al. [58] 617920 240 Randomness extraction, assumed no signaling Not mentioned
Zhang et al. [59] 512 1.71 Loophole-free 194.8
Ming Hang Li ef al. [60] 5.47 x 108 11598 Randomness expansion 191

Wen Zhao Liu et al. [61] 2.57 % 107 13,527 Loophole-free, randomness expansion, uses shielding Not mentioned
LK Shalm et al. [16] 118 126423 3606 Randomness expansion 194.8

Our current work 919118 3865 Loophole-free proof of concept Randomness generation Irrelevant

to estimate the single probabilities at times #, and 73 to verify
the NSIT conditions. The experimentally measured values
for the three NSIT conditions denoted by v, v,, and v3
were found to be 0.002 +0.017, 0.002 +0.016, and

1600 1 — q=1/3
— q=1/6
14001 o memory effect.
& 1200 1
£
§ 1000 -
2
§ 800 1
()
£ 600
3
<
& 400
200 A
0 B
0 5000 10000 15000 20000 25000 30000
Number of runs, n
FIG. 3. In the secure state preparation procedure, we investigate

the relationship between genuine randomness and the number of
runs in the presence of memory effect. Assuming a violation of the
Leggett-Garg inequality with a value of 1.31, which was observed
in our experiment, with a confidence interval of 1 — § = 0.99, we
see that a notable amount of genuine randomness emerges only
after approximately 3000 runs (curve (a) due to the memory effect,
compared to the case without memory effect (curve c). For 10° runs,
the measured genuine randomness reaches 3673 with an unbiased
seed with probabilities p(t,,1,) = p(ty,13) = p(t3,1,) = 1/3.
Additionally, we investigate the relationship between genuine
randomness and the number of runs when using a biased seed,
where the measurement settings are chosen with unequal proba-
bilities, p(;,1,) = 1/6 and p(f,,13) = p(t3,1;) = 5/12. While
in the unbiased case, nonvanishing randomness starts appearing
after 3000 runs, this threshold increases to around 6000 runs in the
biased case (curve b). For 10° runs in the biased case, the measured
genuine randomness reaches 2777, lower than the unbiased case, as
expected.

0.004 £ 0.016, respectively. The QM predictions for these
probabilities are v =0, v = 0, and ¥ = 0 + 0.0261.
These results certify the randomness of the outputs gener-
ated by providing insights into the violations of the LGI
and the adherence to the NSIT conditions based on exper-
imental measurements. The average generation rate is
3865 bits/ sec, and the total number of bits generated is
919 118, as shown in the Appendix.

Conclusion and outlook.—Our single-system-based RNG
scheme’s operational advantage over the Bell inequality
based RNGs is that there is no requirement to produce and
preserve entanglement across distant systems while meas-
uring randomness-certifying correlations between their
observed properties. Fundamentally, there is a key difference
in how randomness is certified: entanglement schemes
violate Bell inequalities invoking no signaling across space-
like separation, while our scheme certifies randomness
through LGI violation invoking no signaling in time, which
may not hold in any given experimental configuration.
Crucially, our scheme uses setups that satisfy NSIT while
violating LGI empirically.

Our treatment provides a fully analytical evaluation of
how the lower bound on guaranteed randomness varies
monotonically with the LGI violation amount, in complete
agreement with corresponding numerical results. While this
randomness quantification has operational significance, it
can also stimulate a line of studies analogous to the way the
nuances of the quantitative relationship between Bell
inequality violating randomness and nonlocality have been
probed in recent years.

Ensuring security against adversary tampering with state
preparation in this scheme is distinct from Bell-based
schemes. The most general attack in this scenario is when
the user’s initial state is entangled with the adversary’s
state. To consider the possibility of such an attack, we
evaluate guaranteed random bits against the maximized
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conditional probability of obtaining joint outcomes satisfy-
ing no-signaling-in-time conditions and violating LGI. This
randomness quantification security strategy is unique to
LGI-based schemes and could guide security analysis
for other single-system quantum randomness generation
variants.

In addition to randomness generation through Bell tests,
several interesting semi-device-independent and source-
independent schemes have been implemented in diverse
experimental setups [47-53]. Additionally, some schemes
have been theoretically suggested within sequential meas-
urement setups [54,55], distinct from our approach. It
would be valuable to thoroughly examine and compare
the security of these approaches against the potential
loopholes. In contrast to the source-independent setup
we do not make any assumptions about the detectors,
which is the main measurement part. Detectors are usually
intricate devices with complex internal mechanisms, and
thus vulnerable to eavesdropping.

It is worth mentioning that selecting smaller measure-
ment time intervals without affecting setup stability can be
achieved by automating blocker-position switching using a
pseudorandom number generator [16]. A thorough exami-
nation of randomness expansion in relation to seed random-
ness could be a potential avenue for future research.

Interestingly, for counteracting the possible memory
effect in the experimental device, our treatment yields
results similar to that for the entanglement-based random
generation scheme, requiring a significant number of runs
to generate a substantial amount of certified randomness.
A more rigorous estimation of the amount of randomness
taking into account the possible side information available
to the adversary and the relevant generation rate by
employing randomness extraction and amplification will
be presented in future work, along with studies investigat-
ing the possibility of other variants of this scheme in terms
of experimental setups showing the violation of LGI using
different systems.
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Appendix.—We provide thorough details of our
experimental setup for LGI violation, addressing all
loopholes and meeting NSIT requirements to ensure
suitability for randomness generation. Additionally, we
outline the process of generating random bits from this
experimental setup.

FIG. 4. Schematic of the experimental setup. Here HWPI,
HWP2, and HWP3 are the half-wave plates; PBS1 and PBS2
are the polarizing beam splitters; L1, L4, L5, and L6 are the
focusing lens; F1 is the long-pass filter; M is the dielectric mirror;
L2 and L3 are the collimating lenses; F2, F3, and F4 are the band-
pass filters; B1, B2, B3, and B4 are the blockers; NPBS is the
nonpolarizing beam splitter; and SPAD1, SPAD2+-, and SPAD2—
are the single-photon avalanche detectors. Two arms of the AMZI
are marked as 1 and 2, representing the +1 and —1 arms,
respectively. Similarly, two arms of the DSI are marked as 3
and 4, representing —1 and +1. SPAD2+ and SPAD2— are placed
inthe +1 and —1 arms, respectively. Adapted with permission from
Joarder et al., 2022, PRX Quantum 3 010307, 2022 [40].

Experimental setup: The experimental setup Fig. 4 of
Ref. [40] we are considering for generating LGl-certified
randomness consists of three stages: (1) state preparation—
this step used a single photon source and a beam splitter to
generate a pair of photons, out of which one is sent for
heralding and the other is sent to the experimental setup.
(2) Unitary transformation—the two unitary transformations
(t; —» t, and t, — t3) were implemented using an asym-
metric Mach-Zender interferometer (AMZI) and a displaced
Sagnac interferometer (DSI). (3) Measurements—measure-
ments were performed using blockers in different arms of the
two interferometers for noninvasive measurements and
single-photon avalanche detectors (SPAD) for direct detec-
tion at the end of the experiment.

State preparation: A heralded twin-photon source was
built based on spontaneous parametric down-conversion
(SPDC), with a diode laser pumping a beta barium borate
(BBO) crystal with a 405 nm wavelength and 10 mW power.
The BBO crystal is oriented so that it is phase-matched for
degenerate, noncollinear, type-I SPDCs while being pumped
with horizontally polarized light. Parametric down-
conversion creates pairs of single photons with vertical
polarization and 810 nm central wavelength. To increase
pair generation, we also place a focusing lens (L1) to focus
the pump beam into the central spot of the BBO crystal. A
long-pass filter (F1) is placed after the crystal to block the
pump beam and pass only the down-converted single-photon
pairs. A half-wave plate and polarizing beam splitter PBS1
are placed after the nonlinear crystal to separate the two
photons in the two arms of the beam splitter. Two mirrors are
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placed to direct one photon to the experiment and the other to
a SPADI detector for heralding.

Unitary transformation: The experimental setup con-
sists of two interferometers whose arms are denoted by
1,2,3,4, where blockers are placed for noninvasive mea-
surements. The first interferometer is an asymmetric Mach-
Zehnder interferometer (AMZI), while the second is a
displaced Sagnac interferometer (DSI). The beam-splitting
ratio in the two arms of the AMZI is controlled by a
combination of a half-wave plate (HWP2) and a polarizing
beam splitter (PBS2). For satisfying the two-time NSITs,
the two arms of the first Mach-Zehnder interferometer
(MZI) are made noninterfering by adding a path difference
between the +1 and —1 arms. A single nonpolarizing beam
splitter (NPBS) with a measured splitting ratio of 80:20
(concerning vertically polarized light at 810 nm wave-
length) is used in the DSI. Two detectors (SPAD2+ and
SPAD2—) are placed in the two output arms of the DSI to
detect single photons.

The times #;, ,, and ¢3 are being defined in the following
manner: #; is the time from PBS2 to the first impact on
NPBS, 1, is the time from the first impact to the second
impact on NPBS, and #; is the time after the impact on
NPBS till detection on one of the detectors.

Measurements: Negative result measurements at #; and
t, are performed using motorized blockers (B1 and B2) in
arms 1 and 2 and (B3 and B4) in arms 3 and 4. The
experiment is completed in three stages corresponding to
the measurement of (Q, Q,}>, <Q,2Q,3>, and (Q, 0,),
respectively. For the first two stages, two runs each are
performed by placing the blockers on the respective arms
and detecting the photon at the end to measure the
coincidence events (++), (+—), (—+), and (——). For
instance, if a blocker is placed in the — arm of the second
interferometer (DSI), and a click is observed in SPAD2+,
this will count as a measurement for the probability
P(++4|0,03) and a click in SPAD2— will count as a
measurement for the probability P(+—|Q,0Q3). For the
third stage, i.e., for the measurement of (Q, Q,,), four runs
are performed to evaluate the three-time probabilities. For
example, when blockers are placed in the—arm of AMZI
and in the—arm of DSI, a detection in SPAD2+ will count
as P(+++|010,0;3), and a detection in SPAD2— will
count as P(++—|0;0,03). These probabilities are then
marginalized to evaluate the two-term probabilities at time
t; and t,, which leads to (Q, Q,,). P(+|Q3) was computed
by conducting the experiment without any blockers and
P(+|Q,) was computed by placing a blocker at the
negative arm of the second interferometer and marginal-
izing the two-time probabilities. Only the coincidence
counts measured, i.e., the simultaneous detection of
SPAD1 and SPAD2+ or SPAD2—, are considered valid
counts in evaluating the probabilities. We have used
avalanched photo diode detectors that have inherently a
reasonably higher dark count. A follow-up experiment

could change this to superconducting nanowire based
detectors, which have higher quantum efficiency as well
as lower dark counts. This in turn will affect the signal to
noise ratio of the results and can lead to higher rate of
random bit generation.

Addressing loopholes: To ensure the experiment was
loophole-free, various measures were taken. The clumsi-
ness loophole was addressed using noninvasive measure-
ments and tuning the experimental parameters to satisfy the
two-time NSIT conditions. The detection efficiency loop-
hole was eliminated by showing that the violation of LGI
cannot be reproduced by the hidden variable model,
regardless of detection efficiency. The pivotal aspect of
our setup, wherein the measurement at #3 is consistently
performed for all the choices of measurement times, plays a
crucial role in overcoming this loophole [40]. The multi-
photon emission loophole was addressed using a heralded
single-photon source and appropriate filtering. The coinci-
dence loophole was eliminated by using a pair of photons
as a timing reference and adjusting the coincidence time
windows accordingly. Finally, the preparation state loop-
hole was closed by postselecting only those detected
photons from the SPDC source and choosing high
signal-to-noise ratios for the corresponding coincidence
time windows.

Random number generation: From the eight experi-
ments conducted, we selected three datasets from each
experiment to generate bit strings composed of 0’s and
I’s. The generation of random numbers was based on the
coincidence clicks of two detectors, SPAD2+ and SPAD2—,
with the heralding detector SPAD1. Coincidence counts were
identified using information from the heralding detector and
employing a 4ns time window. We designated detecting a
coincidence event at SPAD2+ as 0 and detecting a coinci-
dence event at SPAD2— as 1.

For the evaluation of the probabilities P(a;,a;|Q;. Q3)
and P(a;, a;|Q,, Q3) in the first and second phases of the
experiment, two subruns were conducted for each experi-
ment. In one subrun, the + arm of the first interferometer
was blocked, and in the other subrun, the — arm of the
interferometer was blocked. In the first case, if a photon
from the experimental setup coincidentally hit SPAD2+
with the heralding detector SPAD1, it was counted as 0. If it
coincidentally hit SPAD2— with SPADI, it was counted as 1,
thus generating a bit string for this subrun and resulting in the
probabilities P(—+|Q;, 03) and P(——|Q,, Q3). Similarly,
for the second subrun where the — arm was blocked, a bit
string was generated based on the detector clicks, leading to
the probabilities P(++|Q;, Q3) and P(+ — |Qy, O3).

Likewise, two more bit strings were generated from the
second phase of the experiment, providing the probabilities
P(a;,a;|Q,, Q3). However, the third phase of the experi-
ment, aimed at computing correlations at times #; and ?,,
involved marginalizing the three-time probabilities
P(a;, a;, a;| 01, @2, O3). In this case, blockers were placed
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TABLE II. Length of the random bit string generated from the
detector counts of the two detectors SPAD2+ and SPAD2— from
the eight experiments to evaluate the different joint probabilities.

Experiment Rate (bits/ sec) Length
P(——[23)P(—+/23) 4722 140382
P(4+—|23)P(++/23) 5139 152 405
P(4+——|123)P(+—+]123) 1177 34981
P(+ + —|123)P(+ + +|123) 4268 127123
P(———|123)P(— + |123) 3953 117651
P(—+—|123)P(—++]123) 1180 34935
P(4+—[13)P(++|13) 5158 153 465
P(—— |[13)P(— +|13) 5321 158 176

simultaneously on both interferometers in different arms,
enabling the computation of all the three-term probabilities
in four runs.

For example, when both + arms of the interferometers
were blocked, the detector counts yielded bit strings corre-
sponding to the three-term probabilities P(——+|Q, O, O3)
and P(——+|Q,, 05, 03). Although these bit strings did
not directly originate from the two-term probabilities
P(a;,a j|Q1, 0,), which occur in the LGI expression used
for certifying randomness, they eventually contributed to the
computation of two-term probabilities. They thus could be
used to certify and quantify the randomness.

Subject to the conditions assumed in this approach, eight
distinct bit strings can be generated, as shown in Table II,
using the available data from the experiments focused on
coincidence event calculations. The average generation rate is
3865 bits/ sec, and the total number of bits generated, which
is the sum of the eight-bit strings generated, is 919 118. Each
bit string had an appropriate length and successfully passed
the SP-800-90B entropy test [56,57] for randomness.
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