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We develop the mathematics needed to treat the interaction of geometry and stress at any isotropic
spacetime singularity. This enables us to handle the Einstein equations at the initial singularity and
characterize allowed general relativistic stress-energy tensors. Their leading behaviors are dictated by an
initial hypersurface conformal embedding. We also show that an isotropic big bang determines a canonical
nonsingular metric on and about the initial hypersurface as well as a cosmological time. This assigns a
volume and energy to the initial point singularity.
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Introduction.—Is the causal structure of our universe
singular at the big bang? This question is of physical import
since, as we shall show, a well-defined causal structure at
the initial big bang singularity imposes strong constraints
on the matter content of the early Universe.
We perform our analysis in the context of spacetimes with

isotropic singularities. As explained in [1,2], an isotropic
singularity can be removed by multiplying the physical
metric by some power of a suitable timelike coordinate; see
Sec. III. The conformal structure can then be extended across
the initial singularity, which is now described by a spacelike
hypersurface. This means that all physical spacetime direc-
tions contract at the same rate when approaching the
singularity. This definition need not imply any particular
isometries for some choice of spatial slices. It includes the
standard Friedmann-Lemaître-Robertson-Walker (FLRW)
example discussed below. Isotropic singularities are relevant
in light of Penrose’sWeyl curvature hypothesis [3] asserting
that the Weyl tensor is finite at any initial singularity even if
the Ricci curvature is singular [4]. They have also been
studied when subject to various underlying matter model
assumptions [1,2,9–15]. Our analysis applies to generic
stress-energy tensors (stress) for spacetimes with isotropic
singularities.
Because the metric along an isotropic singularity is

degenerate but the conformal structure is still well defined,
early universe physics is dictated by the mathematics of
conformally embedded hypersurfaces. Conformal subma-
nifold embeddings are crucial to the theory of observables
in the AdS/CFT correspondence [16,17]. This machinery
can be fruitfully applied to cosmology. Indeed, any study of
causal structures amounts to a problem in confornal
geometry. There is a well established “tractor calculus”
for handling conformal geometries. Our presentation is
self-contained, though many key definitions are relegated

to footnotes; excellent resources for further details
include [18,19].
Conformal geometry.—For simplicity we focus on

generic, dimension 4 [20], causal structures given by the
data of a Lorentzian conformal geometry ðM; gÞ [21], where
g denotes a conformal class of metrics g with equivalence
given by rescalings Ω2g ∼ g for 0 < Ω∈C∞M. Parallelism
determined by the Levi-Civita connection ∇ is a central
mathematical construct of general relativity. Its conformal
geometry generalization, known as the tractor connection∇,
promotes the tangent bundle TM to a “tractor bundle” TM
with dimension six fibers [18,22]. Tractors are basic objects
for theories incorporating local conformal transformations
and diffeomorphisms [19]. They are even useful for analyz-
ing systems that are not invariant under local Weyl sym-
metry. Indeed g contains a metric solving the (Λ-)vacuum
Einstein equations precisely when there is a parallel tractor
vector field I ∈TM [18,23] [details are discussed just before
Eq. (7) below], viz

∇I ¼ 0: ð1Þ

To incorporate Lorentz symmetry in physical theories,
3-vectors are promoted to 4-vectors. Tractors promote
4-vectors to 6-vectors to manifest conformal symmetry.
Given a choice of metric g∈ g, a tractor I is a triple

I≔
g

0
B@

σ

nb

ρ

1
CA¼Ω2g

0
B@

Ωσ
Ωðnþ σd logΩÞb

Ω−1ðρ−Ln logΩ− σ
2
jd logΩj2gÞ

1
CA; ð2Þ

where σ, ρ are scalars, Ln is the Lie derivative along the
vector n, and the gauge transformation in Eq. (2) is valued in
the parabolic subgroup (preserving a lightlike ray) of the
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spacetime conformal group SO(4,2). Tractors of any tensor
rank are also well defined [18,19]. The tractor connection is
defined by

∇aI ≔

0
B@

∇aσ − na
∇anb þ σPb

a þ ρδba

∇aρ − ncPc
a

1
CA: ð3Þ

In the above, σ denotes a conformal density of weight 1. A
weightw conformal density [24]may beviewed as a power of
a volume form, so is a section of ½ð∧4 TMÞ2�ðw=8Þ≕ EM½w�.
This is a power of a tensor density, so the Levi-Civita
connection is well defined acting upon it. A density σ may
also be understood as an equivalence class of metric-function
pairs ðg; σÞ ∼ ðΩ2g;ΩσÞ. Indices are raised and lowered
using g and ∇ is the Levi-Civita connection (see [19]).
Also P denotes the Schouten tensor and J its trace.
The standard tractor bundle TM comes equipped with a

parallel “tractor metric” h and (unlike the tangent bundle) a
canonical tractor vector field X∈TM½1� [18,19,25].
Indeed, hðI; XÞ ¼ σ ∈ EM½1� for any I as given on the
left-hand side of Eq. (2); this defines X. Moreover, when
Eq. (1) holds, it turns out that the vacuum cosmological
constant Λvac obeys

−
1

3
Λvac ¼ 2σρþ jnj2g ¼ hðI; IÞ≕ I · I≕ I2:

To incorporate matter, we must couple stress to the right-
hand side of Eq. (1), since it is a conformally covariant
reformulation of Einstein’s equations in vacua. On the
other hand, when the function σ is a good coordinate for
some hypersurface Σ, the local conformal embedding data
Σ ↪ ðM; gÞ is encoded by ∇I ∈TM ⊗ TM. The tractor ∇I
is a canonical conformal extension of the extrinsic curva-
ture. It follows that there is a natural correspondence
between stress and local conformal embedding data.
Isotropic singularities.—An isotropic singularity is a

spacelike hypersurface Σ in a spacetime M with a degen-
erate physical metric ǧ such that, for α < 0 and any
defining function τ [26],

g ¼ τ2αǧ; ð4Þ
extends to a smooth metric across Σ. The degree of metric
singularity for the (zero Λ) conformally flat FLRW space-
time with perfect fluid pressure to density ratio κ is

αFLRW ¼ −
2

3κ þ 1
:

Even this simplest of cosmological scenarios allows non-
integer α. This parameter controls both smoothness of the
physical metric ǧ and the volume expansion rate.
Any other bona fide metric g0 ¼ Ω2g corresponds to a

rescaled defining function τ0 ¼ Ωð1=αÞτ. Thus we may write
(4) as

ǧ ¼ τ−2αg;

with τ ∈ EM½1=α�, where no choice of metric in the
conformal class g has been made. Indeed the causal
structure of g is well defined across the initial singularity.
Our aim is to analyze the Einstein field equations

Ǧþ Λǧ ¼ Ť; ð5Þ

where Ť is the stress of a universe with cosmological
constant Λ and degenerate physical metric ǧ. For this we
use maps from weight 1 scalar densities to weight 0 tractors
and from tractor-valued one-forms to weight 1 symmetric
trace-free tensors [19,27] (denoted by ̊ )

μ↦
I

0
B@

μ

∇bμ

− 1
4
ð□þ JÞμ

1
CA;

0
B@

0

x̊ba
− 1

3
∇bx̊ba

1
CA↦q�

x̊ab: ð6Þ

When μ is nonvanishing almost everywhere, Iμ is termed a
scale tractor. For any weight one density μ, the definitions
of ∇ and Iμ in Eqs. (3) and (6) imply vanishing of the top
slot of ∇Iμ. So by virtue of Eq. (2) its middle slot is a trace-
free conformally covariant rank two tensor equaling q�∇Iμ.
Remembering that G̊ ¼ 2P̊, it follows from Eq. (3) that
2μ−1q�∇Iμ is precisely the trace-free Einstein tensor for the
metric μ−2g, wherever this is defined. This explains the
relationship between parallel scale tractors and Einstein
metrics. Equation (5) now reads

q�∇Iτα ¼
τα

2
̊Ť; ð7Þ

I2τα ¼
1

12
Ťa
a −

1

3
Λ: ð8Þ

Scale tractors are potentials for Einstein’s equations since
the derivative of I yields trace-free stress. Reference [28]
shows that the Einstein–Hilbert action is the integral of I2.
Note that it already follows from Eq. (8) that the trace of the
stress for a spacetime with isotropic singularity cannot
vanish along Σ unless α ¼ −1, as the leading behavior of
I2τα is ½αðαþ 1Þ=2�τ2α−2j∇τj2g.
Traversing the singularity.—Spacetimes whose singular-

ities are isotropic admit a global causal structure. Hence,
even though the Einstein tensor is singular across an
isotropic singularity, there are a number of well-defined
geometric quantities, invariant to the structure (meaning that
they are determined by the structure alone), that constrain
matter. The Weyl tensor Wab

c
d is defined independently of

any choice of g∈ g but, unlike the conformally covariant
Bach tensor Bab ≔ □Pab −∇c∇aPbc þ PcdWacbd, it is not
related to stress by a local differential operator. Let P be the
conformally covariant partially massless wave operator
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defined, acting on a weight 1 trace-free symmetric tensor
̊xab, by [29]

P ̊xab ≔ □̊xab −∇c∇ða ̊xcbÞ∘ −
1

3
∇ða∇jcj ̊xcbÞ∘ þWa

c
b
d ̊xcd:

For any nonvanishing weight one density μ [35],

μB ≔ Pq�∇Iμ: ð9Þ

Given a causal structure g, the Bach tensor is nonsingular
so the above implies that the physical stress obeys a
d’Alembert-type equation [36]

B ¼ 1

τα
P
�
τα

2
̊Ť
�
: ð10Þ

The Bach tensor is a natural invariant of a conformal
structure [37], so the above relates causality and stress.
Singularity geometry: So far the conformal embedding

data Σ ↪ ðM; gÞ determined by the isotropic singularity
has not been used. These data determine uniquely the local
asymptotics of another metric gþ, termed the singular
Yamabe metric, whose scalar curvature obeys

Rgþ ¼ 12þOðσ4Þ; ð11Þ

where σ is any defining function for Σ. Interestingly
enough, the initial hypersurface Σ is a conformal infinity
of gþ. An all order “singular Yamabe problem” [38–41]
solution amounts to finding σ ¼ ½g; σ�∈ EM½1� such that
I2σ ¼ −1 and for which gþ ≔ σ−2g. The expansion coef-
ficient of the σ4 term in I2σ þ 1, along Σ, is a weight −4
conformal hypersurface invariant [41–43] equaling the
variation of an energy functional EΣ [44–46]. This energy
is the anomaly in the renormalized volume of ðM; gþÞ
[45,46] and a conformal invariant of the initial singularity

EΣ ¼
Z
Σ
K̊abF̊

abdVgΣ :

The above integral is over any metric in the conformal class
of metrics gΣ induced along Σ by g. It is invariantly defined
because the contraction of the trace-free extrinsic curvature
K̊ with the Fialkow tensor [47,48],

Fab ≔ n̂cn̂dWcabd − K̊acK̊
c
b þ

1

4
K̊cdK̊

cdḡab ∈ ⊙2 T�Σ;

defines a conformal density of weight −3. The extrinsic
curvatures ðK;FÞ have respective transverse orders (1,2)
and are termed second and third fundamental forms [49].
They give the first two elements in a sequence of trace-free
conformal hypersurface invariants defined along Σ and
termed conformal fundamental forms [50]. These are
conformally invariant obstructions to the problem of

finding an asymptotically de Sitter (dS) metric with
conformal infinity Σ. They probe derivatives of g off of
Σ in the direction of the (future-pointing) timelike unit
normal n̂∈TM½−1�jΣ.
The extrinsic curvature K measures the difference

between the Levi-Civita connections ∇ and ∇ of M and
Σ respectively, while the Fialkow tensor measures that of
the respective tractor connections ∇ and ∇̄ of g and gΣ [48].
The fourth conformal fundamental form [50,51] takes

three normal derivatives of g [52],

L̊ab ≔ ðn̂cCcðabÞÞ⊤ þHn̂cn̂dWacbd −∇cðn̂dWdðabÞcÞ⊤
∈ ⊚2 T�Σ½−1�:

Here Cabc ≔ 2∇½aPb�c is the Cotton tensor and ⊚ denotes

the trace-free symmetric product of one forms. The tensor L̊
is distinguished in the context of dS4 metrics, because
rather than obstructing solutions, it extracts the second
piece of boundary data (the first being gΣ).
The locally determined singular Yamabe asymptotics of

(11) terminate at order four, so the fourth conformal
fundamental form L̊ is the last tensor determined this
way. Before using the geometric triple ðK̊; F̊; L̊Þ to con-

strain ̊Ť, we study further (pseudo-)Riemannian data
determined by the isotropic singularity.
The big bang metric: Remarkably there is a canonical

Riemannian metric along the big bang hypersurface Σ. It is
constructed from the solution σ to the singular Yamabe
problem: The weight 1 density γ defined by

γ
1
α−1 ≔

τ
σ

ð12Þ

is nowhere vanishing by our smoothness assumptions and
therefore defines a Lorentzian metric

gγ ≔ γ−1g;

and, in particular, a Riemannian metric gΣ on the spacelike
isotropic singularity Σ [53]. Thus the Riemannian three
manifold ðΣ; gΣÞ is an invariant of the big bang, as is its
volume VΣ ¼ R

Σ dVgΣ .
Because the “big bang metric” gγ is an everywhere

smooth element of the conformal class g, it determines the
triple of conformal fundamental forms ðK̊; F̊; L̊Þ by the
formulæ above. Importantly the metric gγ also furnishes the
early universe with a canonical cosmological time coor-
dinate

t ≔
σ
γ

depending on data of the isotropic singularity alone. It is
very useful for analyzing physical stress at a big bang
singularity.
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Big bang stress.—The behavior of stress at an isotropic
singularity can be studied using potentials Iτα , Iσ , and Iγ.
By virtue of Eq. (12) and the definition of a scale tractor in
Eq. (6), these must be related:

Iτα ¼ tα−2
�
−
αðα − 1Þ

4γ
I2σX þ t

�
αIσ þ

αðα − 1Þ
2γ

Iσ:IγX

�

þ t2
�
ð1 − αÞIγ −

αðα − 1Þ
4γ

I2γX

��
: ð13Þ

This is the fundamental equation governing stress at an
isotropic singularity, all quantities above are determined by
the basic geometric data ǧ or, equivalently, ðg; τÞ.
Trace of stress: The square of a scale tractor measures

scalar curvature or trace of stress [see Eq. (8)] so Eq. (13)
implies

1

4
Ťa
a − Λ ¼ 3

2
t2ðα−1Þ

�
−αðαþ 1Þ þ 2tαðα − 1ÞHext

−
t2

12
ðα − 1Þðα − 2ÞRgγ þOðt4Þ

�
: ð14Þ

In the above Hext ≔ −Iσ · Iγ canonically extends the mean
curvature of Σ ↪ ðM; gγÞ.
As discussed earlier, solving Einstein’s equations can be

broken into two steps, (i) solve for a causal structure and
(ii) determine which metric in the corresponding conformal
class is physical. Hence we pose the question: Given only
the trace of stress and causal structure for a spacetime with
isotropic singularity, can we recover the physical metric ǧ?
Remarkably there exists a “solution generating algebra”
that addresses this question: The operator I acting on σ (of
Sec. III) is both conformally invariant and second order. It
is an example of a more general Thomas D-operator
mapping tractors to tractors [18,25]. Given the data of a
weight w0 ≠ 0;−1 density μ, this yields a conformally
invariant “d’Alembert-Robin” operator [54]

Lμ ≔ −w0μð□þ wJÞ þ 2ðwþ 1Þ∇aμ∇a

−
wðwþ 1Þ
w0 þ 1

ð□μþ w0JμÞ; ð15Þ

mapping weight w densities to weight wþ w0 − 2 densities.
When gμ ≔ μ−ð2=w0Þg is a metric, this gives a d’Alembert
operator □

gμ þ ½wðwþ w0 þ 2Þ=6ðw0 þ 1Þ�Rgμ. Speciali-
zing μ to the singular Yamabe defining density σ, the
operator Lσ yields a conformally invariant, Robin-type,
boundary operator [57]

δR≔
Σ∇n̂ − wH:

The crucial point now is that, calling Sμ ≔ Lμμ, there is an
slð2Þ ¼ hx; ½x; y�; yi algebra generated by

ðx; yÞ ≔
�
μ;−

2ðw0 þ 1Þ
w0Sμ

Lμ

�
:

Since Eq. (8) can be rewritten as Lτατα ¼ 1
3
Ťa
a − 4

3
Λ, its

formal asymptotics can be determined iteratively using the
solution generating slð2Þ algebra, cf. [56].
Conformal fundamental forms and stress: We now

analyze the trace-free part of the matter coupled Einstein
system in terms of conformal embedding geometry.
Equation (7) implies that we must study the tractor gradient
of Eq. (13) relating the various scale tractors. Acting with
q� [see Eq. (6)] and multiplying by t−α gives

t−αq�∇Iτα ¼
αðα − 1Þ

t2
γdt ⊚ dtþ α

t
q�∇Iσ þ ð1 − αÞq�∇Iγ:

ð16Þ

Multiplying by an overall factor 2=γ, each (trace-free) term
above has a physical interpretation: The left-hand side is the

physical stress ̊Ť. The first summand is proportional to the
stress of a perfect fluid with covelocity dt. The second is α
times the stress of the singular Yamabe metric. It captures
the embedding data. The last is 1 − α times the stress of the
big bang metric gγ. Hence, we learn the asymptotics of

trace-free stress ̊Ť for all spacetimes with an isotropic
singularity:

̊Ť ¼ αðα − 1ÞT̊fluid

t2
þ αT̊Bach

t
− ðα − 1ÞT̊Big Bang; ð17Þ

where T̊fluid ≔ 2dt ⊚ dt. Note that Eq. (9) implies

Pq�∇Iσ ¼ σB¼Σ 0; ð18Þ

so the (transverse order 2) partially massless operator acting
on ðγ=2ÞT̊Bach returns σB.
As advertised, Eq. (17) characterizes allowed stress at an

isotropic singularity. As we next show, the coefficients of
terms that diverge as t → 0 are local invariants of the
boundary.
We want to study the first 4 orders of the early time

(t ∼ 0) asymptotics of physical stress. Both the fluid and
big bang terms in Eq. (17) are completely determined to
this order so we focus on the Bach term. Conformally
invariant transverse jets of q�∇Iσ generate the second and
third but not fourth conformal fundamental forms [see
Eq. (18)]. There is a notion of a fifth fundamental form, viz
the projected Bach tensor B⊤jΣ. However the Bach-to-stress
Eq. (10) determines the conformal structure g given initial
data of the first through fourth fundamental forms, so we
focus on these.
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First note the second fundamental form here obeys

K̊ ¼ q�∇Iσ jΣ ¼ γ
2
T̊BachjΣ:

To study the next order term, we use the tractor analog of
the d’Alembert-Robin operator Lσ of Eq. (15) to make a
transverse order 1 operator [50], again called δR,

⊚ T�M½w� ∋ ̊xab↦
δR ½ð∇n̂ þ ð2 − wÞHÞ̊xab

þ 2

w − 3
∇ða ̊x⊤̂nbÞ�⊤;∘ ∈ ⊚ T�Σ½w − 1�:

The trace-free Fialkow tensor is then

F̊ ¼ δRq�∇Iσ ¼ δR

�
γ
2
T̊Bach

�
:

Because we cannot extract L̊ from a conformally
invariant second normal derivative of q�∇Iσ to relate the
fourth fundamental form to stress, we instead consider one
normal derivative of big bang stress T̊Big Bang. For this we
employ the identity [58]

δRq�∇Iγ ¼ γL̊þ δð2Þγ:

This yields the last line of Fig. 1 summarizing the relations
between geometry and stress.
Example:Poincaré-Einstein conformal cyclic cosmology.—

Models where the present universe is seeded by pre-big
bang data [60–63], dovetail with the above results. One
approach [64] employs an asymptotically dS pre-big bang
metric ĝ and a physical metric ǧ with isotropic singularity:

ĝ ¼ −dt̂2 þ ĥðt̂Þ
t̂2

; ǧ ¼ ť−2αð−dť2 þ ȟðťÞÞ:

The conformal infinity or initial singularity hypersurface Σ
is at t̂ ¼ 0 ¼ ť. The pre-big bang spatial metric ĥ is defined
by a Fefferman-Graham-type expansion [65] about the
conformal infinity of ĝ obtained by solving Einstein’s
equations with nonvanishing stress for suitable late time
t̂ → 0− matter content. Conformal fundamental forms are
covariant analogs of Fefferman-Graham expansion

coefficients [50] and are determined by ĥðt̂Þ. They can
be matched [51] to those of the big bang model and thus its
stress. Schematically,

̊T̂ ↦ conformal fundamental forms ↦ ̊Ť:

Just as for stellar models where interior and exterior
solutions are matched using fundamental forms [66–68],
“cyclic cosmological matching” of conformal structures is
via conformal fundamental forms.
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