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We present a novel classical algorithm designed to learn the stabilizer group—namely, the group of Pauli
strings for which a state is a�1 eigenvector—of a given matrix product state (MPS). The algorithm is based
on a clever and theoretically grounded biased sampling in the Pauli (or Bell) basis. Its output is a set of
independent stabilizer generators whose total number is directly associated with the stabilizer nullity,
notably a well-established nonstabilizer monotone. We benchmark our method on T-doped states randomly
scrambled via Clifford unitary dynamics, demonstrating very accurate estimates up to highly entangled
MPS with bond dimension χ ∼ 103. Our method, thanks to a very favorable scaling Oðχ3Þ, represents the
first effective approach to obtain a genuine magic monotone for MPS, enabling systematic investigations of
quantum many-body physics out of equilibrium.
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Introduction.—Quantum states of many interacting par-
ticles (or qubits) have in general a very high degree of
complexity, due to exponential vastness of the Hilbert space
[1,2]. Understanding which states can be efficiently simu-
lated using reasonable classical resources, i.e., polynomial
in the number N of particles, is crucial for identifying
potential areas of quantum advantage [1,3–5] or improving
our knowledge of out-of-equilibrium states of matter [6–9].
There are (at least) two known general classes of states
falling into this scenario.
First, states with sufficiently low amount of quantum

correlations between the constituencies, i.e., low entangle-
ment, can be simulated by means of tensor etworks (TNs)
[10–12]. TNs, including matrix product states (MPSs),
represent quantum wave functions using tensors, where
indices correspond to physical variables (like spin) and
auxiliary fictitious variables. The latter are always con-
tracted (summed over) and encode entanglement. In 1D,
MPSs can simulate states whose entanglement does not
scale extensively with N [13–15].
Additionally, another framework for simulating specific

quantum states is linked to the Clifford group’s structure
[5,16–20]. This group consists of unitary transformations
mapping the group of strings of Pauli matrices over N
qubits (Pauli group) to itself under conjugation. Any state
jψi is associated with an Abelian subgroup of the Pauli
group, known as stabilizer group and denoted GSðjψiÞ.
This is generated by kψ commuting Pauli strings σ which
stabilize the state, i.e., such that σjψi ¼ �jψi. When
kψ ¼ N, the state is dubbed a stabilizer and is uniquely
identified by the generators of GSðjψiÞ [5]. Stabilizers can
be equivalently characterized as states obtained by applying

Clifford transformations to the computational basis state
j0i⊗N , and accordingly can encode arbitrary amounts of
entanglement. Nevertheless, they can be simulated classi-
cally using the stabilizer formalism. Indeed, since 2
classical bits can encode the 4 Pauli matrices, one can
store the generators of GSðjψiÞ in an N × 2N tableau.
Operations such as evaluating expectation values of Pauli
operators or applying Clifford unitaries can be performed
efficiently by updating the tableau at cost OðN2Þ [19]. Yet,
for quantum computational universality, non-Clifford uni-
tary transformations are needed, often leading to exponen-
tial scaling in the tableau algorithm’s complexity. The
amount of non-Clifford resources needed to prepare a state,
known as nonstabilizerness, is considered one of the
veritable resources of the quantum realm [21–23].
Interestingly, only a few works have explored intercon-

nections between these two approaches. Recently, stabilizer
Rényi entropies (SREs) gained significant interest for
quantifying nonstabilizerness [23–29], with the advantage
of being amenable to experimental measurements [30,31].
Ways of evaluating SREs for MPSs have been discussed in
Refs. [32–35]. For qubits [36] and pure states the monot-
onicity of SRE with Rényi index β has been recently
established for β ≥ 2 [37]. However, a violation of monot-
onicity for 0 ≤ β < 2 is known [34]. Thus, the question of
how to extract a veritable measure of magic from an MPS
remains open. In this Letter, we consider the task of
learning the stabilizer group GSðjψiÞ of an MPS jψi.
The goal is achieved by employing a new type of sampling
in the Pauli basis, that is intentionally biased to favor
the extraction strings belonging to the stabilizer group. To
ensure a comprehensive mapping of the entire group
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GSðjψiÞ, we iterate the sampling over modified states
obtained with Clifford transformations from the original
MPS, the computational cost for iteration being OðNχ3Þ,
where χ is the MPS bond dimension. Our algorithm outputs
stabilizer generators and estimates the state’s stabilizer
dimension. Benchmarks show that this estimate is consis-
tently accurate; i.e., one has a high probability of correctly
learning all the generators of GSðjψiÞ.
The task we consider is of crucial importance, in fact our

novel algorithm is the first known method to obtain a
genuine magic monotone for MPS with reasonable com-
putational resources. Consequently, it can pave the way to a
systematic numerical investigation of the nonstabilizerness
of quantum many-body states. In addition, one could in
principle exploit the knowledge of the stabilizer group of
the MPS to reduce its computational complexity. For
instance, given the kψ generators of GSðjψiÞ, one can
efficiently find a Clifford unitary UC serving as (partial)
disentangler: UCjψi ¼ j0i⊗kψ jψ̃i [5]. This could result into
powerful hybrid MPS stabilizer techniques.
Preliminaries.—We consider a system consisting of N

qubits. We identify the Pauli matrices by fσαg3α¼0, with
σ0 ¼ 1, and with σ ¼ Q

N
j¼1 σj ∈PN a generic N-qubits

Pauli string where PN ¼ fσ0; σ1; σ2; σ3g⊗N . For a pure
normalized state ρ ¼ jψihψ j, we define the stabilizer group
GSðjψiÞ as the set of Pauli strings for which jψi is an
eigenstate; i.e., GSðjψiÞ ¼ fσ s:t: σjψi ¼ �jψig. GS is an
Abelian subgroup of the N qubits Pauli group [5].
The stabilizer dimension kψ of jψi is the number of

independent (commuting) generators of GS . Equivalently,
kψ ≡ log2jGSðjψiÞj, where j·j represents the cardinality of
the set. The stabilizer nullity is defined as νψ ¼ N − kψ and
is a genuine magic monotone since it is nonincreasing
under any stabilizer operations, such as Clifford unitaries or
measurements of Pauli operators [38].
By definition, kψ ¼ N for stabilizer states, whereas

kψ ≥ N − t for t-doped stabilizer state (see Lemma 1 in
Supplemental Material [39]) [40]. These are states obtained
from the computational basis state j0i⊗N through the
application of a circuit consisting of Clifford gates and
at most t single-qubit non-Clifford T gates (t ¼ 0 for
stabilizers). T gate is defined as T ¼ diagð1; eiπ=4Þ, and
together with Clifford gates {H,S,CNOT} form a universal
set of gates. The number t of T gates required to synthesize
a state jψi is lower bounded by νψ [41].
In Ref. [42], Montanaro introduced a learning procedure

for stabilizer states which is based on Bell sampling, i.e.,
joint measurements on two copies of the state in the Bell
basis. Such measurements correspond to sampling Pauli
strings σ ∈PN with probability ΠρðσÞ ¼ ð1=2NÞTr½ρσ�2,
and we will also refer to it as Pauli sampling. Montanaro
showed that for stabilizer states the generators of GSðjψiÞ
can be learned with OðNÞ samples from Πρ [42], resulting

in an exponential speedup for stabilizer states compared to
tomographic methods [43]. The question of whether and
howMontanaro’s method can be expanded to learn t-doped
states is a significant subject of research [40,44,45].
In Ref. [44] the authors employ in turn the Bell sampling

and notice that the extraction of kψ þ N random Pauli
operators from GSðjψiÞ is sufficient to determine a gen-
erator set with failure probability of at most 2−N . However,
for a t-doped state the probability of obtaining a string
σ ∈GSðjψiÞ is pðσ∈GSÞ¼jGSðjψiÞj·ð1=2NÞ¼2kψ−N≥2−t,
since ΠρðσÞ ¼ 1=2N for any stabilizer string. This result
shows that, in general, the probability of successfully
finding a stabilizer string decreases exponentially with t.
Hence, the approach in Ref. [44] is feasible only when
t ¼ OðlogNÞ.
MPS stabilizer sampling.—We consider a pure state

jψi represented in the MPS form [10–12] jψi ¼P
s1;s2;…;sN A

s1
1 A

s2
2 � � �AsN

N js1; s2;…; sNi, with A
sj
j being

χj−1 × χj matrices, except at the left (right) boundary
where As1

1 (AsN
N ) is a 1 × χ1 (χN−1 × 1) row (column)

vector. Here jsji∈ fj0i; j1ig is the local computational
basis. Without loss of generality, the state is assumed right-
normalized, namely,

P
sj A

sj
j ðAsj

j Þ† ¼ 1.
As shown for the first time in Ref. [32], given the

MPS jψi one can efficiently achieve a perfect Pauli
sampling from the probability distribution ΠρðσÞ at
computational cost OðNχ3Þ, with χ ¼ maxi χi. Such a
sampling is achieved by exploiting the decomposi-
tion ΠρðσÞ ¼ πρðσ1Þπρðσ2jσ1Þ…πρðσN jσ1 � � � σN−1Þ, where
πρðσijσ1 � � � σi−1Þ ¼ πρðσ1 � � � σiÞ=πρðσ1 � � � σi−1Þ is the
probability of Pauli matrix σi appearing at position i given
that σ1…σi−1 have been extracted at positions 1…i − 1,
regardless of the occurrences in the remaining part of the
system (i.e., marginalizing over Pauli substrings on qubits
iþ 1…N). Perfect sampling operates going through qubits
i ¼ 1; 2…N in a sweep and sampling each local Pauli
matrix according to the conditional probabilities
πρðσijσ1 � � � σi−1Þ [32,46,47].
Here, we aim to identify the stabilizer group GSðjψiÞ of

theMPS. In principle, one could perform a perfect sampling
of Pauli strings σ with the hope of sampling stabilizer
strings. However, as outlined before, the probability of
sampling a stabilizer string decreases exponentially as kψ
decrease. Nevertheless, in an MPS simulation a perfect
sampling is not the sole option, and one can alternatively
attempt to bias the extraction of stabilizer strings.
With this spirit, we introduce a novel sampling strategy.

In this approach, at a generic step i of the sweep, a certain
number K of substrings fσμ½1;i�gKμ¼1 are stored [here and in

the following we use σ½1;i� as short form for ðσ1…σiÞ]. We
also store the list of corresponding partial probabilities
fπρðσμ½1;i�ÞgKμ¼1, where
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πρðσ1 � � � σiÞ ¼
X

σ ∈PN−i

1

2N
Tr½ρσ1 � � � σiσ�2: ð1Þ

Ideally, one would like to keep track of all possible
substrings, thereby enabling the identification of those that
meet the stabilizer condition ΠρðσμÞ ¼ πρðσμ½1;N�Þ ¼ 1=2N

at i ¼ N. Yet, this is feasible only until the number of stored
substrings, which is 4i, remains under control. In practice,
one has to find effective ways of discarding certain sub-
strings to ensure that their total number remains within a
predefined maximum number N . Naturally, the goal is
to keep in memory only those substrings that have a
higher likelihood of resulting into stabilizer strings at
the end of the sweep. To this purpose, we adopt the
following two strategies. (i) We notice that for any stabilizer
string σ ∈GSðjψiÞ, the partial probability at site i is
lower bounded by 1=ð2iχiÞ; i.e., πρðσ½1;i�Þ≥1=ð2iχiÞ (see
Lemma 3 in Supplemental Material [39]). Accordingly,
one can discard all stored substrings for which
2iχiπρðσ½1;i�Þ < 1. (ii) When K exceed N , one can simply
sort the probabilities πρðσμ½1;i�Þ in descending order and

select the substrings corresponding to the highestN values
[48]. Indeed, these are the substrings with the highest
likelihood to maximize the final probability ΠρðσÞ at
the end of the sweep. Previous points establish a straight-
forward method for conducting a sampling process with
an enhanced ability to generate Pauli stabilizer strings.
At a generic step i, one has to compute the conditional
probabilities πðαjμÞ ¼ πρðσαjσμ½1;i−1�Þ (α∈ f0; 1; 2; 3g,
μ∈ f0; 1;…Kg) and, if their total number 4K exceed N ,
rules (i) and (ii) are used to choose N optimal substrings,
denoted by indices ðα⋆; μ⋆Þ, with all other alternatives
being discarded. The selected indices are then effectively
merged at the end of the step. The πðαjμÞ are obtained
through the tensor contraction

ð2Þ

using a set of environment matrices Lμ (as in Ref. [32]).
These serve to encode information regarding samples
collected from previously visited sites, and are updated
after the selection of optimal substrings as Lμ→
1=ð2πρðσα⋆ jσμ⋆½1;i−1�ÞÞ1=2 ·

P
s0;sðσα⋆Þs0sðAs0

i Þ†Lμ⋆As
i . The pre-

factor ensures a correct normalization; i.e., Tr½LμðLμÞ†� ¼ 1
at each step. Initially, K is set to 1 and Lμ ¼ ð1Þ.
We summarize the full stabilizer sampling recipe in
Algorithm 1. The output is a set of K ≤ N stabilizer
strings. In order to find the generators of GSðjψiÞ, one has

to extract a minimal set of independent Pauli generators out
of them. This task can be conveniently performed by
applying Gaussian elimination on the tableau matrix
obtained with the replacements σ0 → ð0; 0Þ, σ1 → ð1; 0Þ,
σ2 → ð1; 1Þ, σ3 → ð0; 1Þ from the list of samples [5]. This
tableau has shape K × 2N and its reduction can be
performed at cost OðNN2Þ, if N < N . In practice, these
operations are extremely fast since they involve only
bitwise operations. The final result is a set of independent
generators of GSðjψiÞ.
Iterations over modified states.—While these strategies

are already effective in ensuring a favorable probability of
sampling GSðjψiÞ, this can be further increased. Firstly,
after completing the sampling sweep from i ¼ 1 to i ¼ N,
one can repeat it in the reverse direction, i.e., from i ¼ N to
i ¼ 1. Before the reversed sweep one has to put the MPS in
the left-normalized gauge [11]. Secondly, one can repeat
the sampling with modified states jψ 0i ¼ UCjψi, where
UC ∈ CN . Indeed, the dimension of the stabilizer group is
not altered by Clifford unitaries, whereas conditional
probabilities are reshuffled. This enables the algorithm to
effectively target unsampled regions of GSðjψiÞ. In prac-
tice, one can set UC as a random Clifford circuit of depth D
and evolve the MPS to obtain jψ 0i. D should remain small
to avoid excessively increasing the bond dimension of jψ 0i
[which grows as expðDÞ]. Note that once the sampling of
jψ 0i is completed one has to map back the sampled Pauli
strings in order to find stabilizer strings of the original state,
since GSðjψiÞ ¼ UCGSðjψ 0iÞU†

C. This task can be easily
achieved at costOðN2Þ in the tableau formalism, because it
involves only applying Clifford unitaries [19,49]. In prac-
tice, one iterates the sampling of modified states jψ 0i for
several random UC. At each iteration, one has to collect the
newly sampled stabilizer Pauli strings, incorporate them
into the tableau containing previously sampled generators,
and apply Gaussian elimination to find a new set of
independent generators of GSðjψiÞ. The total number of

Algorithm 1. Stabilizer sampling from MPS.

Input: a right-normalized MPS jψi of size N
1: Initialize: K ¼ 1, fLμgKμ¼1 ¼ fð1ÞgKμ¼1, fΠμgKμ¼1 ¼ f1gKμ¼1.
2: for (i ¼ 1, i ¼ N, iþþ) do
3: Compute πðαjμÞ ¼ πρðσαjσμ½1;i−1�Þ

for α∈ f0; 1; 2; 3g and μ∈ f1; 2…Kg
4: Select the ðα⋆; μ⋆Þ s.t. πðα⋆jμ⋆ÞΠμ⋆ ≥ 1=ð2iχiÞ
5: Set K ¼ minðjfðα⋆; μ⋆Þgj;N Þ
6: Select K indices ðα⋆; μ⋆Þ corresponding to

largest values of πðαjμÞΠμ, discard the others
7: for (μ ¼ 1, μ ¼ K, μþþ) do
8: Set fσμ½1;i�g ¼ fðσμ⋆½1;i−1�; σα⋆Þg
9: Update fΠμg →; fπðα⋆jμ⋆ÞΠμ⋆g and fLμg
10: end for
11: end for

Output: K ≤ N stabilizer Pauli string fσμgKμ¼1
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these, which we dub k, can only increase with each iteration
(converging to the true value kψ ).
Numerical experiments.—We prepare the state jN;NTi≡

j0i⊗N−NT jTi⊗NT , where jTi¼TðHj0iÞ¼ðj0iþeiπ=4j1iÞ= ffiffiffi
2

p
is a single-qubitmagical state. Afterward,we apply a random
Clifford circuit UC ∈ CN obtaining jψi ¼ UCjN;NTi. By
construction kψ ¼ N − NT , and the stabilizer generators of
jψi can be obtained by evolving thegenerators fσ31…σ3N−NT

g
of GSðjN;NTiÞ within the tableau formalism. UC has depth
N, and each layer consists of gates selected randomly from
the Clifford generators {H,S,CNOT}. We contract the circuit
to obtain jψi as an MPS, and we apply our method to detect
its stabilizer generators.
In Fig. 1, we represent (one minus) the probability psucc

of correctly obtaining k ¼ kψ as N increases, for N ¼ 103

and two values of NT=N (other values, not shown here,
have been tested, with similar results). psucc is assessed
through the iteration of the method over 103 realizations
of UC. For each case, we consider 5 iterations over
modified states (with D ¼ 1). Notice that at the final
iteration, for all values of NT=N, we achieve psucc ≃ 1
within the statistical uncertainty, meaning that our tech-
nique is always able to learn entirely GSðjψiÞ. In Fig. 2,

we represent the number k of generators found by
our method as a function of subsequent iterations
(iter ¼ 1; 2; 3;…) over modified states for various sample
sizes N . We set N ¼ 50 and NT ¼ 25, so that kψ ¼
N − NT ¼ 25, and we examine 103 realizations of UC.
In this case, MPS bond dimension increases up to χ ∼ 64.
We observe that even with N ∼ oð10Þ, performing around
10 iterations over modified states is enough to learn the
complete stabilizer group.
Afterward, we examine a doped circuit consisting of

random Clifford layers, interleaved with layers containing a
constant number τ of T gates placed on random sites.
Clifford layers have a staircase geometry, and gates are
uniformly sampled from the two-qubit Clifford group [49].
We consider the initial state j0i⊗N and we investigate how
its stabilizer group, which has dimension N, is reduced by
the application of T gates. In Fig. 3, we show the number of
generators k as a function of the discrete circuit time
n ¼ 0; 1; 2; 3;… for τ ¼ 3 and N ¼ 15, 30, 45. Data are
averaged over many circuit realizations (trajectories). MPS
bond dimension increase up to χ ∼ 1024 for N ¼ 45.
Dashed lines represent the minimum possible number of
generators at time n, namely, kminðnÞ ¼ N − nτ (see
Lemma 1 in Supplemental Material [39]). Data show that
in typical circuit realizations the value of k at step n
fluctuates above this line. This leads to a prolonged
preservation of certain stabilizer symmetries for a time n
longer than the theoretically required minimum time
nmin ¼ N=τ. A suitable rescaling of n and k (average)
with N and nmin, respectively (see inset), suggests that this
effect might vanish in the thermodynamic limit, whereas
fluctuations of k might still be relevant.

FIG. 1. (One minus) the probability of correctly collecting all
N − NT stabilizer generators of jψi ¼ UCjN;NTi. Different
symbols refer to iterations 1,2,3,4,5 over modified states.

FIG. 2. Number of discovered generators k for successive
iterations (iter) of the algorithm over modified states and different
sample sizesN (here, N ¼ 50,NT ¼ 25, kψ ¼ 25). In the inset, a
zoom of the same plot is displayed.

FIG. 3. Number of stabilizer generators k for a state evolving
through a doped quantum circuit, which comprises a random
Clifford layer followed by a layer of τ ¼ 3 T gates. Integer n is
the discrete time of the circuit (i.e., n ¼ 1 after applying a random
Clifford layer followed by a T layer). Pale colors represent single
trajectories (Ntraj ¼ 60 for N ¼ 15, 30, Ntraj ¼ 20 for N ¼ 45),
bold lines are averages. Inset: same plot with k rescaled by N and
n rescaled by nmin.
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Conclusions and outlook.—We introduced an effective
classical method to learn the stabilizer group of a given
MPS. Stabilizer strings are extracted via a biased sampling
in the Pauli (Bell) basis over the MPS. During the sampling,
on the flight, we discard all Pauli substrings σ½1;i� at site i
such that πρðσ½1;i�Þ < 1=ð2iχiÞ, relying on an exact theo-
retical argument. Manipulating the MPS has a computa-
tional complexity Oðχ3Þ, implying no severe constraints on
the bond dimension χ. In comparison, our method sur-
passes approaches based on the MPS exact replica trick,
where the scaling would be at least Oðχ6Þ (due to the bond
dimension of the two replica MPSs being χ2). We have
shown the effectiveness of our algorithm in T-doped states
after information scrambling induced by a Clifford circuit.
In addition, we analyzed a prototypical case of chaotic
nonequilibrium dynamics induced by the interplay of local
magic gates and entangling Clifford layers. For different
system sizes and up to bond dimension χ ∼ 103, we studied
the dynamical depletion of the stabilizer group. We have
shown that the signature of stabilizerness, which is theo-
retically lower bonded by N − τn during the discrete time
steps n, definitively survives for longer times with non-
trivial fluctuations over the trajectories. Additional inves-
tigations may involve comparing our method with the
recently introduced Bell difference sampling. This method
ensures an overestimation of the stabilizer group with only
polðNÞ Bell samples [50]. With our method’s ability to
systematically access high-weight regions in the distribu-
tion ΠρðσÞ, there is potential to extend its application
beyond learning just the stabilizer group, but also the state
jψ̃i such that jψi ¼ UCj0i⊗kψ jψ̃i, without requiring a full
tomography [50]. Our advancements could enable hybrid
MPS-stabilizer techniques, providing new methods for
classically simulating complex quantum states using
knowledge of the stabilizer group.
Finally, let us examine the experimental feasibility of our

algorithm: as a matter of fact, the main challenge is the
postselection problem due to the need to estimate partial or
conditional probabilities; however, a potential solution
could involve initially learning the MPS representation
of the (low-entangled) state [51], then followed by applying
our algorithm on a classical computer.

Note added.—Recently, Ref. [52] appeared, where they
made use of a different approach, based on a compressed-
MPS folding technique, to reduce the cost of the exact
replica trick in computing nonstabilizerness.
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[15] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete,

Rev. Mod. Phys. 93, 045003 (2021).
[16] D. Gottesman, arXiv:quant-ph/9705052.
[17] D. Gottesman, Phys. Rev. A 57, 127 (1998).
[18] D. Gottesman, arXiv:9807006.
[19] S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328

(2004).
[20] J. Dehaene and B. De Moor, Phys. Rev. A 68, 042318

(2003).
[21] Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
[22] M. Howard and E. Campbell, Phys. Rev. Lett. 118, 090501

(2017).
[23] L. Leone, S. F. E. Oliviero, and A. Hamma, Phys. Rev. Lett.

128, 050402 (2022).
[24] S. F. E. Oliviero, L. Leone, and A. Hamma, Phys. Rev. A

106, 042426 (2022).
[25] E. Tirrito, P. S. Tarabunga, G. Lami, T. Chanda, L. Leone,

S. F. E. Oliviero, M. Dalmonte, M. Collura, and A. Hamma,
Phys. Rev. A 109, L040401 (2024).

[26] D. Rattacaso, L. Leone, S. F. E. Oliviero, and A. Hamma,
Phys. Rev. A 108, 042407 (2023).

[27] X. Turkeshi, M. Schirò, and P. Sierant, Phys. Rev. A 108,
042408 (2023).

PHYSICAL REVIEW LETTERS 133, 010602 (2024)

010602-5

https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1126/science.aaa7432
https://arXiv.org/abs/2403.07111
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.21468/scipostphyslectnotes.8
https://doi.org/10.21468/scipostphyslectnotes.8
https://doi.org/10.1016/j.aop.2010.09.012
https://arXiv.org/abs/1912.10049
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1088/1742-5468/2007/08/p08024
https://doi.org/10.1103/RevModPhys.93.045003
https://arXiv.org/abs/quant-ph/9705052
https://doi.org/10.1103/PhysRevA.57.127
https://arXiv.org/abs/9807006
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.68.042318
https://doi.org/10.1103/PhysRevA.68.042318
https://doi.org/10.1103/PRXQuantum.3.020333
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.128.050402
https://doi.org/10.1103/PhysRevLett.128.050402
https://doi.org/10.1103/PhysRevA.106.042426
https://doi.org/10.1103/PhysRevA.106.042426
https://doi.org/10.1103/PhysRevA.109.L040401
https://doi.org/10.1103/PhysRevA.108.042407
https://doi.org/10.1103/PhysRevA.108.042408
https://doi.org/10.1103/PhysRevA.108.042408


[28] X. Turkeshi, A. Dymarsky, and P. Sierant, arXiv:
2312.11631.

[29] M. Bejan, C. McLauchlan, and B. Béri, arXiv:2312.00132.
[30] S. F. E. Oliviero, L. Leone, A. Hamma, and S. Lloyd, npj

Quantum Inf. 8, 148 (2022).
[31] P. Niroula, C. D. White, Q. Wang, S. Johri, D. Zhu, C.

Monroe, C. Noel, and M. J. Gullans, arXiv:2304.10481.
[32] G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401

(2023).
[33] T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023).
[34] T. Haug and L. Piroli, Quantum 7, 1092 (2023).
[35] P. S. Tarabunga, E. Tirrito, T. Chanda, and M. Dalmonte,

PRX Quantum 4, 040317 (2023).
[36] P. S. Tarabunga, arXiv:2309.00676.
[37] L. Leone and L. Bittel, arXiv:2404.11652.
[38] M. Beverland, E. Campbell, M. Howard, and V.

Kliuchnikov, Quantum Sci. Technol. 5, 035009 (2020).
[39] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.133.010602 for math-
ematical facts regarding the stabilizer group used in the main
text, as well as the proof of the bound on partial probabilities
of an MPS.

[40] S. Grewal, V. Iyer, W. Kretschmer, and D. Liang, arXiv:
2304.13915.

[41] J. Jiang and X. Wang, Phys. Rev. Appl. 19, 034052
(2023).

[42] A. Montanaro, arXiv:1707.04012.
[43] A. Anshu and S. Arunachalam, arXiv:2305.20069.
[44] L.Leone, S. F. E.Oliviero, andA.Hamma, arXiv:2305.15398.
[45] D. Hangleiter and M. J. Gullans, arXiv:2306.00083.
[46] E. M. Stoudenmire and S. R. White, New J. Phys. 12,

055026 (2010).
[47] A. J. Ferris and G. Vidal, Phys. Rev. B 85, 165146 (2012).
[48] A. Chertkov, G. Ryzhakov, G. Novikov, and I. Oseledets,

arXiv:2209.14808.
[49] C. Gidney, Quantum 5, 497 (2021).
[50] S. Grewal, V. Iyer, W. Kretschmer, and D. Liang, arXiv:

2305.13409.
[51] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D.

Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and
Y.-K. Liu, Nat. Commun. 1, 149 (2010).

[52] P. S. Tarabunga, E. Tirrito, M. C. Bañuls, and M. Dalmonte,
preceding Letter, Phys. Rev. Lett. 133, 010601 (2024).

PHYSICAL REVIEW LETTERS 133, 010602 (2024)

010602-6

https://arXiv.org/abs/2312.11631
https://arXiv.org/abs/2312.11631
https://arXiv.org/abs/2312.00132
https://doi.org/10.1038/s41534-022-00666-5
https://doi.org/10.1038/s41534-022-00666-5
https://arXiv.org/abs/2304.10481
https://doi.org/10.1103/PhysRevLett.131.180401
https://doi.org/10.1103/PhysRevLett.131.180401
https://doi.org/10.1103/PhysRevB.107.035148
https://doi.org/10.22331/q-2023-08-28-1092
https://doi.org/10.1103/PRXQuantum.4.040317
https://arXiv.org/abs/2309.00676
https://arXiv.org/abs/2404.11652
https://doi.org/10.1088/2058-9565/ab8963
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.010602
https://arXiv.org/abs/2304.13915
https://arXiv.org/abs/2304.13915
https://doi.org/10.1103/PhysRevApplied.19.034052
https://doi.org/10.1103/PhysRevApplied.19.034052
https://arXiv.org/abs/1707.04012
https://arXiv.org/abs/2305.20069
https://arXiv.org/abs/2305.15398
https://arXiv.org/abs/2306.00083
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1103/PhysRevB.85.165146
https://arXiv.org/abs/2209.14808
https://doi.org/10.22331/q-2021-07-06-497
https://arXiv.org/abs/2305.13409
https://arXiv.org/abs/2305.13409
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/PhysRevLett.133.010601

