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We highlight a noncanonical yet natural choice of variables for an efficient derivation of a kinetic
equation for the energy density in nonisotropic systems, including internal gravity waves on a vertical
plane, inertial, and Rossby waves. The existence of a second quadratic invariant simplifies the kinetic
equation and leads to extra conservation laws for resonant interactions. We analytically determine the
scaling of the radial turbulent energy spectrum. Our findings suggest the existence of an inverse energy
cascade of internal gravity waves, from small to large scales, in practically relevant scenarios.
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Introduction.—Strongly dispersive waves are ubiquitous
in geophysical fluid dynamics, where they occur on scales
from centimeters to thousands of kilometers and contribute
in an essential and intricate way to the long-term nonlinear
dynamics of the climate system [1–4]. Examples include
surface waves, internal inertia-gravity waves, and Rossby
waves, all of which owe their existence to some combi-
nation of gravity, rotation, and curvature of the Earth.
Many of these waves are far too small in scale to be
resolvable numerically, making their study a pressing issue
for theoretical modeling and investigation. For small-
amplitude waves the methods of wave turbulence theory
can play an important part in this, because they produce a
closed kinetic equation for the slow evolution of the
averaged spectral energy density. There has been signifi-
cant progress for idealized model systems [5,6], but so far
this has not yet been translated to systems of direct
geophysical interest. Arguably, progress has been ham-
pered by the extremely cumbersome form taken by the
relevant equations when attempting to shoe-horn them into
classical wave turbulence theory, which was formulated in
canonical variables for Hamiltonian systems [7,8]. But the
underlying fluid equations are noncanonical Hamiltonian
systems, as is made obvious by the fact that the Euler
equations are highly nonlinear yet their energy function is
quadratic [9,10]. This has motivated the present work, in
which we pursue a reformulation of kinetic wave theory
for a number of two-dimensional fluid systems with
quadratic energies based on a particular choice of nonca-
nonical variables. The practical utility of our choice of
variables, which was introduced in a different context
by [11], derives from the existence of a second quadratic
invariant in these systems, which, albeit not sign definite,
greatly simplifies the wave interaction equations. We
leverage these simplifications into a derivation of scaling
laws for the isotropic component of wave spectra and we
present evidence for the importance of these second
invariants in shaping the overall wave spectra in certain

situations. Mutatis mutandis, much of our analysis applies
to waves in plasmas as well.
The two-dimensional Boussinesq equations restricted to

a vertical xz plane can be written as

Δψ t þ fψ ;Δψg ¼ −N2ηx;

ηt þ fψ ; ηg ¼ ψx: ð1Þ

Here z is the vertical and x is the horizontal coordinate with
corresponding velocities w and u, ψ is a stream function
such that ðψx;ψ zÞ ¼ ðw;−uÞ and −Δψ is the vorticity, η is
the vertical displacement, N the constant buoyancy fre-
quency, and fg; fg ¼ ∂xg∂zf − ∂zg∂xf. The vertical buoy-
ancy force b ¼ −N2η opposes vertical displacements and
derives from a consideration of potential energy in the
presence of gravity and nonuniform density. It is easily
checked that this system has two exact quadratic invariants:
the total energy E ¼ R

dxð−ψΔψ þ N2η2Þ and the pseu-
domomentum P ¼ R

dxηΔψ . The subtleties associated
with the Hamiltonian point of view of these equations
can be appreciated by investigating the origin of these
conservation laws by rewriting (1) as

∂tDϕ ¼ J
δE

δðDϕÞ : ð2Þ

Here ϕTðx; tÞ ¼ ðψ ; ηÞ, D ¼ diagð−Δ; N2Þ is a Hermitian
semi-positive-definite operator, and

J ðϕÞ ¼ 1

2

� f−Δψ ; ·g fN2η; ·g þ N2
∂x

fN2η; ·g þ N2
∂x 0

�
ð3Þ

is a skew-symmetric operator representing the Poisson
structure. This is a noncanonical Hamiltonian system for
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the variables Dϕ based on the inner product Hamiltonian
function

E ¼ hϕjDϕi ¼
Z

dxϕTDϕ: ð4Þ

Energy conservation is then transparently linked to the time
translation symmetry of J ðϕÞ. The pseudomomentum can
be written as

P ¼ hDϕjCDϕi with C ¼ −
1

2N2

�
0 1

1 0

�
: ð5Þ

Therefore, δP=δðDϕÞ ¼ 2CDϕ and

J ðϕÞ δP
δðDϕÞ ¼ −

ðDϕÞx
2

; ð6Þ

which ensures the invariance of P based on the x-translation
symmetry of (4). This suggests interpreting P as a canonical
horizontalmomentum, even though it does not agreewith the
horizontal momentum of the fluid. Actually, CDϕ is in the
kernel of the nonlinear part ofJ , which suggests interpreting
P as a Casimir of that Poisson degenerate structure [9,12].
This degeneracy translates to gauge invariance in terms of
Lagrangian coordinates [13]. Thus, the conservation of P
appears Casimir-like based on the nonlinear dynamics, but
momentum-like based on the linear dynamics. Calling P the
“pseudomomentum” is in accordancewith established usage
in geophysical fluid dynamics [e.g. §4.3 in 9] and wave–
mean interaction theory [2]. So, while the conceptual origins
of the two conservation laws for E and P are subtle and
subject to interpretation, their actual functional expressions
as quadratic forms E ¼ hϕjDϕi and P ¼ hDϕjCDϕi are
completely straightforward, and generalize easily. Following
[11], we exploit this by expanding the flow in variables that
diagonalize both E and P.
Wave mode expansion.—We consider a periodic domain

x∈ ½0; L�2 and expand ϕðx; tÞ ¼ P
α ZαðtÞgαðxÞ in terms

of linear wave modes, where ZαðtÞ are complex scalar wave
amplitudes and the gαðxÞ are eigenvector functions for the
linear part of (1), i.e.,

−iωαDgα ¼ N2

�
0 1

1 0

�
∂xgα: ð7Þ

The gαðxÞ are proportional to Fourier modes expðik · xÞ
with k ¼ ðkx; kzÞ∈ ð2πZ=LÞ2. If k ¼ Kðcos θ; sin θÞ then
the dispersion relation is ω ¼ �N cos θ. The multi-index
α ¼ ðσ;kÞ combines branch choice σ ¼ �1 and wave
number k such that

ωα ¼ σN
kx
K

¼ σN cos θk: ð8Þ

The branch choice σ ¼ �1 has physical significance
because it corresponds to right-going or left-going waves,

respectively. The reality of ϕ implies Zðσ;kÞðtÞ ¼ Z�
ðσ;−kÞðtÞ,

where the star denotes complex conjugation. This holds
separately within each branch. The expansion diagonalizes
the energy

E ¼
X
α

Eα ¼
X
α

ZαZ�
α ð9Þ

and yields the exact equations

Zα;t þ iωαZα ¼
X
β;γ

1

2
Vβγ
α Z�

βZ
�
γ : ð10Þ

The interaction coefficients Vβγ
α ¼hg�αjJ ðgγÞgβþJ ðgβÞgγi

are real, symmetric in upper indices and zero unless
kα þ kβ þ kγ ¼ 0. The expansion also diagonalizes the
pseudomomentum

P ¼
X
α

Pα ¼
X
α

sαZαZ�
α; ð11Þ

where the horizontal slowness sα ¼ kx=ωα. Hence Pα ¼
kx=ωαEα has the sign of the horizontal phase (or group)
velocity, which is equal to the sign of σ.
The kinetic equation.—From (9) and (10) the road to a

kinetic equation is short. The modal wave energy evolves
according to

Ėα ¼
X
β;γ

Vβγ
α ReðZ�

αZ�
βZ

�
γÞ: ð12Þ

The kinetic equation describes the evolution of eα ¼ Eα,
where the overbar denotes averaging over a suitable
statistical ensemble. In particular, we average over random
Gaussian initial conditions such that

Z�
βð0ÞZαð0Þ ¼ δαβeαð0Þ ð13Þ

is the only nonzero correlation. The standard assumptions
and procedural steps of weak wave turbulence [5,6] then
result in

ėα ¼ π

Z
ωαβγ

Vβγ
α ðVαγ

β eαeγ þ Vαβ
γ eβeα þ Vβγ

α eβeγÞ: ð14Þ

Here the joint kinetic limits of big box and long nonlinear
times, L → ∞ and tω → ∞, were taken. So the discrete
sums in (10) and (12) were replaced by an integral over the
resonant manifold

Z
ωαβγ

¼
Z

dβdγδðωα þ ωβ þ ωγÞδðkα þ kβ þ kγÞ; ð15Þ

where
R
dα ¼ P

σ¼�1

R
dk. The kinetic equation (14)

is generic for three-wave interactions, but it can be
greatly simplified because of the nongeneric additional
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conservation law for P. The conservation of E and P for
every triad (even nonresonant triads) implies

Vβγ
α þ Vαγ

β þ Vβα
γ ¼ 0;

sαV
βγ
α þ sβV

αγ
β þ sγV

βα
γ ¼ 0; ð16Þ

respectively [14,15]. Notably, (16) ensures conservation of
E and P for any projection of (10) onto a truncated set of
modes. Viewing (16) as dot products in R3 means that
V⃗ ¼ ðVβγ

α ; Vαγ
β ; Vβα

γ Þ is orthogonal to both (1, 1, 1) and

ðsα; sβ; sγÞ, which already determines the direction of V⃗
uniquely. This makes clear that any other exact quadratic
invariant that is diagonalized by the linear eigenbasis fgαg
must be a linear combination of E and P. In particular, this
implies that the vertical pseudomomentum based on the
other slowness component cannot be exactly conserved by
the full dynamics. However, the kinetic equation is
restricted to the resonant manifold ωα þ ωβ þ ωγ ¼ 0,
and therefore ω⃗ ¼ ðωα;ωβ;ωγÞ is also orthogonal to
both (1, 1, 1) and ðsα; sβ; sγÞ, the latter because sαωα þ
sβωβ þ sγωγ ¼ x̂ · ðkα þ kβ þ kγÞ ¼ 0. This means that V⃗
and ω⃗ are parallel to each other, i.e.,

ðVβγ
α ; Vαγ

β ; Vβα
γ Þ ¼ Γαβγðωα;ωβ;ωγÞ ð17Þ

for some real Γαβγ totally symmetric in its indices. For our
system

Γαβγ ¼
ðsin θα þ sin θβ þ sin θγÞffiffiffi

8
p ðσαKα þ σβKβ þ σγKγÞ:

ð18Þ
This changes (14) to

ėα ¼ π

Z
ωαβγ

ωαΓ2
αβγðωαeβeγ þ ωβeαeγ þ ωγeαeβÞ: ð19Þ

Compared to (14), this is a huge simplification and
resembles the structure of kinetic equations derived for
canonical Hamiltonian systems [including a similar entropy
functionHðtÞ ¼ R

dα log eα]. It is now apparent that on the
resonant manifold additional conservation laws hold com-
pared to the full system: any component of pseudomo-
mentum is now conserved, so in Rd there are d − 1 new
conservation laws that are valid for the kinetic equation. In
particular, for the two-dimensional Boussinesq system the
vertical pseudomomentum Pz ¼ R

dαkzeα=ωα is conserved
by resonant interactions and hence by the kinetic equation
but not by the full flow. The consequences of such
additional conservation laws are not studied here.
Let us comment on the validity of the kinetic equation

with respect to our initial assumption (13). The off-diagonal
correlator Zðþ;kÞZ�

ð−;kÞ has Oðϵ2Þ fluctuations with fre-
quency 2ωþðkÞ. As long as this beating frequency does not
vanish, the anomalous correlator [16] averages over time

weakly to zero, so that the kinetic equation remains valid.
The same holds for the correlator associated with space

homogeneity Z2
ðσ;kÞ. This is discussed in detail in the

Supplemental Material [17] together with a detailed der-
ivation of the kinetic equation.
Steady solutions.—The frequency (8) and the coeffi-

cients (17) are homogeneous functions of the wave num-
bers of degree zero and one, respectively. That is, for λ > 0,

ωðσ;λkÞ ¼ ωðσ;kÞ; ð20Þ
V
λkβλkγ

λkα
¼ λV

kβkγ

kα
: ð21Þ

This motivates looking for formal steady solutions to (19)
that are also homogeneous in the wave numbers and can
hence be written in the separable form

eα ¼ erαðKÞeΩα ðθkÞ ð22Þ
with erα ¼ K−w for some suitable w. It turns out that we can
find possible power laws for erα without having to find the
specific form of eΩα . This does not mean eΩα is arbitrary,
just that one can find erα separately by relatively elemen-
tary means.
A trivial such steady solution is equipartition of energy

such that w ¼ 0 (and then eΩα ¼const). This well-known
solution has zero spectral flux of wave energy. Nonzero
flux steady solutions are the turbulent solutions, which are
in general not isotropic but can still be of the form (22).
We obtain two results here. (See the Supplemental Material
[17] for a detailed derivation.) The first relies on equal
excitation of both branches of the dispersion relation, i.e.,
eð−;kÞ ¼ eðþ;kÞ for all k and hence P ¼ 0. Physically, this
means left-going and right-going waves are equally
excited. Our result here is that

erα ¼ K−3 ð23Þ
then gives a constant nonzero energy flux in a direct
cascade to larger wave numbers. The second result is based
on restricting the dynamics to a single branch by setting
eð−;kÞ ¼ 0, for example. This is a natural choice for Rossby
wave dynamics, which has only a single frequency branch,
but it is of course an ad hoc artificial constraint for internal
wave dynamics [11]. In practice, this might be relevant for
internal wave ensembles with very large P > 0, which is
discussed further below. It turns out that for single-branch
dynamics (23) still holds but in addition there is now a
second, slightly steeper power law:

erEðKÞ ¼ K−3; erPMðKÞ ¼ K−3.5: ð24Þ
Crucially, the second power law in (24) suggests a dual
cascade for internal waves, akin to the behavior familiar
from two-dimensional hydrodynamic turbulence, Rossby
waves, or wave turbulence based on four-wave resonances
[18–20]. In such a dual cascade the pseudomomentum
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would go to smaller scales (direct cascade) whereas the
energy would go to larger scales (inverse cascade). More
details on such dual cascades are given later in the context
of unidirectional wave spectra. Both power laws yield
spectra of the finite capacity type [21,22], which shapes the
time-dependent self-similar formation of the spectrum and
might be of relevance to finite time singularity formation.
Higher dimensions.—We can generalize our results for

systems of the form (10) in d dimensions, with two
quadratic invariants: the energy, (9), and the pseudomo-
mentum, (11). For eð−;kÞ ¼ eðþ;kÞ, we obtain

erEðKÞ ¼ K−wF
E ; wF

E ¼ wV þ d − wω=2: ð25Þ
Here wV and wω are the homogeneity degrees of the
interaction coefficients Vβγ

α and of the frequency ωα.
Notably, the isotropic part of the energy spectrum of an
anisotropic system gets an additional contribution of wω=2
with respect to the Kolmogorov-Zakharov power law,
wKZ ¼ dþ wV − wω, of Hamiltonian isotropic three-wave
interaction systems [5,23]. Conversely, if the dynamics is
restricted to one of the branches we find the additional
power law

erPMðKÞ¼K−wF
PM ; wF

PM ¼wV þdþð1−2wωÞ=2; ð26Þ
which corresponds to a cascade of pseudomomentum.
Returning to the complementary angular part eΩα ðθkÞ, to

find this function would require substituting the radial part
(25)/(26) back into the kinetic equation and demanding that
the collision integral be zero. This makes eΩα ðθkÞ a function
of θk and also of the power law slope wE=PM.
Relevance to other systems.—Our results apply to

systems described by an equation of the general form
(2) or equivalently (10). Rossby waves in the mid latitude
beta plane, on scales smaller compared to the deformation
Radius, are governed by

Δψ t þ fψ ;Δψg ¼ β∂xψ ð27Þ
where ψ is the stream function on the plane, so −Δψ is the
vorticity. x and z are the zonal and meridional position
coordinates and f ¼ f0 þ βz is the Coriolis parameter. (27)
can be written in the form (2) with ϕ ¼ ψ ; D ¼ −Δ;
J ¼ f−Δψ ; ·g;L ¼ β∂x. It conserves the energy (4) and
a sign-definite pseudomomentum, (5) with C ¼ 1, which
here equals the familiar enstrophy. Rossby drift waves in
plasma are described by a similar equation. The wave
expansion (7) contains only one branch, α ¼ k, so it is
simply the Fourier transform.While the homogeneity degree
of the interaction is the same as for internal gravity waves,
the dispersion relationωk ¼ −β cos θ=K is homogeneous of
degree wω ¼ −1. Then (25) and (26) give the spectra

erk ∝ K−3.5; erk ∝ K−4.5 ð28Þ

for inverse energy and direct enstrophy cascades, respec-
tively. These scalings agree with the isotropic part of the
steady spectra obtained by previous works [24] and are
consistent with the classical notion of dual cascades [18].
The dynamics of two-dimensional inertial waves in a

vertical plane with constant Coriolis parameter f is in fact
governed precisely by the system we have studied in (2)
after the replacement x ↔ z; f ↔ N; η ↔ v2. ψ is the
stream function on the vertical plane, v2 is the velocity
component perpendicular to the plane. Interestingly, the
vertical component of pseudomomentum is then exactly
conserved and is equal to the helicity of the flow. The
isotropic components of energy spectra are given by (23)
and (24) for the limiting cases of zero and sign-definite
helicity, respectively.
We are certainly not the first to study the application of

weak wave turbulence theory to internal gravity waves
[14,25–29] or to Rossby waves [24,30,31]. We believe that
our work is the first example of theoretical prediction for
internal gravity waves in two dimensions made by wave
turbulence theory and has experimental practical relevance.
Previous studies considered a narrow spectral range where
the homogeneous wave number component is small com-
pared to the nonhomogeneous component. These yield
spectral laws with diverging collision integrals, the diver-
gence of the flux (19), in the case of 3D internal gravity
waves and are not stable in the case of Rossby waves [32]
and hence cannot be physically realized. Our solutions may
represent the isotropic part of a physically relevant solution,
while convergence of the collision integrals is ensured by
restrictions on the complementary angular part of the
energy spectrum eΩk (22).
Speculations on inverse energy cascade for unidirectional

internal waves.—The inverse energy cascade for Rossby
waves and for internal waves can be predicted from the
same argument: energy and pseudomomentum are both
conserved but the spectral density of the latter differs by a
factor Kn from the former, with n ¼ 2 for Rossby waves
and n ¼ 1 for internal waves. Either way, the monotoni-
cally increasing wave number factor then implies an inverse
cascade of energy and a direct cascade of pseudomomen-
tum. Of course, this holds for internal waves only if their
dynamics is artificially restricted to a single branch of
horizontal propagation, as more generally the factor is σK,
which is not sign-definite. This point was missed in [11],
who first discussed the possibility of an inverse cascade of
internal wave energy. Still, this invites speculation about a
possible inverse cascade in a situation where the internal
waves are almost unidirectional in the horizontal, so
that one branch strongly dominates over the other. This
has practical relevance for ocean dynamics. For example,
strongly unidirectional internal wave fields arise natu-
rally in the case of internal tides radiated away from
isolated topography structures such as the Hawaiian
ridge [33].
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Specifically, split the pseudomomentum into positive
and negative components via P ¼ Pþ þ P− with Pþ ≥ 0
and P− ≤ 0 and consider unidirectional initial conditions
that consist entirely of right-going waves such that
Zð−kÞð0Þ ¼ 0 for all k, say. Then P ¼ Pþð0Þ > 0 initially
and in fact at all times by the exact conservation of P. First
off, it follows from (12) that in this case the initial time
derivatives Ṗþ ¼ Ṗ− ¼ 0, which suggests a modicum of
temporal persistence of a unidirectional wave state.
Eventually nonlinear interactions will produce left-going
waves of significant amplitude, but then the exact con-
servation of P implies that any generation of new left-going
waves is accompanied by an equally strong creation of new
right-going waves, which leads to a persistent state in
which the right-going waves dominate such that Pþ ≫
jP−j for all t ≥ 0. This contrasts with the alternative
scenario in which the initial state is unidirectional in the
vertical, such that all waves have positive vertical group
velocity at t ¼ 0, for example. In this case upwards and
downwards waves can readily equilibrate via triad inter-
actions of the elastic scattering type [25], leading to a
long-term state without directional preference for vertical
propagation. Of course, this is because vertical pseudomo-
mentum, unlike its horizontal counterpart, is not an exact
invariant. In summary, one can assert that a wave state
dominated by horizontally unidirectional waves will persist
indefinitely in time, leading to the speculation that such
a wave state is capable of an inverse energy cascade.
Analogous arguments can be made in the forced-dissipative
situation. Whether or not approximate single-branch wave
dynamics behaves like exact single-branch wave dynamics
remains an open question in wave asymptotics and turbu-
lence theory. The extent and timescales of this approxi-
mation for the 2D Boussinesq equation remain a topic for
future study.
Adding rotation.—The first step towards including both

rotation and stratification in the kinetic equation for internal
gravity waves (19) can be taken while retaining the two-
dimensional nature of the flow, i.e., ∂y ¼ 0. This involves
adding horizontal Coriolis forces to the momentum equa-
tions, which necessitates allowing for a third velocity
component v2 in the y direction. The Coriolis forces based
on a constant Coriolis parameter f add only linear terms to
the governing equations, so the linear part of the dynamics
is described by the 3 × 3 operator

N2

0
BB@

0 0 1

0 0 0

1 0 0

1
CCA∂x þ f

0
BB@

0 1 0

1 0 0

0 0 0

1
CCA∂z: ð29Þ

The state vector is now ϕT ¼ ðψ ; v2; ηÞ and the Hermitian
diagonal operator isD ¼ diagð−Δ; 1; N2Þ. This generalizes
(1) to include the Coriolis force within the f-plane

approximation, fẑ × v. The energy is E ¼ hϕjDϕi ¼R
dxð−ψΔψ þ v22 þ N2ζ2Þ. The dispersion relation is

ωðσ;kÞ ¼ σN cos θk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2N−2 tan2 θk

q
ð30Þ

with σ ¼ 0;�. The expansion of ϕ as in (7) then leads to
the kinetic equation (14) with

Vβγ
α ¼−

kβ×kγ

2
ffiffiffi
8

p
KαKβKγ

×
�
K2

γ −K2
βþf2szαðszγ − szβÞþN2sxαðsxγ − sxβÞ

�
: ð31Þ

This does not include interactions among and with the zero
frequency branch, also known as the balanced modes.
Formally, at the limit of vanishing frequency, off-diagonal
correlators should be added as well to the kinetic equation.
However, weak wave turbulence closure is not expected to
remain valid when balanced modes carry the dominant part
of the energy [34]. Energy is an exact invariant, so the first
constraint in (16) holds. As the homogeneity degree of the
dispersion relation remains wω ¼ 0, our finding (25),
suggests that rotation only modifies the angular component
of the turbulent energy spectrum (22), but leaves the radial
component, (23), unchanged. We note that the conservation
of potential vorticity might be used to simplify the kinetic
equation in the presence of both rotation and stratification.
This is studied in a future work.
Conclusion.—Our work emphasizes the elegant ramifi-

cations in the theoretical description and in practice of sign-
indefinite invariants, which usually do not getmuch attention
in wave turbulence study. We show that the existence of a
second quadratic invariant, simplifies the kinetic equation
and leads to additional conservation laws on the resonant
manifold, which to our knowledge, were previously
unknown in the geophysical community. This simplification
facilitates the derivation of scaling laws for the isotropic
component of the turbulent wave spectra of 2D internal
gravity waves and Rossby waves. We show that there are
practical scenarios in which pseudomomentum conservation
can drive an inverse energy cascade of internal gravitywaves.
On the theoretical front, our work contributes a different
approach to the study of wave turbulence in nonisotropic
systems dominated by three-wave interactions. This encom-
passes the application of noncanonical variables for deriving
the kinetic equation, and using variable separation in order to
find turbulent solutions of the kinetic equation.
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