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The spin degrees of freedom is crucial for the understanding of any condensed matter system.
Knowledge of spin-mixing mechanisms is not only essential for successful control and manipulation of
spin qubits, but also uncovers fundamental properties of investigated devices and material. For
electrostatically defined bilayer graphene quantum dots, in which recent studies report spin-relaxation
times T1 up to 50 ms with strong magnetic field dependence, we study spin-blockade phenomena at charge
configuration ð1; 2Þ ↔ ð0; 3Þ. We examine the dependence of the spin-blockade leakage current on interdot
tunnel coupling and on the magnitude and orientation of externally applied magnetic field. In out-of-plane
magnetic field, the observed zero-field current peak could arise from finite-temperature cotunneling with
the leads; though involvement of additional spin- and valley-mixing mechanisms are necessary for
explaining the persistent sharp side peaks observed. In in-plane magnetic field, we observe a zero-field
current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit
interaction. Details of the line shape of this current dip, however, suggest additional underlying
mechanisms are at play.
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Spin-orbit and hyperfine interactions are common
sources of spin decoherence. Natural bilayer graphene
(BLG) is comprised of 98.9% low-mass, nuclear-spin
free 12C, and only a small zero-field spin-orbit gap ΔSO ≈
60–80 μeV has been experimentally observed [1–3].
Investigations of electrostatically defined BLG quantum
dots have made great progress recently demonstrating
high controlability [1,2,4–11,13]—BLG is now a promis-
ing contender as a spin-qubit platform. Recent studies
[11,13] reported spin-relaxation times T1 in BLG quantum
dots up to 50 ms, strongly dependent on magnetic field.
Understanding the exact spin-mixing mechanisms limiting
the lifetimes is thus crucial to successful qubit manipulation
and control.
To study spin-mixing mechanisms, it is common to

examine the dependence of strength of Pauli blockade on
external magnetic fields [14–24], where “standard” double-
dot two-carrier charge states (1,1) and (0,2) are investigated
[ðNL; NRÞ label numbers of carriers in the left and the right
dot]. In BLG quantum dots, the valley degree of freedom
enriches the energy spectrum [7,9,10,25,26]. Around zero
magnetic fields, the two-electron Pauli blockade in BLG is
only valley in nature [10]—we are thus compelled to move

to alternative charge configurations to examine spin-mixing
effects.
Hence we populate our BLG double dots with three

electrons, near the ð1; 2Þ ↔ ð0; 3Þ charge transition. By
close examination of the states involved, we conclude that
around zero magnetic fields the ð1; 2Þ → ð0; 3Þ blockade is
spin in nature. At various interdot tunnel couplings we
study the magnetic field dependencies of leakage currents:
In out-of-plane field, we observe a peak in leakage current
around zero field, orders of magnitude too wide [19,21,22]
to stem from the commonly observed hyperfine-induced
spin-mixing effects [14–20], and could instead arise from
finite-temperature cotunneling with the leads [24,27,28].
Persistent sharp side peaks, however, point to other spin-
and valley-mixing mechanisms at play. In finite in-plane
field, we observe leakage current that dips at zero field.
This may arise from the competition between the Kane-
Mele spin-orbit interaction polarizing the spins of the
blocked states fully out of plane [1–3], and the magnetic
field that aligns the spin quantization axis in plane, mixing
blocked and unblocked states [23]. Compared to similar
studies in InAs [15,16], carbon nanotubes [19], and Si
[18,24] however, the width of the dips are not strongly
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dependent on interdot coupling, and the magnetic field
dependence could be higher order, better described by B4,
than the typical Lorentzian B2.
Our double quantum dots are defined electrostatically in

the same BLG device as described in Ref. [10]. Plunger-
gate voltages for the left and the right dot are VL and VR,
respectively. The interdot t, and dot-lead tunnel couplings,
are individually controlled by barrier-gate voltages. For
details on the sample structure and quantum dot formation,
see Appendix A1 in the Supplemental Material [29].
Finite-bias transport measurements at zero magnetic

field close to the (1,2)–(0,3) charge degeneracy are shown
in Fig. 1(a), for (i) the ð0; 3Þ → ð1; 2Þ transition, and (ii) the
ð1; 2Þ → ð0; 3Þ transition. Strong suppression of current in
the lower part of the bias triangles in (ii) signifies the Pauli
blockade. To understand its nature, we discuss the relevant
single-dot states:
One particle.—Shown in Refs. [1,2], the fourfold degen-

erate (twofold in spin, ↑ or ↓, and twofold in valley, K− or
Kþ) ground states are split by the Kane-Mele [3] spin-orbit
gapΔSO into two Kramers pairs: j↓K−i and j↑Kþi lower in
energy, and j↓Kþi and j↑K−i higher in energy.
Two particles.—The ground state is the threefold degen-

erate spin-triplet valley-singlet,
�
�T�ð0Þ

s Sv
�

(total spin num-
ber S ¼ 1, where Sz ¼ −1, 0, 1 states are denoted T−;0;þ

s ),
due to strong confinements and on-site exchange inter-
action [7,9,10,25,26].
Three particles.—These are simply the four different

states that can result from removing one particle with
arbitrary spin and valley, from a fully (fourfold) occupied
orbital ground state. The resulting spectrum comprises the

four spin-doublet (S ¼ 1=2) valley-doublet states, forming
Kramers pairs split by ΔSO with j↓K−;↑Kþ;↓Kþi and
j↓K−;↑Kþ;↑K−i lower in energy, and j↓Kþ;↑K−;↓K−i
and j↓Kþ;↑K−;↑Kþi higher in energy. These are the four
allowed (0,3) states shown in Fig. S2 [29].
We can now investigate the nature of the blockade

resulting from the ð1; 2Þ → ð0; 3Þ transition. The (1,2)
charge states have one carrier in the left dot in any of
the four single-particle states, and two carriers in the right
dot in any of the three spin-triplet valley-singlet states,
forming twelve possible (1,2) states in total. At zero
magnetic field, these states are split by ΔSO, and can be
decomposed into four S ¼ 1=2 spin-doublet states with
finite tunneling amplitude to the (0,3) S ¼ 1=2 spin
doublets, and eight blocked S ¼ 3=2 spin-quadruplet states
[38–40], listed in detail in Appendix A2 [29]. The spin–
orbit interaction ΔSO mixes the four spin-quadruplet states
with Sz ¼ �1=2 with the spin-doublet states (also with
Sz ¼ �1=2), giving them a finite tunneling amplitude to the
(0,3) states.
We are thus left with four truly blocked (1,2) states with

Sz ¼ �3=2, which are product states of the relevant one-
and two-particle states in the left and the right dot:
j↑K�iLjTþ

s SviR and j↓K�iLjT−
s SviR. Hence, these states

are responsible for the ð1; 2Þ → ð0; 3Þ blockade observed in
Fig. 1, which is therefore purely spin in nature. At large
enough detuning, the excited Sz ¼ �3=2 (0,3) states
become accessible and lift the blockade, shown by the
finite current reappearing at the tip of the triangles in
Fig. 1(aii).
To describe the effect of magnetic field on the afore-

mentioned (1,2) states, we employ the Hamiltonian,

Ĥ ¼
X

i¼L;R

�

gsμBB · Ŝi þ gv;iμBBzT̂
z
i − 2ΔSOŜ

z
i T̂

z
i

�

; ð1Þ

where Ŝi ¼ 1
2
σ̂ðiÞ is the total spin operator of carriers on dot

i and analogously, T̂i ¼ 1
2
τ̂ðiÞ the total valley pseudospin

operator written in terms of the Pauli matrices τ̂ that act in
valley space. The first term in (1) describes the usual
Zeeman splitting of the spin states, where the electronic g
factor gs ¼ 2 [1,2,4,6,7]. The second term adds the cou-
pling of the orbital structure of the valley states to the out-
of-plane component of the magnetic field; the correspond-
ing valley g factor is displacement field and dot-geometry
dependent [5], measured gv ≈ 30 in this device at similar
gate configurations [10]. The last term describes the Kane-
Mele spin-orbit splitting ΔSO ≈ 60–80 μeV between states
with their z projection of spin and valley aligned parallel or
antiparallel [1–3].
The level structure of the (1,2) states resulting from (1) is

sketched in Fig. 2. At zero field, the Kramers pairs on the
left dot are split byΔSO. A finite in-plane field Bx (left) does
not couple to the valley degree of freedom, but aligns the
spin triplets in the right dot along the x axis and splits them

FIG. 1. (a) Bias triangles at zero magnetic-field, at (1,2)–(0,3)
charge degeneracy at VMB ¼ −6.33 V, (i) VSD ¼ 1 mV,
ð0; 3Þ → ð1; 2Þ, and (ii) VSD ¼ −1 mV, ð1; 2Þ → ð0; 3Þ. Detun-
ing δ marks the difference between (1,2) and (0,3) ground state
electrochemical potential. In (ii) we see regions of strong current
suppression by spin blockade. (b) ð1; 2Þ ↔ ð0; 3Þ charge trans-
port: (i) any (0,3) state can be split into corresponding (1,2) states,
but (ii) transitions from spin-polarized Sz ¼ �3=2 (1,2) states to
(0,3) is spin blocked.
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by the Zeeman energy. In an out-of-plane field Bz (right),
both spin and valley states are split by gμBBz with their
respective gs and gv, forming four clusters of states: one
cluster of triplet states in the right dot per state in the left
dot. The four fully blocked Sz ¼ �3=2 states are sketched
in red; all other states are open and sketched in yellow.
We now examine experimentally the dependence of spin-

blockade leakage current on the external magnetic field, and
on the interdot tunnel coupling t. The field direction is
changed by rotating the sample, and t is tuned via the middle
barrier-gate voltage: More negative VMB gives weather t. In
Figs. 3(ai)–3(aiii) we show resulting bias triangles at zero
field for various t, all weaker than in Fig. 1(a). The
corresponding current measured along the detuning δ axis
and its dependence on out-of-plane Bz and in-plane Bx field
is mapped in Figs. 3(b) and 3(c). Line cuts are shown as a
function of Bz [Fig. 3(d)] and Bx [Fig. 3(e)] around δ ¼ 0
averaged over a range of Δδ ≈ 30 μeV [≈150 μeV for
Fig. 3(diii)].
Upon suppressing t, we observe in the bias triangles

[Fig. 3(a)] the emergence of a resonance around δ ¼ 0 with
current increasing from(i)belowthenoise level, to (iii)∼1 pA.
When turningonBz [Figs. 3(b) and3(d)], the current decreases
with increasing Bz [Figs. 3(b), 3(dii), and 3(diii)] with full-
width-half-maximum (FWHM) ΔBz ∼ 10 mT.
This zero-field current peak could arise from mixing of

the blocked and the unblocked (1,2) states by spin- or valley-
mixing processes. Shown in Fig. 2, around zero field the four

blocked (1,2) states can undergo either (i) simultaneous on-
site spin and valley flip in the one-carrier left dot, mixing
e.g., the blocked state j↑K−iLjTþ

s SviR with the unblocked
state j↓KþiLjTþ

s SviR, or (ii) on-site pure spin flips in the
two-carrier right dot, mixing, e.g., the blocked state
j↑K−iLjTþ

s SviR with the unblocked state j↑K−iLjT0
sSviR.

At large enough fields such that Zeeman splittings in Bz
between themixed (1,2) states [gvμBBz for (i) and gsμBBz for
(ii)] is larger than the mixing energy, the system goes into
full spin blockade. The width of the zero-field current peak
in Bz, therefore, contains information about the strength of
the underlying mixing processes.
In most double-dot systems, this spin-mixing term is

attributed to the hyperfine interaction with randomly
fluctuating nuclear spin baths [14,17,19–22]. If the same
applies to our system and lifts the blockade via pure spin-
flip processes (ii), then the peak width ΔB ∼ 10 mT should
correspond to the root-mean-square magnitude of the
random nuclear fields Bnuc experienced by the localized
spins. Our quantum dots ∼50 nm in radius are made of
exfoliated BLG which contains only 1.01% spinful 13C,
yielding Bnuc ∼ 1 μT using the hyperfine coupling constant
A ∼ 1 μeV calculated by Refs. [21,22] for graphene, or
Bnuc ∼ 100 μT using A ∼ 100–200 μeV extracted from the
leakage current peak observed in 13C enriched carbon
nanotubes [19]. Our observed peak width of 10 mT is,
however, orders of magnitude larger, indicating that a
different mechanism is responsible.
Wide zero-field peaks in Si have been attributed to finite-

temperature cotunneling effects, yielding I ∝ gμBBz=
sinhðgμBBz=kBTÞ when t < kBT [24,27,28]. For type-
(ii) processes where spins are flipped in the right dot,
cotunneling events have to involve virtual (1,1) states that
are too high in energy to be accessible. For type-(i) proc-
esses, virtual (0,2) states are closer in energy, and cotun-
neling events with the lead can provide simultaneous spin
and valley flips in the left dot; with gv ¼ 30 [as type-
(i) processes involve valley flips] and T ≈ 100 mK we
estimate for cotunneling-induced current peaks FWHM
12 mT, similar to the measured 10 mT. In Appendix A5
[29], we measure a different device in a setup with lower
electronic temperature T ≈ 45 mK. There, we observe a
narrower leakage current peak with FWHM 4–6 mT due to
the lower T decreasing the width of the sinh function. The
skewness of the baseline resonance of the bias triangles
towards the (0,2) charge state in Fig. 3(aii) further corrob-
orates with our conjecture, though noise and charge
instability preclude definite conclusions.
Another feature observed in out-of-plane field is

two side peaks occurring at Bz ≈�16.5 mT, too narrow
(FWHM ∼ 2 mT) to arise from the cotunneling effects
discussed above. In the (1,2) level structure in Bz (Fig. 2), a
cluster of triplet states with j↑KþiL (moving up in energy)
crosses the triplet with j↑K−iL (moving down) at Bz ≈
ΔSO=gvμB (gray shading in Fig. 2). If finite mixing between

FIG. 2. Level structure of (1,2) states as a function of magnetic
fields, resulting from the model Hamiltonian (1). The dark red
states (Sz ¼ �3=2 at Bx ¼ 0) are fully blocked, while the light
states are unblocked. On-site (i) spin- and valley-, and (ii) pure
spin-mixing processes can lift the blockade close to B ¼ 0 by
mixing the states pointed at by the arrows. Spin- and valley-
mixing processes can also lift the blockade near the crossings
(gray) at Bz ≈ ΔSO=gvμB by mixing states from different clusters.
Large enough Bx tilts the spin quantization axis from the z to x
direction, mixing the blocked states with the unblocked ones,
thus lifting the blockade.
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a blocked state in one triplet and an unblocked state in the
other triplet exists, by a mechanism that flips valley in the
left and spin in the right dot, e.g., between the blocked
j↑KþiLjTþ

s SviR and the unblocked j↑K−iLjT0
sSviR, then

an increase in current close to the crossing point would be
expected. With gv ≈ 30 and side peaks at �16.5 mT, this
implies ΔSO ≈ 30 μeV, similar to that reported in
Refs. [1,2] within a factor of 2. In a second device we
observe side peaks centered at similar Bz (�16–21 mT).
The higher resolution in δ there suggests that they appear at
higher δ ≈ 60 μeV ∼ ΔSO instead of exactly at δ ¼ 0 (see
Appendix A5 Fig. 6 [29]).
We now turn to the effect of an in-plane field Bx,

perpendicular to the double-dot axis [see Fig. 3(f)]. At
strong interdot coupling t [Figs. 3(ci) and 3(ei)], we
observe a large leakage current at finite Bx, which is
reduced at zero field. As t is weakened, the saturation

leakage current decreases from 8 pA in (i) to 1.2 pA in (iii),
while the width of the dip remains roughly constant.
In two-particle blockade, such a zero-field dip is usually

attributed to the spin-orbit interaction [15,16,18,19,23,24].
The situation is similar here: At zero field, the Kane-Mele
spin-orbit interaction dominates and all quantization axes
are oriented along the z axis, splitting the (1,2) states into
two clusters of six degenerate states (see Fig. 2)—the
system is in spin blockade. A finite Bx lifts this blockade:
not only does it lift the degeneracy, but it also tilts the
quantization axis of the spin triplets towards the x axis,
such that the original blocked Sz ¼ �3=2 states become
mixed by the Zeeman field with the open states (the dark
blocked states brightening in Fig. 2). Consequently, leak-
age current starts to increase away from Bx ¼ 0. The
leakage current reduces but remains finite when tilting
the external magnetic field away from in plane (see
Appendix. A3 [29]).

FIG. 3. (a) Bias triangles with VSD ¼ −1 mV for the spin-blocked transition ð1; 2Þ → ð0; 3Þ at zero magnetic field at (i) strong,
(ii) intermediate, and (iii) weak interdot coupling t, at VMB ¼ −6.40, −6.43, and −6.46 V, respectively, with corresponding maps as
functions of δ [labeled in (a)] and B-field for (b) out-of-plane field Bz, and (c) in-plane field Bx. The field orientations are indicated in (f).
(d),(e): Line cuts from the respective maps averaged around zero detuning over a range Δδ [indicated by the width of the arrows in (b),
(c), the larger range for (diii) is needed due to weak and unstable signal] with fitted curves. A B-field offset is subtracted from each map
and trace, assuming for (b) and (d): the side peaks are symmetric in Bz, and for (c) and (e): the dip is centered at Bx ¼ 0 T. Traces in (d)
are fitted with multiple Lorentzians. In (e), empirical fits with higher order field dependence B4 (green) describe the data better than fits
of Lorentzian-shaped dips with B2 dependence (black).
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Two details of the dip deviate slightly from the standard.
First, a direct mixing of blocked and unblocked states by Bx
yields a regular Lorentzian line shape with a field depend-
ence B2

x [15,16,18,19,24]. Here, an empirical fit with A −
C=ðB4

0 þ B4
xÞ with fitting constants A and C [Fig. 3(ei)

green] shows better agreement with our data than the
Lorentzian fit [Figs. 3(ei) and 3(eii), black], suggesting that
state-mixing by the applied Zeeman field could be higher
order. This effect is not as clearly pronounced in a second
device (see Appendix A5 [29]) where measurements were
taken with higher noise and fewer B⊥ steps. Second, we
expect the width of the dip to be strongly dependent on the
interdot exchange energy caused by coupling to the (0,3)
states, i.e., ∝ t2 [23], as it competes with the Zeeman
splitting. Such a dependence is not prominent here. In a
second device (Appendix A5 [29]) the dip width is larger
than here by a few times, but no strong dependence on the
three different t regimes was observed. These details
suggest the existence of other mechanisms at play. The
cotunneling process discussed earlier in the out-of-plane
field cannot be responsible for the linewidth here, since
gs ≪ gv, it would only become relevant at much higher in-
plane field.
To conclude, we examined the spin-blockade leakage

current in a BLG double quantum dot at the three-carrier
charge transition ð1; 2Þ → ð0; 3Þ, and investigated its
dependence on interdot coupling t and external magnetic
field. Most of the characteristics can be understood in terms
of processes similar to those observed in other quantum dot
systems, but some of the details still require further
investigations of the underlying mechanisms. In out-of-
plane magnetic field, the dominant feature is a zero-field
current peak that could arise from finite-temperature
cotunneling with the leads, though explanations of the
persistent side peaks have to involve other mixing mech-
anisms. In the in-plane magnetic field, we observe a zero-
field current dip, which arises from the competition
between the Zeeman effect and the Kane-Mele spin-orbit
interaction; details of its line shape, however, suggest
additional mechanisms are at play. We expect further
studies to capture the nature of the various spin-mixing
mechanisms existing in BLG in more detail, thereby paving
the way for BLG spin qubits, and gaining deeper insights
into the spin and valley physics.

The data supporting the findings of this study are made
available via the ETH Research Collection [41].
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