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A central challenge in the verification of quantum computers is benchmarking their performance as a
whole and demonstrating their computational capabilities. In this Letter, we find a universal model of
quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal
stepping stone toward fault tolerance. In Bell sampling, we measure two copies of a state prepared by a
quantum circuit in the transversal Bell basis. We show that the Bell samples are classically intractable to
produce and at the same time constitute what we call a “circuit shadow”: from the Bell samples we can
efficiently extract information about the quantum circuit preparing the state, as well as diagnose circuit
errors. In addition to known properties that can be efficiently extracted from Bell samples, we give several
new and efficient protocols: an estimator of state fidelity, an error-mitigated estimator of Pauli expectation
values, a test for the depth of a circuit, and an algorithm to estimate a lower bound on the number of T gates
in the circuit. With some additional measurements, the latter algorithm can be used to learn a full
description of states prepared by circuits with low T count.
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Introduction.—As technological progress on fault-
tolerant quantum processors continues, a central challenge
is to demonstrate their computational advantage and to
benchmark their performance as a whole. Quantum random
sampling experiments serve this double purpose [1–4] and
have arguably surpassed the threshold of quantum advan-
tage [5–10]. However, this approach currently suffers
several drawbacks. Most importantly, it can only serve
its central goals—benchmarking and certification of quan-
tum advantage—in the classically simulable regime. This
deficiency arises because evaluating the performance
benchmark, the cross-entropy benchmark, requires a
classical simulation of the ideal quantum computation.
What is more, the cross-entropy benchmark suffers from
various problems related to the specific nature of the
physical noise in the quantum processor [9,11,12] and
yields limited information about the underlying quantum
state. More generally, in near-term quantum computing
without error correction, we lack many tools for validating
a given quantum computation just using its output samples.
In this Letter, we consider Bell sampling, a model of

quantum computation in which two identical copies of a
state prepared by a quantum circuit are measured in the
transversal Bell basis; see Fig. 1. We show that this model is
universal for quantum computation, that the output samples
yield a variety of diagnostic information about the under-
lying quantum state, and that the samples allow for
detecting and correcting certain errors in the state prepa-
ration. We may thus think of the Bell samples as classical
circuit shadows, in analogy to the notion of state shadows
coined by Aaronson [13] and Huang et al. [14] since we can

efficiently extract specific information about the generating
circuit or a family of generating circuits from them. Bell
sampling also serves as a stepping stone toward quantum
fault tolerance: not only can we naturally detect certain
errors from the Bell samples, but the protocol is also
compatible with stabilizer codes—the Bell measurement
between code blocks is transversal for such codes and
allows for the fault-tolerant extraction of all error syn-
dromes. As a concrete application, we demonstrate that
Bell sampling from universal quantum circuits exhibits
quantum advantage that can be efficiently validated on
near-term quantum processors.
Technically, we make the following contributions. We

show that Bell sampling is universal and provide complex-
ity-theoretic evidence for the classical intractability of Bell
sampling from random universal quantum circuits,

FIG. 1. The Bell sampling protocol. In the Bell sampling
protocol we prepare the quantum state Cj0ni ⊗ Cj0ni using a
quantum circuit C, and measure all qubits transversally in the Bell
basis across the bipartition of the system.
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following an established hardness argument [4,15,16]. We
give two new diagnostic primitives based on noiseless Bell
samples. First, we introduce a new test to verify the depth of
quantum circuits. Here, we make use of the fact that from
the Bell basis samples one can compute correlation proper-
ties of the two copies and in particular a swap test on any
subsystem. Second, we show that the Bell samples can be
used to efficiently measure the stabilizer nullity—a magic
monotone [17]—and give a protocol to efficiently learn a
full description of any quantum state that can be prepared
by a circuit with low T count. Here, we build on a result by
Montanaro [18], who has shown that stabilizer states can be
learned from Bell samples. In the setting of noisy state
preparations, we analytically show that the Bell samples
can be used to estimate the fidelity of state preparations and
demonstrate the feasibility numerically. We also give a
protocol for efficiently detecting errors in the state prepa-
ration based only on the properties of the Bell samples.
Of course, the idea to sample in the Bell basis to learn

about properties of quantum states is as old as the theory of
quantum information itself and has found many applica-
tions in quantum computing, including learning stabilizer
states [18], testing stabilizerness [19], measuring magic
[20,21], and quantum machine learning [22]. The novelty
of our approach is to view Bell sampling as a computational
model. We then ask what we can learn from the Bell
samples about the circuit preparing the underlying quan-
tum state.
Bell sampling.—We begin by defining the Bell sampling

protocol and noting some simple properties that will be
useful in the remainder of this Letter. Consider a quantum
circuitC acting on n qubits, and define the Bell basis of two
qubits as

jσri ¼ ðσr ⊗ 1ÞjΦþi; where jΦþi ¼ ðj00i þ j11iÞ=
ffiffiffi
2

p
;

ð1Þ

and for r∈ f0; 1g2 we identify

σ00¼ 1; σ01 ¼X; σ10¼Z; σ11¼ iσ01σ10 ¼Y: ð2Þ

The Bell sampling protocol proceeds as follows (see
Fig. 1): (1) prepare jCi ≔ jCi ⊗ jCi ≔ Cj0ni ⊗ Cj0ni,
and (2) measure all qubit pairs ði; iþ nÞ for i∈ ½n� ≔
f1; 2;…; ng in the Bell basis, yielding an outcome
r∈ f0; 1g2n.
It is easy to see that the distribution of the outcomes r can

be written as

PCðrÞ ¼
1

2n
jhCjσrjC̄ij2; ð3Þ

where σr¼σr1rnþ1
⊗σr2rnþ2

⊗���⊗σrnr2n is the n-qubit Pauli
matrix corresponding to the outcome r ¼ ðr1; r2;…; r2nÞ,
and C̄ denotes complex conjugation of C. In order to

perform the measurement in the Bell basis, we need to
apply a depth-1 quantum circuit consisting of n transversal
CNOT gates followed by Hadamard gates on the control
qubits and a measurement of all qubits in the computa-
tional basis.
Computational complexity.—We first show that Bell

sampling is a universal model of quantum computation.
To show this, we observe that we can estimate both the sign
and the magnitude of hCjZ1jCi for any quantum circuit C
from Bell samples from a circuit C0ðCÞ in which we use a
variant of Ramsey interferometry with a single ancilla qubit
in each copy of the circuit; see the Supplemental Material
(SM) [23]. We then show that approximately sampling
from the Bell sampling distribution PC is classically
intractable on average for universal random quantum
circuits C with Ωðn2Þ gates in a brickwork architecture
(as depicted in Fig. 1), assuming certain complexity-
theoretic conjectures are satisfied, via a standard proof
technique; see the SM [23] for details. The argument puts
the complexity-theoretic evidence for the hardness of Bell
sampling from random quantum circuits on a par with that
for standard universal circuit sampling [1,5,43–46].
Bell samples as classical circuit shadows.—Samples in

the computational basis—while difficult to produce for
random quantum circuits—yield very little information
about the underlying quantum state. In particular, the
problem of verification is essentially unsolved since the
currently used methods require exponential computing
time. In contrast, from the Bell samples, we can efficiently
infer many properties of the quantum state preparation
jCi ⊗ jCi. Known examples include the overlap tr½ρσ� of a
state preparation ρ ⊗ σ via a swap test, the magic of the
state jCi [20], and the outcome of measuring any Pauli
operator P ⊗ P [47]. Here, we add new properties to this
family. We give efficient protocols for estimating the
fidelity, testing the depth of low-depth quantum circuits,
for testing its magic, and for learning quantum states that
can be prepared by a circuit with low T count.
Let us begin by recapping how a swap test can be

performed using the Bell samples, and observing some
properties that are useful in the context of benchmarking
random quantum circuits. To this end, write the two-qubit
swap operator S ¼ P⋁2 − P⋀2 as the difference between
the projectors onto the symmetric subspace P⋁2 ¼
jσ00ihσ00j þ jσ01ihσ01j þ jσ10ihσ10j and the antisymme-
tric subspace P⋀2 ¼ jσ11ihσ11j. The overlap tr½ρσ� ¼
tr½ðρ ⊗ σÞS� can then be directly estimated up to error ϵ
from M∈Oð1=ϵ2Þ Bell samples as

1

M
ðjfr∶ πYðrÞ ¼ 0gj − jfr∶ πYðrÞ ¼ 1gjÞ: ð4Þ

For noisy quantum state preparations ρ ⊗ ρ, we can thus
estimate the purity P ¼ tr½ρ2� of ρ. We now argue that the
purity is a good estimator for the fidelity F ¼ hCjρjCi of
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the state preparation if the noise is local circuit-level Pauli
noise. Pauli channels naturally appear as the effective noise
after repeated rounds of syndrome extraction in stabilizer
codes [48,49]. We can also “force” the noise into Pauli
noise using randomized compiling implemented independ-
ently on two copies of a fixed circuit; this converts experi-
mentally relevant noise into Pauli channels [50,51]. We
show that the average fidelity of random circuits with local
Pauli noise relates to the average purity as ECF ¼ ffiffiffiffiffiffiffiffiffi

ECP
p

if
the Bell measurement is noise-free [2,12]. The root purity is
thus a good estimator of the average fidelity from the Bell
samples irrespective of the noise rate and depth of the
circuit ensemble with precision ∼1=ðF ffiffiffiffiffi

M
p Þ in the number

of Bell samples M. Assuming that the local Pauli noise
channels are independently identically distributed, we can
extend this estimator to noisy Bell measurements as

F̄ ¼ ðECPÞ
E

2ðEþ2=3Þ; ð5Þ

where E is the number of error locations in the circuit prior
to the measurement. We expect this estimator to be accurate
even for typical and nonrandom circuits and give numerical
evidence that this is the case in Fig. 2 for random Clifford
circuits and nonrandom Floquet Clifford circuits.
How does the purity estimator compare to other means of

estimating the fidelity of a quantum state? A widely used
method is cross-entropy benchmarking (XEB), which is
obtained from classical samples in the computational basis
[5,53]. XEB is sample-efficient for random circuits, but
requires computing ideal output probabilities of C, making
it infeasible for already moderate numbers of qubits and
non-Clifford gates. The XEB is a good estimator of the

fidelity in the regime of low local error probabilities
η≲ 1=n and for depths d∈Ωðlog nÞ, but not outside of
those regimes [9,12] as witnessed in Fig. 2(a). In contrast,
Bell sampling is computationally and sample efficient
independently of the circuit, and the root purity estimator
of fidelity is accurate in both the regimes of high noise and
of low depths. Correlated coherent errors on both copies
naively ruins the correspondence between fidelity and root
purity, but independent randomized compiling on the two
copies recovers it by removing these correlations.
In the SM [23], we show these results, elaborate on the

various estimators, and also discuss the relation of Bell
sampling to different means of verifying quantum compu-
tations more generally. From now on, we will assume that
the purity is close to unity.
Depth test.—Wenowdescribe aBell sampling protocol to

measure the depth of a quantum circuitC, which is promised
to be implemented in a fixed architecture, i.e., with gates
applied in layers according to a certain pattern. The basic
idea underlying the depth test is to use swap tests on
subsystems of different sizes in order to obtain estimates
of subsystem purities. For a subsystem A of [n], the
subsystem purity is given by PAðρÞ ¼ tr½ρ2A�, where ρA ¼
trAc ½ρ� is the reduced densitymatrix on subsystemA ⊂ ½n�. It
can be estimated from the fraction of outcome strings with
even Y parity πYðrAÞ on the substrings rA ¼ ðri; rnþiÞi∈A.
Our test is based on the observation that the amount of

entanglement generated by quantum circuits on half-cuts
reaches a depth-dependentmaximal value until it saturates at
a circuit depth that depends on the dimensionality of the
circuit architecture; see Fig. 3(a) for an illustration. In order
to lower-bound the depth of a circuit family we choose
a subsystem size at which the distinguishability be-
tween different depths is maximal. This is typically the
case at half-cuts, where the Rényi-2 entanglement entropy

(a) (b)

FIG. 2. Fidelity estimation based on noisy Bell sampling. We
simulate noisy Bell sampling and XEB, including noisy mea-
surements using 106 samples, and compute the fidelity (lines), the
purity (hexagons), and XEB (crosses) based estimators of fidelity
for (a) typical Clifford circuits with two-qubit random gates in an
all-to-all connected architecture with XEB 1 on n ¼ 20 qubits
and Pauli ðX; Y; ZÞ error probabilities p ¼ 0.005 · ð1; 1=3; 1=10Þ,
and (b) crystalline Floquet Clifford circuits that are scrambling
[52] on 18 qubits in 1D with (depolarized) two-qubit gate fidelity
0.98. Missing XEB points are due to ideal XEB values 0. Error
bars represent 1 standard deviation.

(a) (b)

FIG. 3. Depth-dependent Page curves. (a) The maximal sub-
system entanglement entropy depends on the circuit architecture
and depth (shades of blue) until the half-cut entanglement reaches
its maximal value given by n=2. We measure the subsystem
entropy at half-cuts to obtain the maximal sensitivity to different
circuit depths. (b) We detect errors in the Bell samples by
detecting strings that lead to a nonzero estimate of the purity of ρ.
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SAðρÞ ¼ − logPAðρÞ can be at most n=2. At the same time,
the entanglement entropy is bounded as a function of depth
SAðdÞ ≤ dj∂Aj, where j∂Aj is the number of gates applied
across the boundary of A in every layer of the circuit. We
now compute an empirical estimate Ŝn=2 of SAðjCihCjÞ for a
size-n=2 subsystem A using the Bell samples and then
compute the maximum d such that Ŝn=2 − ϵ ≥ d · j∂Aj up to
an error tolerance ϵ depending on the number of Bell
samples. We can further refine this test for random quantum
circuits by exploiting their average subsystem entangle-
ment properties, known as the “Page curve” [54]. Depth-
dependent Page curves have been computed analytically
[55] and numerically [52] for a few circuit architectures and
random ensembles.
We remark that these entanglement-based tests rely on

universal features of quantum chaotic dynamics. As a
result, they are also expected to be applicable to generic
Hamiltonian dynamics, similar to how ideas for standard
quantum random sampling have recently been extended to
this case [56,57].
Magic test and Cliffordþ T learning algorithm.—

Another primitive that can be exploited in property tests
of quantum states using the Bell samples is the fact that for
stabilizer states jSi, the Bell distribution is supported on a
coset of the stabilizer group of jSi [18]. Leveraging this
property allows for efficiently learning stabilizer states
[18], testing stabilizerness [19], learning circuits with a
single layer of T gates [58], and estimating measures of
magic [20,21]. Here, we describe a simple, new protocol
that, from the Bell samples, allows us to efficiently estimate
the stabilizer nullity, a magic monotone [17], and learn
states that can be prepared by quantum circuits with
t∈Oðlog nÞ T gates.
Our learning algorithm proceeds in two steps. In the first

step, we find a compression of the non-Clifford part of the
circuit, similarly to Refs. [59,60]. To achieve this, using
Bell difference sampling [19], we find a Clifford unitary
UC corresponding to a subspace C ⊂ F2n

2 such that UCjψi
has high fidelity with jxijφi for some computational-basis
state jxi on the first dimðCÞ qubits, and a state jφi on the
remaining qubits containing the non-Clifford information.
The dimension of C satisfies dimðCÞ ≥ n − t. The number
of T gates t required to prepare jψi is therefore lower-
bounded by the stabilizer nullity MðjψiÞ ≔ n − dimðCÞ,
which is a magic monotone [17]. We show that only
Oðn=ϵÞ Bell samples are sufficient to ensure that jψi is
ϵ-close to a state with exact stabilizer nullity given by the
estimate M̂ ofMðjψiÞ. To the best of our knowledge this is
the most efficient way of measuring the magic of a quantum
state to date.
In the second step of the learning algorithm, we character-

ize the state jφi on the remaining n − dimðCÞ ≤ t qubits
using pure-state tomography, for example via the scheme of
Ref. [61], giving an estimate jφ̂i. The output of the algorithm
is a classical description of jψ̂i ¼ UCjxijφ̂i. The learning

algorithm runs in polynomial time and succeeds with high
probability in learning an ϵ-approximation to jψi in fidelity
using Oðn=ϵÞ Bell samples and Oð2t=ϵ2Þ measurements to
perform tomography of jxijφ̂i.
Using Cliffordþ T simulators [e.g., [62–64] ] we can

now produce samples from and compute outcome proba-
bilities of jψ̂i in time Oð2tÞ. We note that the exponential
scaling in t is asymptotically optimal since the description of
a state with stabilizer nullity t has 2t complex and Oðn2Þ
binary parameters. Our algorithm generalizes to arbitrary
non-Clifford gates.
To summarize, we have given efficient ways to extract

properties of the circuit C—its depth and an efficient circuit
description for circuits with low T count—using only a
small number of Bell samples. Further properties of jCi that
can be efficiently extracted from the Bell samples include
the expectation values of any diagonal two-copy observ-
ables A ¼ P

r arjσrihσrj and different measures of magic
[20]. The Bell samples thus serve as an efficient classical
shadow of C.
Error detection and correction.—In the last part of this

Letter, we discuss another appealing feature of Bell
samples: we can perform error detection and correction.
The idea that redundantly encoding quantum information in
many copies of a quantum state allows error detection goes
back to the early days of quantum computing. Already in
1996, Barenco et al. [65] have shown that errors can be
reduced by symmetrizing many copies of a noisy quantum
state. More recently Refs. [66–68] used measurements on
multiple copies to suppress errors in expectation value
estimation. In our two-copy setting, some simple single-
sample error detection properties follow immediately from
the tests in the previous section.
First, we observe that an outcome in the antisymmetric

subspace, i.e., an outcome r with πYðrÞ ¼ 1, is certainly
due to an error. We can thus reduce the error in the sampled
distribution by discarding such outcomes. We show in the
SM [23] that such error detection reduces the error rate of a
white-noise model by approximately a factor of 2.
Quantum computations in the Bell sampling model with
error detection can thus achieve comparable fidelities to
circuit model computations, where no error detection is
possible, in spite of the factor of 2 in qubit overhead.
Second, we note that Bell samples are compatible with

stabilizer codes. For such codes, the Bell measurement
between code blocks is a transversal measurement, and
allows one to extract the syndrome σ ⊗ σ for σ ∈Pn in the
stabilizer of the code [47]. If a detectable or correctable
error occurred in one of the code blocks, this syndrome
detects or identifies that error up to stabilizer equivalence.
The fact that the Bell measurement is transversal implies
that an error in the Bell measurement does not spread, so
that local error channels or coherent errors in the entangling
CNOT gates in the Bell measurement reduce the overall
measurement fidelity by ð1 − ϵÞn, where ϵ is the error rate
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per Bell pair. Bell sampling is thus accurate in the regime of
ϵn ≪ 1. We also note that antisymmetric errors in the Bell
measurement are detectable.
Finally, we observe that quadratic error suppression is

possible for estimating the expectation values of any Bell-
basis-diagonal two-copy observable A, through the estimate
tr½Aρ⊗2�=tr½Sρ⊗2�, similar to virtual distillation [66–68].
Specifically, this is true for estimating the expectation
hE0jPjE0i2 of a Pauli observable P in the ground state jE0i
of a gappedHamiltonian by choosingA ¼ ðP ⊗ PÞS; see the
SM [23] for details.
Discussion and outlook.—In thisLetter,we have proposed

and studied Bell sampling as a model of quantum compu-
tation. We have shown that many properties of the quantum
circuit preparing the underlying state can be extracted
efficiently, and that in particular certain errors in the state
preparation can be detected from single shots. Based on this,
we have argued that the Bell samples are classical circuit
shadows. Since Bell sampling is universal this allows us to
perform universal quantum computations whose outputs also
yield information about the quantum circuit. This makes Bell
sampling an interesting computational model, and our main
focus in this work is to establish this.
Bell sampling is not only interesting conceptually,

however. It is also realistic. Since the Bell basis measure-
ment requires only transversal CNOT and single-qubit gates,
it can be naturally implemented in unit depth on various
quantum processor architectures with long-range connec-
tivity. These include in particular ion traps [69] and
Rydberg atoms in optical tweezers [70]. It is more
challenging to implement Bell sampling in geometrically
local architectures such as superconducting qubits [5]. In
such architectures, one can interleave the two copies in a
geometrically local manner such that the Bell measurement
is a local circuit; however, this comes at the cost of
additional layers of SWAP gates for every unit of circuit
depth. Alternatively, one can use looped pipeline archi-
tectures to implement the Bell measurement [71].
But is Bell sampling also practical in the near term?

Initial experimental results indicate that it is practical for
logical qubit architectures [72], but to more fully answer
this question various sources of noise need to be analyzed
in more detail. For the fidelity estimation protocols we have
analyzed the setting of Pauli noise relevant, e.g., to circuits
implemented with independent randomized compiling on
the two copies or to large-scale fault-tolerant circuits with
repeated rounds of error correction. It remains an important
open question whether we can develop noise-robust ver-
sions of the depth and magic tests. While we have exploited
the purity of the state jCi in our error detection protocol, it
is in an interesting question whether it is possible to detect
additional errors from the Bell samples. For instance, it
might be possible to exploit the fact that the subsystem
purity of the target state is low for large subsystems;
see Fig. 3.

We have shown that classically simulating the Bell
sampling protocol with universal random circuits is classi-
cally intractable. An exciting question in this context is
whether the complexity of Bell sampling might be more
noise robust than computational-basis sampling in the
asymptotic scenario. For universal circuit sampling in the
computational basis Gao and Duan [73] and Aharonov et al.
[74] developed an algorithm that simulates sufficiently deep
random circuits with a constant noise rate in polynomial
time. In the SM [23] we give some initial evidence that this
simulation algorithm fails for Bell measurements. If the
hardness of Bell sampling indeed turns out to be robust to
large amounts of circuit noise, we face the exciting prospect
of a scalable quantum advantage demonstration with
classical validation and error mitigation.

Note added.—While finalizing this Letter, we became
aware of Refs. [75,76], where the authors independently
report algorithms similar to the one we present above for
learning quantum states generated by circuits with low T
count. After this work was completed, we collaborated on
the physical implementation of Bell sampling in a logical
qubit processor, illustrating the feasibility of our results to
near-term devices [72].
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