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Digital quantum simulation relies on Trotterization to discretize time evolution into elementary quantum
gates. On current quantum processors with notable gate imperfections, there is a critical trade-off between
improved accuracy for finer time steps, and increased error rate on account of the larger circuit depth. We
present an adaptive Trotterization algorithm to cope with time dependent Hamiltonians, where we propose
a concept of piecewise “conserved” quantities to estimate errors in the time evolution between two
(nearby) points in time; these allow us to bound the errors accumulated over the full simulation period.
They reduce to standard conservation laws in the case of time independent Hamiltonians, for which we first
developed an adaptive Trotterization scheme [H. Zhao et al., Making Trotterization adaptive and energy-
self-correcting for NISQ devices and beyond, PRX Quantum 4, 030319 (2023).]. We validate the algorithm
for a time dependent quantum spin chain, demonstrating that it can outperform the conventional Trotter
algorithm with a fixed step size at a controlled error.
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Introduction.—Simulating the time evolution of nonequi-
librium quantum many-body systems poses a significant
challenge for classical computers due to the exponentially
large Hilbert space dimension [1,2]. The rapid development
of quantumprocessors holds the promise of resolving this key
problem through digital quantum simulation (DQS) [3–11].
In DQS, the continuous time evolution operator is

discretized into elementary few-body quantum gates, a
procedure known as Trotterization [12–29]. However, due
to their noncommutativity, Trotterization introduces errors,
which can accumulate over longer simulation times. While
a finer Trotter time step size δt improves simulation
precision, it also leads to increased circuit depth. In the
current era of noisy intermediate-scale quantum (NISQ)
processors, gate imperfections are inevitable, posing a
significant challenge in improving the accuracy of DQS
[2], especially in the absence of experimentally efficient
error-correction schemes [30–32]. Therefore, it is crucial to
identify strategies for minimizing circuit depth while
keeping the simulation error under control.

In previouswork [33],we introduced a quantumalgorithm,
ADA-Trotter, allowing for adaptive step sizes δt to opti-
mize the usage of quantum gates for time independent
Hamiltonians. Bymeasuring the expectationvalues of energy
and energyvariance, δt ismaximized as long as errors in these
conserved quantities remain bounded. According to the
central limit theorem, ADA-Trotter ensures a correct energy
distribution for generic nonintegrable many-body systems.
However, extending this formalism to time dependent
Hamiltonians HðtÞ is a demanding challenge, since:
(i) Energy conservation is absent and hence it is a priori
unclear how to define a criterion to adapt δt; (ii) without a
static reference Hamiltonian the energy distribution is diffi-
cult to define, and hence the implication of the central limit
theorem,mentioned above, is now elusive; (iii) genericmany-
body systems absorb energy from time dependent modula-
tions and may heat up (in the sense of the eigenstate
thermalization hypothesis [34,35]) and eventually approach
states with trivial correlations [36–38]. It is not clear how to
control the additional heating generated by the piecewise
constant time dependence of a Trotterized Hamiltonian
compared to that of HðtÞ.
In this Letter, we propose tADA-Trotter—an adaptive

algorithm for time dependent quantum systems [39–46]. To
achieve this, we first discretize the time evolution into small
time intervals ½t; tþ δt�. In each interval, the time evolution
can be generated by an effective Hamiltonian Ht;δt

½∞�. Note
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that this Hamiltonian has only a parametric dependence on
t, δt; it is time independent once t and δt are fixed.
Consequently, the expectation values of Ht;δt

½∞� and its higher
moments coincide at the boundaries of this timewindow for
perfect time evolution, a feature we will refer to as piece-
wise conservation laws, cf. Fig. 1(a). In practice, Ht;δt

½∞� can
be approximated using a perturbative Magnus expansion in
the small time step δt [47,48]. The Magnus and
Trotterization approximations introduce errors in the piece-
wise conservation laws. Our key finding is that, by
constraining these errors, the step size can be adapted to
reduce circuit depth while maintaining a given simulation
accuracy for generic nonintegrable many-body systems.
The adaptive step size is determined by measuring

piecewise conservation laws using Trotterized time evolu-
tion. Subsequently, we introduce the concept of a time
global error, which represents the accumulation of time
local errors in the piecewise conservation laws, cf. Fig. 1.
To adapt the step size, we propose a feedback procedure
that can bound both the local and global errors.
Notably, Trotter-induced heating effects present in a

local control scheme, where simulation errors significantly
accumulate over time by making suboptimal choices of δt,
may be efficiently suppressed by imposing constraints on
the global errors, cf. Fig. 1(b). For time independent
systems, this globally constrained scheme reduces to the
algorithm proposed in Ref. [33], enabling strict error
bounds throughout the entire time evolution. To determine
the advantages of a globally constrained error, we perform
numerical simulations of a quantum spin chain with a time
dependent field. We also demonstrate that tADA-Trotter
outperforms the conventional fixed-step Trotter, as depicted

in Fig. 4. These findings highlight the superior potential of
tADA-Trotter with a global constraint in minimizing circuit
depth for DQS of time dependent systems.
Piecewise conservation laws.—The time evolution oper-

ator Uðt; t0Þ follows the equation ∂tUðt;t0Þ¼−iHðtÞUðt;t0Þ,
where HðtÞ represents the time dependent Hamiltonian.
Its solution is given by the time ordered exponential
Uðtþ δt; tÞ ¼ T exp

�
−i

R
tþδt
t HðsÞds�, and the exact state

evolves as jϕðtþ δtÞi ¼ Uðtþ δt; tÞjϕðtÞi.
Formally rewriting Uðtþ δt; tÞ ¼ exp ð−iH½∞�δtÞ indi-

cates that the same time evolution can be generated by the
static effective Hamiltonian H½∞�, where we drop its para-
metric dependence on t, δt for simplicity. Hence, when t
and δt are fixed, the expectation value of H½∞�, and its
higher-order moments, coincide for the states jϕðtþ δtÞi
and jϕðtÞi. We use these piecewise conservation laws to
adapt the Trotter step size δt.
The piecewise conserved Hamiltonian can be ob-

tained through a Magnus expansion given by H½∞� ¼
iδt−1

P∞
n¼1Ωn, where the operator Ωn ∝ δtn. The explicit

form of H½∞� can be complicated as higher-order contri-
butions typically involve nested commutators. To eliminate
the time ordered integral in the Magnus expansion, we
expand the time dependence in Legendre polynomials,
obtaining the concise expression for terms of lowest orders
[48]: Ω2m ¼ 0 for all even orders 2m, and

Ω1 ¼ A1; Ω3 ¼ −
1

6
½A1; A2�;

Ω5 ¼
1

60
½A1; ½A1; A3�� −

1

60
½A2; ½A1; A2��

þ 1

360
½A1; ½A1; ½A1; A2��� −

1

30
½A2; A3�; ð1Þ

FIG. 1. Schematics of tADA-Trotter for a time dependent Hamiltonian. (a) The expectation values of the piecewise conserved
Hamiltonian Ht;δt

½∞� coincide at times t and tþ δt. The exact expectation value of HðtÞ is depicted as black line. We use a Magnus
expansion to approximate this conservation law Ht;δt

½∞� ≈Ht;δt
½k� (blue) and a Trotter decomposition (green) for the time evolution. Both

approximations introduce errors to the time evolution. We maximize δt as long as errors in this conservation law are bounded, i.e.,
deviations in the expectation value before (Ei) and after (Ef) the Trotterized evolution (green) should be small. (b) Schematic depiction
of state space, showing the exact time evolution (black line), as well as the approximate state vector evolution calculated using tADA-
Trotter under either time local (gray-black circles) or time global (orange-red circles) constraints. Trotter errors accumulate with the time
local constraint (gray), jEfðtn; δtnÞ − Eiðtn; δtnÞj < dE . This can be suppressed by using the time global (accumulated) constraint (red),
jPn ½Efðtn; δtnÞ − Eiðtn; δtnÞ�j < d0E , leading to more reliable simulation with adaptive step sizes.
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where each operator At;δt
n is defined as At;δt

n ¼
−ið2n − 1Þδt R 1

0 Hðtþ xδtÞPn−1ðxÞdx. Here, Pn−1 denotes
the shifted Legendre polynomials normalized to
ð2nþ 1Þ R 1

0 dsPmðsÞPnðsÞ ¼ δmn, and At;δt
n ∝ δtn. For a

sufficiently small time interval δt, this Magnus expansion
can be truncated at a finite order k, resulting in an
approximation of H½∞� as H½k� ¼ iδt−1

P
k
n¼1 Ωn.

Trotterization.—On real digital quantum devices, the
exact time evolution operator Uðtþ δt; tÞ for a smoothly
varying Hamiltonian HðtÞ is usually inaccessible. Thus,
one needs to decompose the former into some elementary
quantum gates using, e.g., Trotterization. For simplicity,
we focus on the time dependence HðtÞ ¼ gðtÞGþ fðtÞF
with smooth functions gðtÞ and fðtÞ, and two generic
noncommuting Hermitian operators F and G. Let us
assume that quantum devices admit the exact implementa-
tion of unitaries of the form expð−iC1GÞ or expð−iC2FÞ
where C1;2 are arbitrary real numbers; while the imple-
mentation of linear combinations of G and F, such as
expð−iC1G − iC2FÞ, are not feasible.
We aim to approximate the target unitary operator up to a

given order λ, such that Uðtþ δt; tÞ ¼ U½λ�ðtþ δt; tÞþ
OðδtλÞ. A larger λ leads to more accurate time evolution
with smaller Trotter errors, but it also increases the circuit
depth. The number of gates generally scales exponentially
in λ, but better decompositions with fewer number of
exponentials may exist [43]. In this work, we use λ ¼ 3 and
the approximation can be obtained by the second-order
Trotter formula also known as the midpoint rule:

U½3�ðtþ δt; tÞ ¼ exp½−igðtþ δt=2ÞGδt=2�
× exp½−ifðtþ δt=2ÞFδt�
× exp½−igðtþ δt=2ÞGδt=2�: ð2Þ

Adaptive algorithm.—The central concept of the adap-
tive algorithm is to maximize δt while ensuring that the
measurement outcome of the expectation value and vari-
ance of H½∞� remain within preset tolerances. However,
H½∞� is generically increasingly nonlocal as contributions
of increasing order Ωn are involved, introducing a signifi-
cant measurement overhead. Therefore, depending on the
measurement accuracy and efficiency, one may need to
truncate H½∞� to a finite order k to make the measurement
procedure feasible on quantum computers [49–51]. Here,
we consider a sufficiently large value for k, ensuring that
errors in the piecewise conservation law are subdominant
compared to the Trotter error. In the limit δt → 0, this can
be satisfied as long as k ≥ λ; we prove it using perturbation
theory, see Supplemental Material, Sec. 1 [52] for details.
Below, we first introduce a time local control scheme to

adapt δt, which we find can involve severe heating effects.
Then we propose a global control scheme to bound the
accumulated errors and suppress heating.
In contrast to time independent systems where conserved

energies solely depend on the initial state jψð0Þi, the

expectation values of H½k� for generic time dependent
systems rely on the time evolved state jψðtÞi. As a result,
there are no universal (in time) reference expectation values
known a priori for the piecewise conserved Hamiltonians.
Nonetheless, we can leverage the capability of quantum
processors to measure the expectation values, Eiðt; δtÞ ¼
hψðtÞjH½k�jψðtÞi=L with the system size L as a reasonable
approximation to the conserved quantities for the true
quantum state jϕðtÞi. We maximize δt such that the time
local error in the expectation value of H½k� remains below a
threshold dE [cf. Fig. 1(a)], i.e.,

jEfðt; δtÞ − Eiðt; δtÞj < dE ; ð3Þ
where Efðt; δtÞ ¼ hψðtþ δtÞjH½k�jψðtþ δtÞi=L represents
the expectation value ofH½k� after the Trotterized evolution,
given by jψðtþ δtÞi ¼ U½λ�ðt; δtÞjψðtÞi. In the ideal case of
λ → ∞ and k → ∞, we have Efðt; δtÞ − Eiðt; δtÞ ¼ 0 by
definition. However, for any finite value of λ and k, this
error does not vanish.
In addition, we also require the error in the variance to be

bounded by the tolerance dδE2 , i.e., jδE2
fðt;δtÞ−δE2

i ðt;δtÞj<
dδE2 , with

δE2
i ðt; δtÞ ¼ L−1hψðtÞjH2

½k�ðt; δtÞjψðtÞi − LE2
i ;

δE2
fðt; δtÞ ¼ L−1hψðtþ δtÞjH2

½k�ðt; δtÞjψðtþ δtÞi − LE2
f:

ð4Þ
According to the central limit theorem, constraining the
errors in the lowest two moments of H½k� is sufficient to
ensure the approximate conservation of its higher moments
[33,53]. Therefore, the piecewise conservation of the
Hamiltonian H½k� can be satisfied reasonably well, enabling
reliable DQS of dynamics from time t to tþ δt.
Note that Trotter errors can accumulate in the time

evolved jψðtÞi, leading to deviations of Ei and δE2
i , from

the exact piecewise conservation laws. This effect is also
present for time independent systems, whereH½k� simplifies
to a static Hamiltonian H. The energy constraint reduces to
jhψðtÞjHjψðtÞi − hψðtþ δtÞjHjψðtþ δtÞij=L < dE , which
accumulates and cannot be bounded for long simulation
times. Consequently, many-body systems tend to heat up
and eventually become featureless. This Trotter-induced
heating can be much more pronounced in time dependent
systems, leading to unstable DQS of time evolution over
long periods.
To address this challenge, we propose restrictions on the

time global errors, representing the accumulation of all time
local errors from previous steps:

����
Xm

n¼1

½Efðtn; δtnÞ − Eiðtn; δtnÞ�
���� < d0E ;

����
Xm

n¼1

½δE2
fðtn; δtnÞ − δE2

i ðtn; δtnÞ�
���� < d0

δE2 : ð5Þ
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These conditions imply the time local constraints, e.g.,
jEfðtm; δtmÞ − Eiðtm; δtmÞj < 2d0E [54], but the converse is
not true. Therefore, information from the past time steps is
used to select the current step size, such that the algorithm
is capable of automatically counteracting any accumulating
Trotter-induced heating effects. This global control is
necessary to handle the lack of energy conservation in
time dependent systems.
We enforce these constraints via a feedback loop:

initially, a large time step δtm is chosen. We then measure
Ei and δE2

i for the current quantum state jψðtmÞi and for the
selected δtm, as a prediction of the piecewise conserved
quantities. We then implement the time evolution
U½λ�ðtm; δtmÞ on the quantum processor, yielding a candi-
date state jψ̃ðtm þ δtmÞi ¼ U½λ�ðtm; δtmÞjψðtmÞi. For this,
we measure Ẽf and δẼ2

f. In case the measurement outcome
violates the conditions of Eq. (5), a new smaller step size is
proposed and the procedure restarts.
We use the bisection search method to find a new

suitable δtm. This can be efficiently implemented with a
few trials whose number does not scale with system size
and the truncation order k, cf. Ref. [33] and Supplemental
Material, Sec. 3. [52] The extra measurement cost only
depends polynomially on the system size and can be further
improved to logarithmic dependence by using classical
shadows [55–57]. Once a suitable δtm has been found, we
obtain the state jψðtm þ δtmÞi at the next time, and repeat
the procedure.
Numerical simulation.—We next numerically compare

local and global constraint schemes and find better per-
formance of tADA-Trotter with time global control.
Although this algorithm is applicable to various models

and initial states, for concreteness, we start from a product
state jψð0Þi ¼ expð−iθPj σ

x
jÞj↓…↓i and a nonintegrable

quantum Ising model, with Hamiltonian HðtÞ ¼ gðtÞHx þ
fðtÞHz with Hz¼Jz

P
jσ

z
jσ

z
jþ1þhz

P
jσ

z
j, Hx ¼ hx

P
j σ

x
j ,

where σxj and σzj are Pauli matrices acting on site j of a
chain consisting of L sites with periodic boundary con-
ditions. We consider a uniform coupling Jz, and transverse
and longitudinal fields hx and hz, respectively.
We choose a static longitudinal field fðtÞ ¼ 1 and an

oscillating transverse field gðtÞ ¼ cosðωtÞ expð−t=τÞ þ 1

with nonzero mean, frequency ω, and exponentially
decaying amplitude. For t ≫ τ, the system becomes effec-
tively time independent. Hence, this protocol contains
different timescales and thus provides an ideal testbed
for our algorithm. We employ Eq. (2) to implement the
Trotterized dynamics and truncate the piecewise conserved
Hamiltonian to H½k� with k ¼ 5.
In Fig. 2, we depict the expectation value ofH½k� with the

local and global control schemes. The exact solution varies
at early times and becomes static at later times as expected.
The predicted conserved value Ei at early times closely
follows the exact solution. The expectation value Ef after

implementing the Trotterized dynamics deviates from Ei
very weakly in both cases.
A crucial difference occurs at later times. In Fig. 2(a), for

t > 5 in units of the Ising coupling Jz, the predicted value Ei
exhibits a noticeable drift toward zero, indicating the
accumulation of Trotter errors. Note, this Trotter-induced
heating is not the same as the energy nonconservation that
goes along with HðtÞ [36–38]. It happens because sta-
tistically, a stepsize increasing the system’s entropy is more
likely. To emphasize this point, we plot the time local error
Efðtn; δtnÞ − Eiðtn; δtnÞ at each time, and clearly, δt is
chosen in away that negative values appearmore frequently.
By contrast, when constraining the global errors according
to Eq. (5), this deviation approximately centers around zero,
indicating better controlled heating. Consequently, the over-
all drift in Ei is suppressed. For a specific time t0, as long as
t0 ≫ τ where the system becomes effectively time indepen-
dent, one can show that Efðtm; δtmÞ ¼ Eiðtmþ1; δtmþ1Þ for
any tm ≥ t0. Hence, Eq. (5) reduces to jEiðtm; δtmÞ−
Eiðt0; δt0Þj < d0E , strictly prohibiting the overall drift at long
times as shown in Fig. 2(b).
Controlling errors in the expectation values of H½k�

ensures accurate DQS of local observables. Fig. 3 shows

FIG. 2. Comparison between the time local and global con-
straint. (a) Local constraint with tolerances dE ¼ 0.01,
dδE2 ¼ 0.02, and d0E ¼ d0

δE2 ¼ ∞. (b) Time global errors are
bounded, with the tolerance dE ¼ dδE2 ¼ ∞, d0E ¼ 0.01,
d0
δE2 ¼ 0.02. The following Hamiltonian parameters are used

for numerical simulation, Jz ¼ 1, hx ¼ 1, hz ¼ 0.5, τ ¼ 1,
ω ¼ 4, L ¼ 16, θ ¼ 2.

FIG. 3. Global constraint leads to more stable simulation results
than local constraint. Magnetization in x (a) and z (b) direction.
We use the same parameters as in Fig. 2. The inset shows details
of the dynamics in a small time window.
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the magnetizations Mα ¼
P

j σ
α
j =L for α ¼ x, z, demon-

strating that global constraint generally yields a more
accurate simulation compared to the local constraint. In
particular, in Fig. 3(a) with the local constraint, significant
errors arise for t > 5. It corresponds to the time when
notable deviation arises in the piecewise conserved quan-
tities as shown in Fig. 2(a). In contrast, the globally
constrained data closely follows the exact solution for an
extended period.
We now demonstrate that by constraining the time global

errors, tADA-Trotter achieves superior simulation precision
compared to the fixed-step Trotter when the same total
simulation time is reached. In the field xðtÞ we select a
driving frequency ω ¼ 0.8 that is comparable to other local
energy scales in the system. The characteristic decay
timescale is chosen as τ ¼ 30. With a total number of
Trotter steps N ¼ 100, the achievable simulation time is
approximately t ∼ 20, during which the significant time
dependence in the Hamiltonian is still present.
In Fig. 4,Mx ¼

P
j σ

x
j=L is depicted with orange circles,

which closely reproduces the exact solution (black).
Simulation errors only become visible at later times,
e.g., tm > 11. In contrast, the fixed-step Trotter
(δtm ¼ 0.2) already introduces substantial errors in the
magnetization within a short time. The Trotter step size
(Fig. 4 inset) fluctuates within approximately one order of
magnitude δtm ∈ ½0.1; 0.7�, highlighting the advantage and
the flexibility of tADA-Trotter. Particularly, at early times,
when the quantum state undergoes rapid changes under a
strong driving field, smaller step sizes are employed
(δtm ≈ 0.1). Conversely, when the driving gðtÞ has rela-
tively smaller values around tm ≈ 4 and 12, the step size
automatically increases to δt ≈ 0.7 and 0.4, respectively.
The time global errors, Fig. 5, remain bounded below the

specified thresholds for the majority of the time evolution.
However, it should be noted that due to the tight tolerances
at early times, the accumulated errors in the piecewise
conserved quantities may occasionally exceed the bounds.

This phenomenon can also cause the tADA-Trotter to
“freeze,” wherein it tends to select the smallest possible
step size, which in this case is set to 0.1.
Discussion.—We have introduced the concept of piece-

wise conserved quantities and combined it with a time
global error constraint to devise an adaptive Trotterization
scheme to enable reliable DQS of generic time dependent
Hamiltonians. In the presence of weak hardware noise, we
expect that tADA-Trotter remains robust and can even self-
correct the dissipation-induced errors [58]. We estimate that
the shot overhead for a single step is around 104, which can
be efficiently implemented on current quantum processors
with fast gate implementation, cf. Supplemental Material,
Sec. 3 [52].
In a specific example, we demonstrate the superior

performance of tADA-Trotter compared to the fixed-step
Trotter method. The intricate interplay between external
driving and quantum thermalization can result in highly
complex many-body dynamics [59–62]. Therefore, for
future investigations, conducting a systematic benchmark
of various algorithms across different models, initial states,
and time dependence would be of great value, as would be a
comparison against higher-order truncation schemes.
Furthermore, the extension of piecewise conservation

laws to open quantum systems to enable adaptive Trotter
step sizes represents an intriguing open question [63–66].
Additionally, considering the widespread use of
Trotterization in classical numerical algorithms such as
the time evolving block decimation method, the application
of tADA-Trotter to enhance the efficiency and accuracy of
these methods holds significant potential.

Note added.—We recently became aware of a relevant work
exploring another adaptive algorithm for DQS of time
evolution [45].
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FIG. 4. Comparison between tADA-Trotter and fixed-step
Trotter algorithms. Inset depicts the stepsize that varies in time.
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lation, Jz ¼ 1, hx ¼ 3, hz ¼ 0.5, τ ¼ 30, ω ¼ 0.8, L ¼ 18,
θ ¼ 2, d0E ¼ 0.03, d0

δE2 ¼ 0.1.

FIG. 5. Time global errors under the global constraint in the
expectation value and variance of H½k�. Errors are bounded for
most of the time evolution. Same parameters as in Fig. 4.
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