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As quantum devices become more complex and the requirements on these devices become more
demanding, it is crucial to be able to verify the performance of such devices in a scalable and reliable
fashion. A cornerstone task in this challenge is quantifying how close an experimentally prepared
quantum state is to the desired one. Here we present a method to construct an estimator for the quantum
state fidelity that is compatible with any measurement protocol. Our method provides a confidence
interval on this estimator that is guaranteed to be nearly minimax optimal for the specified measurement
protocol. For a well-chosen measurement scheme, our method is competitive in the number of
measurement outcomes required for estimation. We demonstrate our method using simulations and
experimental data from a trapped-ion quantum computer and compare the results to state-of-the-art
techniques. Our method can be easily extended to estimate the expectation value of any observable, such

as entanglement witnesses.
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With quantum devices starting to push the limit of their
classical counterparts, it is becoming increasingly chal-
lenging to verify and validate that these devices operate
as intended. The gold standard for characterizing quantum
states and operations is quantum tomography [1,2].
However, tomography, even its more efficient incarnations
[3-7], quickly becomes impractical as the system size
grows. Moreover, depending on the kind of reconstruction
used, providing reliable uncertainty bounds to the fidelity
obtained from a reconstructed quantum state has proven
very challenging [8,9].

Fortunately, it is often sufficient to ascertain that the
quantum state (or process) in the experiment is close to the
desired one, rather than fully reconstructing it. A commonly
used measure for this “closeness” is the fidelity between the
two states. For certain classes of states, the fidelity can be
estimated from only a few Pauli measurements using a
technique called direct fidelity estimation (DFE) [10,11]. For
a given target state, DFE specifies a measurement scheme
that is to be sampled on the experimental state. However,
depending on experimental constraints, the prescribed meas-
urement scheme might not always be the one that is easiest
to implement or achieves the highest accuracy. Moreover, the
question of how to compute tighter confidence regions for
such estimates remains.

Here we propose a method that not only provides
fidelity estimates for arbitrary measurement schemes but
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also guarantees a nearly minimax optimal (symmetric)
confidence interval for the chosen measurement scheme
and target state. This method, which we denote the minimax
method, is based on results in statistics by Juditsky and
Nemirovski, who describe the estimation of linear func-
tionals under general conditions [12—14]. In the minimax
method, a linear estimator can be constructed for a
specified measurement scheme and target state, which
can subsequently provide estimates with guaranteed con-
fidence regions from experimental data. Furthermore, in
some settings, the performance of the estimator can be
precisely characterized in terms of sample complexity,
which is the minimum number of measurement outcomes
necessary to find an estimate within a desired error and
confidence level for the chosen measurement setting. For
example, we show in the companion paper [15] that for a
confidence level 1 — 6 our method can produce a fidelity
estimate within an additive error, or risk (defining a
symmetric confidence interval) of &,, with as few as
~1In(2/8)/(2¢2) measurement outcomes for any target
state. This sample complexity is achieved when measuring
in a basis defined by the target state. In contrast, tomog-
raphy with Pauli measurements can require exponentially
more measurement outcomes [10]. While measuring in
the aforementioned basis is often impractical, our method
achieves a comparable sample complexity for stabilizer
states, like those used in quantum error correction, by

© 2024 American Physical Society
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randomly sampling elements from the stabilizer group.
For more general states, the sample complexity is compa-
rable to that of DFE, when using the measurement scheme
described in Sec. ILE. of Ref. [15], and thus remains
practical for typical states.

In the following, we consider an experimenter aiming to
characterize an unknown quantum state c € X' using L
different measurement settings, where X denotes the set of
density matrices. Each measurement setting is described by

a positive operator-valued measure (POVM) {E (11), s E%?}

such that ) . El@ =1Iforl =1,..., L. The [th measurement
is repeated R; times (i.e., experimental shots) and the set of
possible outcomes Q) = {1,...,N,} is labeled by the

index of the POVM elements. We denote by pf,” the
distribution of outcomes from the /th measurement setting,

given by the Born rule as p((,l) = (Tr(EY)a), Tr(E%?a))
[16]. However, since the state ¢ is unknown, so are the

distributions pgl). Hence, following Ref. [12], we start with
)

a family of distributions p,’ over the outcomes Q)
parametrized by density matrices y € X.

We now seek to construct an estimator F, that takes
measurement outcomes for the specified measurement
scheme as an input and returns an estimate for the fidelity
between the state o and a pure target state p with reliable
confidence regions. Formally, we define for a given
confidence level 1 —5€(0,1) and estimator ¥ a & risk
R(F;8) as the smallest symmetric interval around £ such
that the probability that the true value is outside that interval
is smaller than &:

R(F;6) = inf{e| sup
YEX

Prob

outcomes~p,

[|F(outcomes) — Tr(py)| > €] < 5}.
(1)

means that the outcomes for /th
(0

measurement are distributed according to p,’ for a given
state y, forall [ = 1, ..., L. Notably, this risk is a property of
the measurement strategy, the target state, the chosen
estimator, and the desired confidence interval, but not of
the actual state that was prepared in the lab. Using this
definition, we denote the minimax optimal & risk as
R.(8) = inf;R(F;8), where the infimum is taken over
all real-valued functions over the set of outcomes.

In practice, considering all possible functions as candi-
date estimators makes the problem computationally
unmanageable. To address this challenge we follow
Ref. [12] and consider a restricted Set F Consisting of
estimators ¢ of the form ¢ = > % | ¢!V, where pDeFd
takes an outcome of the /th POVM as 1nput and returns

2

3
Here, “outcomes ~ p,

number. Here, F() is a finite-dimensional vector space
consisting of all estimators for the /th POVM. The risk
achieved when we restrict our estimators to JF is called
“affine” risk. As shown in Ref. [12], the restriction to F is
unproblematic, as one can still construct an estimator
F, € F which achieves a risk ¢, that is almost minimax
optimal for 5 € (0, 1/4) in the sense that

e. <I9(6)R.(6) (2)
9(5) =2+ %. (3)

For confidence levels greater than 90%, 9(5) is of the
order of 1, and decreases as the confidence level increases.
This estimator F, is constructed as follows: (1) Find the
saddle-point value of the concave-convex function

D(y1. 125 ¢, )
= Tr(px1)

L N,
a3 (3o (o)L
(Eotipen))] o

to a given precision, by maximizing over the density
matrices yi,y, € X and minimizing over the candidate
estimator ¢ € F and the positive number a > 0; see
Ref. [15] for details. Since each Q) is a finite set, each
Ve FD can be represented as an N,-dimensional
real vector with its kth component denoted by q[),(f).
(2) Denote the saddle-point value of @® by 2e,, ie.,

2e, = inf,.0permax,, ,, e x®(x1.x2; ¢, a). Suppose that
the saddle-point value is attained at yj,y; €X, ¢, EF,
and a, > 0 to within the given precision. Recall that by

definition of F, we have ¢, = Sk, ¢\ with ¢! € F()
(3) Let {051), 0%1)} denote R; independent and identi-
cally distributed outcomes obtained for the /th measure-
ment setting. Then the estimator F, € F is given as

L R,
F . (outcomes) Z Z ¢il)(o,({l)) +c (5)

=1 k=1

—Tr(py,) + 2aln(2/6)

with the constant ¢ =3 (Tr(py;j) + Tr(py3)). The risk
associated with this estimator satisfies R(F*;é) <e,,
so the final output will be £, (outcomes) = ¢,. An intuitive
way to understand the estimator of Eq. (5) is as a simple
weighting of the relative frequencies observed in the
experiments (see Ref. [15] for details). If we denote
al) = (¢ (1)..g"(N)) as a

“coefficient vector”
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obtained using the saddle point, and f/) as the vector with
kth component representing the relative frequency of the
outcome k observed in the experiments for the /th meas-
urement setting (/ = 1,..., L), then the estimator can be
written as

B0, f®) =3 Ri(af0) e (6)

=1

The technical details associated with the method as well
as details on how we perform the optimization are given in
the accompanying Ref. [15]. Importantly, since this method
can be used to estimate any linear functional, we can obtain
an estimator for the expectation value of any observable O
by replacing p with O in the above equations. Moreover,
any so constructed estimator is experimentally robust in the
sense that it does not amplify noise, as we show in the
accompanying Ref. [15].

Examples.—The above definitions of the estimator
and risk are very abstract. To get a better feeling for these
quantities, we now consider two thought experiments. First,
consider a single qubit with target state p = |1)(1]|, where
{|0),|1)} are the eigenstates of the Pauli-Z operator. We
simulate 100 repetitions of a Z measurement, with out-
comes denoted o, € {0, 1}. For a desired confidence level
of 95%, the above method then gives the following
estimator (see Sec. II.B of Ref. [15] for details)

0.952 L%

F.({o}%) = =55~ D o1 +0.024. (7)
i=1

Hence, F, turns out to be nothing other than the sample-
mean estimator for the Bernoulli parameter, albeit with a
small bias to account for finite sample size. Indeed, the
problem we have considered is essentially classical, equiv-
alent to estimating the probabilities in a coin flip. As we
increase the number of repetitions R, we find that the bias
goes to zero, while the coefficient multiplying the outcomes
approaches 1/R as one would expect.

Next, we consider a random 4-qubit target state and
simulated laboratory state that is obtained by applying 10%
depolarizing noise to the target state. We simulate 100
repetitions of the first L = 192 = 0.75 x 4* Pauli mea-
surements (excluding identity) used in DFE [10], chosen in
decreasing order of weights (where 0.75 is an arbitrary
cutoff). Figure 1 shows a histogram of the estimates given
by the estimator constructed in Eq. (5), obtained using 10*
sets of simulated outcomes. In order to assess the risk
associated with this estimator, we first compute the smallest
asymmetric interval around the true fidelity that captures
95% of the estimates [17]. We find that the confidence
interval obtained from the minimax method is only 1.74
times larger than this optimal asymmetric interval [18]: a
small price to pay for a rigorous confidence interval. Note,

3 %103
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FIG. 1. Histogram of 10* estimates obtained using the estimator
constructed in Eq. (5) for a random 4-qubit target state using
outcomes from three-fourths the total number of Pauli measure-
ments. The true fidelity is marked by a green square and a blue
dot. The green bar passing through the square indicates the
estimated optimal (asymmetric) confidence interval correspond-
ing to a confidence level of 95%, while the blue bar passing
through the circle indicates the risk associated with the estimator
of Eq. (5).

that the asymmetric interval is always expected to be tighter
than the optimal minimax interval because we use the true
fidelity to compute it, which would be inaccessible in
practice. Nevertheless, we find that the above ratio is much
better than the guaranteed upper bound of §(0.05) = 4.58
in Eq. (3).

Experimental data.—We now proceed to testing the
estimator of Eq. (5) on experimental data from a trapped-
ion quantum processor [19]. We consider data for three
different 4-qubit target states: a GHZ state, a W state, and a
locally rotated linear cluster state. Each dataset consists of
81 Pauli measurements with 100 shots each (i.e., R, = 100
for all /). For comparison, we also perform state-of-the-art
maximum likelihood estimation (MLE) [2,20]. Table I
shows that both methods produce almost identical esti-
mates, yet the risk for the minimax method is larger than the
corresponding risk for the MLE estimate, which is esti-
mated using Monte Carlo (MC) resampling of the data.
Although smaller, the MC risk for the MLE estimator is

TABLE I. Fidelity estimates and risk for a 4-qubit GHZ state,
W state, and a cluster state from experimental data. Estimates are
calculated using the minimax method as well as MLE. The risk
for MLE is obtained from Monte Carlo sampling, which is a
heuristic and not guaranteed to be correct. The risk for either
method corresponds to a 95% confidence level.

Minimax method MLE
F Estimate Risk F Estimate MC risk
GHZ 0.84 0.053 0.84 0.023
W 0.89 0.049 0.88 0.019
Cluster 0.79 0.048 0.79 0.020
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not computed from raw data, but requires reconstructing
the state which is prone to errors and bias [21-25].
Furthermore, in Ref. [15], we give an example where
the MC-confidence region for MLE is overconfident when
provided with incomplete data. In contrast, the more
conservative minimax risk, although not as tight, is
guaranteed to be correct, irrespective of the underlying
actual state and the performed measurements. As this is
experimental data, we do not know whether the MC risk
estimate is correct.

Stabilizer states.—The experimental data in the previous
example used the same set of Pauli measurements for all
three target states. However, it is typically desirable to
implement measurement schemes that are tailored to a
certain target state. A prime example are stabilizer states,
which are commonly used in quantum error correction
[26,27]. An n-qubit stabilizer state is fully characterized by
n stabilizer generators. However, measuring any subset of
n — 1 stabilizer generators is insufficient to determine the
state, as that information is still compatible with two
orthogonal candidate states (and superpositions thereof).
In contrast to MC methods, our method automatically
incorporates this fact by returning a risk of 0.5 when using
such a measurement scheme (see Ref. [15]). On the other
hand, it is known that measuring the elements of the
stabilizer group (excluding the identity) uniformly at
random is a minimax optimal measurement strategy (when
only Pauli measurements are allowed) [28,29]. We show
in Ref. [15] that, with this measurement strategy, our
method gives a sample complexity better than or equal
to ~2[(d — 1)/d]*[In(2/5) /€], where d = 2" is the dimen-
sion of the system. In other words, for any given stabilizer
state, one needs to measure at most a constant number of
Pauli operators to estimate the fidelity with a risk of ¢, and
a confidence level of 1 — §. This sample complexity rivals
that of DFE, showing that our method is highly practical
when the measurement scheme is suitably chosen for the
target state.

Comparison to direct fidelity estimation.—The above
measurement scheme can be generalized to arbitrary
pure states, resulting in a similar sample complexity and
computational speed as DFE. However, under equal con-
ditions with the same measurements and sampling, we find
that the our method typically achieves significantly tighter
confidence regions than DFE. One reason for this is that
DFE uses only the observed eigenvalues (1). In contrast,
the minimax method can utilize the additional information
about which eigenvectors of the multiqubit Pauli measure-
ments were observed [15]. This information is typically
available in the experiments.

Moreover, the minimax method is not constrained to
using Pauli measurements like DFE specifies. In fact, we
show in Ref. [15] that for random target states we can
achieve very similar performance regardless of whether we
use the DFE measurements or just random POVMs for the

same number of shots. This opens the interesting possibility
to design measurement schemes that are tailored to a certain
target state in the same way that Pauli measurements are
tailored to stabilizer states. Depending on the experimental
constraints and the complexity of the target state, this can
allow for much more efficient estimation.

We note that our method also has similarities with
quantum state verification (QSV) [28] and quantum state
certification [30], which tests whether the fidelity is above a
fixed threshold. We show that using the measurement
protocol introduced in QSV, we can optimally estimate
the fidelity with any 2-qubit state. We also compare with
classical shadows [31], and show that our method can
match their sample complexity in principle. While comput-
ing our estimator for global Clifford measurements can be
computationally challenging, we show that we can get an
exponential advantage over classical shadows using appro-
priate Pauli measurements. Details of these comparisons
are included in our companion paper [15].

Entanglement witnesses.—The minimax method intro-
duced above is not limited to estimating fidelity, but can
be applied to arbitrary observables. For example, it is
often desirable to estimate the expectation value of an
entanglement witness to determine if a (pure or mixed)
state is entangled. Consider a Werner state pPwemer =
pl(I+SWAP)/d(d+1)]+ (1-p)[(I- SWAP)/d(d— 1)),
which is a bipartite state, characterized by a parameter
p€10,1] and is entangled for p < 0.5 [32]. The SWAP
operator is an entanglement witness for Werner states [32],
but often not easy to measure in practice. For the sake of
demonstration, we consider a 2-qubit Werner state with
p = 0.25 as the target state, and apply 10% depolarizing
noise to obtain the actual state, resulting in a true expect-
ation value of Tr(SWAP - 6) = —0.4. We perform 3 Pauli
measurements, with 100 repetitions each, and obtain an
estimate of —0.28 with a risk of 0.23. Note that while this
risk is quite large, it is guaranteed to be correct. Since
—0.28 + 0.23 < 0, we can certify with 95% confidence that
the state is entangled.

Computational efficiency.—One of the main challenges
of the minimax method is computing the estimator effi-
ciently in large dimensions for arbitrary target states
and POVMs. Because we need to perform optimization
in such situations, quantifying the computational resources
required becomes important. We summarize the time and
memory consumed to build the estimator for a random
target state and a GHZ state in Table II. Changing the
number of repetitions results in negligible overhead.
Although the computational time grows exponentially with
qubit number (as does the size of the system and number of
measurements), structured states give significant improve-
ments. Note that the estimator needs to be constructed only
once for a specified measurement scheme and target state.
Once the estimator is built, we can give fidelity estimates
from raw data almost instantaneously. This is in contrast to
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TABLE II. Time taken to construct the estimator for a random n-qubit target state and an n-qubit GHZ state with
each of our three implementations (average of 3 simulations). We use L = 0.75 x 4" Pauli measurements for the
random state, while L = 2" Pauli measurements for the GHZ state. The computations were performed on a 3.0 GHz
CPU without parallelization. Entries marked with * require > 1 GB of memory, entries marked with ** require
> 32 GB, and the cvxpy algorithm run on a random 5-qubit state requires > 256 GB.

State n 1 2 3 4 5

Random L 3 12 48 192 768
Nesterov 49.8 s 1.12 min 5.16 min 27.7 min 2.86 hr*
cvVXpY 0.088 s 049 s 453 s 1.05 min*

cvXpy-mem 0.081 s 0.69 s 8.37 s 1.85 min* 39.8 min**

GHZ L 2 4 8 16 32
Nesterov 2.77 s 31.6s 3.21 min 8.75 min 13.9 min
cVXpY 0.065 s 0.17 s 0.68 s 4.05 s 30.6 s*

CVXpy-mem 0.063 s 0.23 s 1.27 s 8.86 s 1.30 min*

methods such as MLE, which incur high computational
cost for every evaluation on the data.

We note that it is possible to simplify the optimization
problem depending on the target state and the measurement
scheme. For example, we reduce the problem of construct-
ing an estimator for stabilizer states (when measuring
random elements of the stabilizer group) to a two-
dimensional optimization problem, irrespective of the
stabilizer state or the dimension. The resulting algorithm
is both time and memory efficient for any number of qubits.
The same efficient algorithm can be used for an arbitrary
target state with a randomized Pauli measurement scheme
that we introduce in Sec. ILE of Ref. [15]. However, as in
DFE, computing the weights of the different measurements
can be cumbersome for complicated states.

Outlook.—We have introduced a method that provides
nearly minimax-optimal risk for any specified measure-
ment scheme and target state. The sample complexity of
our method is comparable to DFE, when using the same
kind of Pauli measurements. However, in contrast to DFE
and other methods, we are not imposing any restrictions on
the measurement scheme. Hence, depending on the exper-
imental constraints, tailored measurement schemes can be
much more efficient than rigid Pauli schemes. In particular,
it would be interesting to study the performance of our
method for random measurements used in Ref. [31].

The risk is calculated based solely on the measurement
scheme, target state, and number of repetitions, so we can
use our method as a tool to benchmark experimental
protocols. By providing a guarantee on the achievable
error for a given protocol, this method can be useful for
guiding the experimental design and finding the best
protocol for a given target state. Another important avenue
for future research is extending the method to estimating
nonlinear functions of the state like purity or entanglement
measures like negativity. Furthermore, by exploiting the
Choi-Jamiotkowski isomorphism, our method can be
extended to quantum channels. Since quantum process

tomography is even more demanding than state tomogra-
phy, direct estimation of channel fidelities or other
channel properties is extremely useful for characterizing
multiqubit channels.

All PYTHON code required to use our method is available
at [33].
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