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We provide practical and powerful schemes for learning properties of a quantum state using a small
number of measurements. Specifically, we present a randomized measurement scheme modulated by the
depth of a random quantum circuit in one spatial dimension. This scheme interpolates between two known
classical shadows schemes based on random Pauli measurements and random Clifford measurements.
We focus on the regime where depth scales logarithmically in the system size and provide evidence
that this retains the desirable sample complexity properties of both extremal schemes while also being
experimentally feasible. We present methods for two key tasks; estimating expectation values of certain
observables from generated classical shadows and, computing upper bounds on the depth-modulated
shadow norm, thus providing rigorous guarantees on the accuracy of the output estimates. We achieve our
findings by bringing together tools from shadow estimation, random circuits, and tensor networks.
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It is a well known fact that learning a classical descrip-
tion of a quantum state from access to a limited number
of samples (copies of the state) is a demanding task for
quantum systems involving a large number of degrees of
freedom. Quantum state tomography produces an accurate
classical description of the unknown quantum states, but
consumes an enormous number of samples [1–3]. Recently,
the focus has shifted towards sample efficient approaches
that satisfy weaker standards of state learning but are
nevertheless very useful. Huang, Kueng and Preskill’s
(HKP) seminal work [4], building on ideas from Ref. [5]
is a state learning protocol based on randomized measure-
ments [6–9]. In particular, the protocol of classical shad-
ows, suggested by HKP, allows one to estimate the
expectation values of many observables from the outcomes
of suitable randomized measurements of the unknown
state. This protocol is oblivious to the observable, i.e.,
once the necessary classical data has been gathered from
the state, it can be reused for many observables. The
scheme comes with rigorous performance guarantees,
permitting one to determine the trade-off between the
number of samples and the accuracy of the estimated
expectation value for any given observable. Classical
shadows have found many applications including estimat-
ing: Expected molecular energies [10,11], the purity and
ground state proximity of spin chains [12] and gate-set
properties [13] for noise characterization. It has been used
to detect entanglement [14–16] and chaos [17] in many
body systems; classify quantum data [18], and develop
improved variational search algorithms [19,20]. For exam-
ple, by relying on the scheme’s ability to obliviously
estimate the expectation values of many observables,

Ref. [19] has proposed a promising new method for
training variational circuits to find Hamiltonian eigenstates
and Ref. [21] improved existing computational methods
and used them to estimate ground state atomization
energies of molecules.
Classical shadows have seen some experimental imple-

mentation [14,22,23], inspired substantial further study
[10,24–26] and many related proposals and generalizations
including; noise-robustness analysis and noise-robust var-
iants [27–29], variants for fermionic systems [30] and
performance improvement in the setting of pure states [31].
Variants of the protocol have been considered where
the randomized measurements are: derandomized [32],
reused [33,34], or generalized to joint measurements [31].
Randomized measurements generated by low depth unitary
ensembles [35,36], locally scrambled unitary ensembles
[37,38], or certain Hamiltonian evolutions [39–41] have
also been considered.
The classical shadows protocol as proposed by HKP has

two variants; one randomizes the computational basis
measurement by first applying a random global Clifford
unitary to each copy of the unknown quantum state (also
known as random Clifford measurements), the other by first
applying a layer of random single qubit Clifford gates (also
known as random Pauli measurements). Both prescriptions
give rise to interesting and complementary schemes, each
able to estimate expectation values for a large class of
observables using a sparing number of copies of the
unknown state. The global Clifford scheme is sample
efficient for observables with low Frobenius norm includ-
ing all quantum states (for fidelity estimation) and low-rank
operators with bounded spectral norm. However, this
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scheme performs poorly for high rank observables such as
local observables and Paulis, even those with low weight.
Additionally, the implementation of global Cliffords
requires a linear depth circuit making the scheme infeasible
even for moderate sized systems. In contrast, the single
qubit Cliffords scheme is technologically far less demand-
ing and has seen experimental implementation [22,23,42].
This scheme is on the one hand sample efficient for
bounded observables that are linear combinations of low
weight Paulis. On the other hand, the sample complexity
can scale exponentially in the weight of the observable,
rendering this scheme unsuitable for globally supported
observables, e.g., for fidelity estimation.
In this work, we provide evidence that much of the

power of the global Clifford scheme can be retained when
resorting to shallow (logarithmic depth) circuits. This
significantly reduces the experimental cost. Specifically,
we study the family of shadow schemes between these two
extremes and identify an intermediate regime that is
experimentally feasible and inherits much of the favorable
sample complexity scaling of both extremal schemes.
Our schemes are modulated by the depth of the randomly
sampled two-local Clifford circuit used to randomize
measurements (Fig. 1). Our zero depth and infinite depth
schemes correspond to the random Pauli measurements and
random Clifford measurements schemes of HKP, respec-
tively. To be practical, such a protocol needs to be both
sample efficient and computationally efficient. That is, only
a polynomial number of copies of the state should be
required to estimate expectation values to the desired
accuracy while the classical pre- and postprocessing should
take at most polynomial time. Some aspects of this last
requirement in particular are straightforward in the HKP
protocol but challenging in our intermediate regime, as
intermediate depth Clifford unitary circuits do not form a
group. However, even for the HKP protocols, the computa-
tional efficiency is highly dependent on the choice of
observables: Indeed, one can come up with observables for
which the sample complexity is polynomially bounded, but

computing the expectation values requires exponential
time. We therefore identify two classes of observables
for which our protocol is computationally efficient for
d ¼ O( logðnÞ) under reasonable assumptions. We also
introduce computationally efficient methods for computing
upper bounds on the estimation error. We study the sample
complexity of our schemes at depth d ¼ Θðlog nÞ for
large classes of observables. For observables that have
polynomial sample complexity under the zero depth
scheme (Pauli measurements) we prove that our depth
d ¼ Θðlog nÞ scheme also achieves polynomial sample
complexity. For observables that have polynomial sample
complexity under the infinite depth scheme (global
Cliffords) we give theoretical and numerical evidence that
our scheme achieves polynomial sample complexity. We
thus put forward that our d ¼ ΘðlognÞ scheme constitutes
the sweet spot between the two extremes.
Depth modulated classical shadows protocol.—Given

many identical samples of an unknown n-qubit quantum
state ρ, our goal is to compute a classical description ρ̂
such that for any observable O in some large class,
trðOρÞ ≈ trðOρ̂Þ. The protocol has three distinct compo-
nents, namely, (a) the data acquisition step which
implements a randomized measurement and outputs meas-
urement data; (b) the estimate computation step that takes
the measurement data and a description of O as input and
outputs an estimate ê of e ¼ trðOρÞ; (c) the accuracy
guarantee step that computes an upper bound on the
estimation error ϵ ¼ jê − ej using the number of samples
taken in the data acquisition step and a description of O.
In the following, we describe these three steps.
Step 1: Data acquisition: We now describe the collec-

tion of randomized measurement data for a given circuit
depth d∈ f∞; 0; 1;…g. We define Ud as the ensemble of
Clifford unitaries constructed by first applying a uniformly
random single qubit Clifford gate to each qubit (the 0th
layer). If d ¼ 0 then we are done, alternatively, we apply d
layers of independent and uniformly sampled 2-qubit
Clifford gates in an alternating brickwork pattern
(cf. Fig. 1). The resulting n-qubit, depth d Clifford circuit
is a single sample from the ensemble Ud. For each copy of
ρ, we independently apply a Clifford unitary U sampled
from Ud, then measure in the computational basis, with the
resulting measurement outcome b∈ f0; 1gn and unitary U
labeling the measurement data produced with respect to
each sample of ρ. For concreteness, we assume a circular
brickwork architecture where the first and last qubit are
identified as nearest neighbors. While this makes the
analysis easier our results can be extended to other local
circuit architectures.
Step 2: Estimate computation: We now describe how

the measurement data fðUi; biÞgi from step 1 can be used
to produce an estimate of an expectation value for a given
observable O. On average over the randomness of ðU; bÞ,
the data acquisition step defines a quantum channel

FIG. 1. Brickwork circuit and illustration of the performance
of the protocol in various regimes. At depths logarithmic in the
system size, both Pauli estimation and fidelity estimation become
viable.
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MdðρÞ ≔ E
U∼Ud

" X
b∈ f0;1gn

hbjUρU†jbiU†jbihbjU
#
; ð1Þ

henceforth referred to as the measurement channel. That is,
it produces states τi ≔ U†

i jbiihbijUi with a probability
depending on the state ρ and the ensemble of unitaries.
Since τi is the output of a depth d quantum circuit, it can be
represented as a bond dimension Oð2dÞ matrix product
state (MPS). As a linear map, Md is positive definite and
hence invertible (cf. Theorem 1 and Sec. II of the
Supplemental Material [43]). This map is central to our
study due to the observation that M−1

d ðτÞ is an unbiased
estimator of ρ. Thus, each measurement outcome ðUi; biÞ
can be converted into an independent instance ôi ≔
tr½OM−1

d ðτiÞ� ¼ tr½M−1
d ðOÞτi� of a random variable ô

which has mean e ¼ trðOρÞ. Just as in the standard
HKP protocols, the final estimate ê can be computed from
these single-shot estimates as follows: first, we partition
all of the single-shot estimates ôi into equal blocks of
appropriate size and average the estimates in each block,
then, the final estimate ê is the median of the averages for
each block. We have now specified our estimators; these
are natural generalizations of the HKP estimators to the
intermediate depth regime. The remainder of this section
focuses on how to efficiently compute a single-shot
estimate of ô given τ and a target observable O. We
consider two efficiently describable classes of observables:
those given as a linear combination of at most polyðnÞ
Paulis (we call these sparse observables) and those given as
a matrix product operator (MPO) with a polyðnÞ bounded
bond dimension (we call these shallow observables). For
both classes of observables, to compute an estimate, we
need a way of computing M−1ðOÞ for our observable of
choice, O. From now on, we label Pauli operators with bit
strings of length 2n. Given λ∈ f0; 1g2n, the corresponding
Pauli is denoted Pλ. We rely on the following key results,
proven in the Supplemental Material [43], Sec. II:
Theorem 1.—(Action of measurement map) For

λ∈ f0; 1g2n, let tλ;d ∈ ½0; 1� be defined as

tλ;d ≔ Pr
U∼Ud

ðUPλU† ∈ � ZÞ; ð2Þ

where �Z is the set of all strings of Pauli Z and I with
phase �1, then

MdðPÞ ¼ tλ;dPλ: ð3Þ

One can verify that the expression in Eq. (2) corresponds
to the expected limiting values in the extreme cases d ¼ ∞
and d ¼ 0. In these cases, the measurement channel is
given, respectively, by global and local depolarizing
channels, at d ¼ ∞ we have then for any A, M∞ðAÞ ¼
½1=ð2n þ 1Þ�½Aþ trðAÞI� while at d ¼ 0, the channel acts

like M∞ for n ¼ 1 on each qubit, such that for a Pauli P
with support on k qubits M0ðPÞ ¼ 3−kP. Indeed, the
probability that a randomly drawn Pauli operator is in
�Z is ð2n − 1Þ=ð4n − 1Þ ¼ 1=ð2n þ 1Þ, while if we draw a
random Pauli on each of k sites, this probability is 3−k.
This expression permits the construction of an efficient

tensor network representation for tλ;d: for two qubits, a
four-legged tensor can be constructed representing the
probability that a Pauli P is mapped to another Pauli Q
by a random Clifford gate. By arranging copies of this tensor
in a brickwork fashion, one obtains the probabilities that
any possible Pauli string is produced by the circuit, given a
certain input string. Finally, summing over the outputs
corresponding to elements of �Z we get the following.
Theorem 2.—(Tensor network formulation) tλ;d can be

written as a one-dimensional tensor network with bond
dimension at most 2d−1. For depth d ¼ Oðlog nÞ, it can
then be exactly computed in run-time nOð1Þ.
The construction is described in detail in Sec. II of the

Supplemental Material [43]. We now have two possible
choices: if we are interested in estimating a sparse observ-
able, we can efficiently compute an estimate ô by evalu-
ating term by term

ô ¼ trðM−1
d ðOÞτÞ ¼

X
λ

1

tλ;d
βλtrðPλτÞ: ð4Þ

The polynomially many terms can each be efficiently
computed since both tλ;d and the expectation value of a
Pauli with respect to the MPS τ are efficiently computable.
If instead O is a shallow observable, there will generally
be exponentially many nonzero Pauli coefficients in the
expansion ofO, so the term by term computation of Eq. (4)
is no longer efficient. Instead, we first construct an
approximate MPS representation of the eigenvalues
1=tλ;d of the inverse measurement map. Given such an
MPS, and O in the form of a shallow MPO, we can
represent M−1

d ðOÞ as an MPO with controlled bond-
dimension. Since τ is also given as a low bond dimension
MPS, for shallow observables, ô can be efficiently approxi-
mated by a tensor contraction.
We briefly discuss the construction of an approximate

MPS representation of the inverse measurement map (see
Supplemental Material [43], Sec. III for details). Let us first
note that it is nontrivial to construct a low bond-dimenson
MPS that evaluates 1=tλ;d given a low bond-dimenson MPS
that evaluates tλ;d. However, given a candidate for the
former we can efficiently compute how much it deviates
from the exact MPS representation of the inverse meas-
urement map. Using this property, we are able to employ a
DMRG style heuristic that repeatedly sweeps through all
components of a candidate MPS locally optimizing each
component (while all others remain fixed). An accurate
approximate MPS representation of the inverse measur-
ment channel can be precomputed, since it only depends on
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n and d. We do not guarantee that this can be done
efficiently but note that in practice, our method produces
high precision results, e.g., n ¼ 10, d ¼ 3 can be computed
in less than a minute on a laptop. For reasonable parameter
choices, the error induced by this approximation is
much smaller than the statistical error (cf. Supplemental
Material [43], Sec. IV, see also Ref. [52]).
Step 3: Accuracy guarantee: We now discuss how to

upper bound the error in the estimate from step 2, given a
description of a target observable O and the number of
samples of ρ used in step 2. We bound the variance of
the estimators ôi, since this implies a bound on the
errors for a given number of samples (see Supplemental
Material [43], Sec. V).
We upper bound the variance of ô by its second moment,

E½ô2�, and refer to this quantity as the state-dependent
shadow norm denoted by kOksðdÞ;ρ. To get a worst case
upper bound we maximize this over all density states ρ; this
defines the shadow norm kOksðdÞ [4]. We will also consider
the locally scrambled shadow norm [37,38], kOksðdÞ;LS.
This is the average of kOksðdÞ;ρ over ρ sampled from a state
1-design, i.e., any ensemble of pure states E such that
E
σ∼E

½σ� ¼ I=2n. In the Supplemental Material [43], Sec. V,

we give explicit expressions for all of the above quantities
for a general observable O in terms of a quantity τðλ;λ0Þ;d
which is a second order analog of the eigenvalues tλ;d.
The explicit expression for the locally scrambled shadow
norm is efficiently computable for both shallow and sparse
observables. The expression for the shadow norm is
efficient only in the sparse case. In the shallow case, given
low bond dimension approximations to 1=tλ;d, we give
efficiently computable upper bounds to the shadow norm.
Furthermore, in the Supplemental Material [43], Sec. VI,
we consider the shadow norm of stabilizer projectors, and,
in particular, we explicitly identify the states that maximize
the state-dependent shadow norm for these observables,
that is, the states yielding the worst possible performance.
On sample complexity at logarithmic depth.—Finally,

we consider the sample complexity of our d ¼ Oðlog nÞ
scheme with respect to two important classes of observ-
ables. First, we consider the subset of sparse observables
that can be written as a linear combination of Oðlog nÞ
weight Pauli operators with coefficients of size at most
polyðnÞ, e.g., one-dimensional local Hamiltonians. These
observables are known to have polyðnÞ sample complexity
with respect to the d ¼ 0 scheme of HKP. By bounding the
shadow norm, we show that for this class, polyðnÞ sample
complexity is also achieved by our d ¼ Oðlog nÞ scheme.
Then, we consider the subset of observables with polyðnÞ
bounded Frobenius norm. These observables are known to
have polyðnÞ sample complexity with respect to the d ¼ ∞
scheme of HKP. We give evidence that this also holds
for our d ¼ Oðlog nÞ scheme: by bounding the locally
scrambled shadow norm, we show that for most states, the

sample complexity is polynomial. Specifically, we show
that if the unknown ρ were sampled from any state
1-design, then for at least a 1 − 1=polyðnÞ fraction of
states, polyðnÞ copies of the state would suffice. We show
this by using a mapping to a path counting problem in a
statistical mechanics model [44,53,54]. All of this can be
summarized in the following Theorem, which we prove in
Sec. VII of the Supplemental Material [43].
Theorem 3.—(Performance guarantee) Let d ¼

Θ( logðnÞ). If O ¼ P
r
k¼1 βλkP

λk is a linear combination
of Pauli operators such that each Pauli is supported on a
region of length upper bounded by O( logðnÞ), then

kOksðdÞ ≤ nOð1Þ Xr
k¼1

jβλk j: ð5Þ

Furthermore, for any traceless O, we have

kOk2sðdÞ;LS ≤ 2kOk2F
�
1þ 1

nOð1Þ

�
: ð6Þ

Numerics.—We now present numerical experiments
performed by classically simulating step 1 of our scheme
(the component that is to be implemented on a quantum
computer) followed by the implementation of our protocol
as described in steps 2 and 3 [55].
In Fig. 2, we choose ρ to be the GHZ state on n ¼ 8

qubits. For each depth, we obtain 100 independent

FIG. 2. Performance of the protocol forO ¼ ρ ¼ jGHZihGHZj
(left) and O ¼ H (right) for various depths. For each depth we
compute 100 independent estimates each based on 1000 samples
and plot the estimation error (estimate minus the true value). We
show the spread of estimation errors as well as a bound for twice
the standard mean error (SME) corresponding to ∼95% con-
fidence interval assuming Gaussian distributed errors. Each black
line has a length proportional to the fraction of estimates with
similar estimation error. The SMEs are computed using the
empirical variance and the shadow norm. The red lines corre-
sponds to the estimates obtained using the whole set of 100 000
samples.
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estimates of trðOρÞ using N ¼ 1000 samples for each. On
the left side of Fig. 2 we estimate the fidelity of the state
with itself, i.e., pick O ¼ jGHZihGHZj. Since O has full
support and kOkF ¼ 1, the d ¼ 0 scheme is expected to
perform poorly and the d ¼ ∞ scheme is expected to
perform well. We see that the spread in estimated values
depends on the depth and is consistent with both the
empirically calculated variance and the theoretically com-
puted shadow norms. It is apparent that the performance
becomes dramatically better from d ¼ 0 to d ¼ 2 (decreas-
ing shadow norm and variability in estimates). Thereafter,
the improvement in performance for every additional layer
is much smaller, indicating that the global Cliffords
scheme’s performance is already matched at short depth.
On the right side of Fig. 2, we consider expectations of a

sparse observable, namely, the expected energy hHi for
the Hamiltonian H ¼ P

iðZi−1ZiZiþ1 þ XiÞ, with periodic
boundary conditions. As expected, low depth is better
suited for this observable, and it is evident that the global
d ¼ ∞ protocol is ill suited. The shadow norm of a k-local
observable (or a linear combination thereof) is minimized
at some k dependent optimal depth, which appears to be
d ¼ 1 in this example. While this minimum does not
necessarily occur at d ∼ logðnÞ, the protocol is still effi-
cient, if not optimal, at log depth. This can be seen by the
fact that the error only increases slowly, up to moderately
high depths, compared to the global minimum. In the
Supplemental Material [43], Sec. VIII, we present addi-
tional numerical results where we consider a randomly
drawnMPS for ρ and an XXZmodel forH. As expected the
results are similar to those presented here, showcasing the
generality of our method.
Discussion.—We provide a protocol for estimating prop-

erties of an unknown state by considering measurements in
a basis generated by random quantum circuits of
2-local Clifford gates of arbitrary depth d. To go beyond
the extremal depths of d∈ f0;∞g, we overcome new
challenges by bringing together methods from random
quantum circuits and tensor networks. This allows us to
estimate expectation values of a large class of experimen-
tally relevant observables. we expect the d ∼ logðnÞ regime
to be a “sweet spot” that inherits the benefits of the high
depth scheme while requiring much fewer resources, being
efficiently implementable, and retaining the desirable prop-
erties of the low depth scheme. Several questions remain
open. At extremal depths, the shadows procedure is shown
to be robust to noisy measurements [27], we expect that a
similar robustness can be obtained in our protocol for local
Pauli noise by correcting the MPS tensors of the measure-
ment channel. We also expect that this protocol can be
directly applied to improve applications of shadow tomog-
raphy such as learning quantum processes [56,57]. Based
on numerical evidence, low bond dimension MPS repre-
sentations of the inverse measurement map appear to exist,
however, we are not aware of theoretical bounds on their

bond dimension. Furthermore, while our bounds on the
locally scrambled shadow norm provide compelling
evidence that our log-depth protocol is useful for low
Frobenius norm observables, a rigorous proof of sample
efficiency for this class of observables is missing. Finally,
we provide ways of estimating the sample complexity for
individual observables. We are confident that the compu-
tations involved in these procedures can be made more
efficient by bond dimension reduction techniques.

Note added.—Recently, we became aware of the recent
results of Ref. [52] which studies the MPS inversion
problem in the more general setting of MPOs and arrive
at very similar results as our MPS inversion algorithm.
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