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In the realm of fault-tolerant quantum computing, stabilizer operations play a pivotal role, characterized
by their remarkable efficiency in classical simulation. This efficiency sets them apart from nonstabilizer
operations within the quantum computational theory. In this Letter, we investigate the limitations of
classically simulable measurements in distinguishing quantum states. We demonstrate that any pure magic
state and its orthogonal complement of odd prime dimensions cannot be unambiguously distinguished by
stabilizer operations, regardless of how many copies of the states are supplied. We also reveal intrinsic
similarities and distinctions between the quantum resource theories of magic states and entanglement in
quantum state discrimination. The results emphasize the inherent limitations of classically simulable
measurements and contribute to a deeper understanding of the quantum-classical boundary.
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Introduction.—The computational power of quantum
computers, including a substantial speed-up over their
classical counterparts in solving certain number-theoretic
problems [1–3] and simulating quantum systems [4,5], can
only be unlocked with a scalable quantum computing
solution. Fault-tolerant quantum computation (FTQC) pro-
vides a scheme to overcome obstacles of physical imple-
mentation such as decoherence and inaccuracies [6–8].
A cornerstone of the FTQC resides in stabilizer circuits,

comprised exclusively of the Clifford gates. It is well
known that the stabilizer circuits can be efficiently classi-
cally simulated [9], and therefore do not confer any
quantum computational advantage. However, magic states
are quantum states that cannot be prepared using the
stabilizer formalism [10], and can promote the stabilizer
circuits to universal quantum computation via state injec-
tion [11–13]. In this context, the magic states and non-
stabilizer operations characterize the computational power
of universal quantum computation.
While extensive research has explored the stabilizerness

of quantum states and gates within circuits [14,15], a
crucial yet underexplored facet is the stabilizerness of
quantum measurements [16]—a critical process for reliably
decoding classical information encoded in quantum states.
In general, it is not applicable for one to access the physical
properties of a locally interacting quantum many-body
system by classical simulation. However, when information
is encoded in a stabilizer state, the decoding process via
stabilizer measurements remains efficiently classically
simulable [17]. This prompts a fundamental question:
can stabilizer measurements perfectly decode all tasks,
or are there inherent limitations? Investigating the

distinction in decoding capabilities between stabilizer
measurements, which are classically efficiently simulable,
and other measurements becomes paramount for under-
standing the intricate relationship between classical infor-
mation encoded in quantum states and the measurement
process.
The ability to retrieve classical information from quan-

tum systems varies significantly with different measure-
ments. One celebrated example is the quantum nonlocality
without entanglement [18]. In essence, global measure-
ments can always perfectly distinguish mutually orthogonal
quantum states, while there is a set of product states that
cannot be distinguished via local quantum operations
and classical communications (LOCC). This distinction
between global and local measurements has garnered
substantial attention, proving to be intricately linked with
quantum entanglement theory and the concept of non-
locality [19–26]. This primitive gap between distinct
classes of measurements makes quantum state discrimina-
tion (QSD) a crucial aspect of fundamental physics [27,28],
where it can be used to test the principles and nature of
quantum mechanics. Moreover, QSD has led to fruitful
applications in quantum cryptography [29–31], quantum
dimension witness [32,33], and quantum data hiding
[34–36].
Inspired by the intrinsic behavior of different measure-

ments in entanglement theory, we raise a natural and
important question for understanding the limit and power
of the classically simulable measurements. In particular, is
there a sharp gap between the classically simulable mea-
surements and those that could potentially promote uni-
versal quantum computation? If such a gap exists, it will
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imply considerable advantages that the resource of magic
states can provide to the measurement in quantum infor-
mation processing.
In this Letter, we give an affirmative answer to this

question. We show that any pure magic state and its
orthogonal complement cannot be unambiguously distin-
guished via positive operator-valued measures (POVMs)
having positive discrete Wigner functions, which are
classically simulable and strictly include stabilizer mea-
surements [17,37], no matter how many copies of the states
are supplied. We also demonstrate an exponential decay on
the asymptotic minimal error probability for distinguishing
the strange state and its orthogonal complement via
POVMs having positive discrete Wigner functions, where
the strange state is a representative qutrit magic state
defined as jSi ≔ ðj1i − j2iÞ= ffiffiffi

2
p

[10].
In addition, we show that every set of orthogonal pure

stabilizer states can be unambiguously distinguished via
POVMs having positive discrete Wigner functions, indicat-
ing there is no similar phenomenon as the unextendible
product basis (UPB) in entanglement theory. Moreover, we
demonstrate that even with the assistance of one or two
copies of any qutrit magic state, the strange state and its
orthogonal complement remain indistinguishable via
POVMs having positive discrete Wigner functions. It is
different from entanglement theory where a single copy of
the Bell state is always sufficient to perfectly distinguish a
pure entangled state and its orthogonal complement using
PPT POVMs [38].
Preliminaries.—To characterize the stabilizerness of

quantum states and operations, we first recall the definition
of the discrete Wigner function [39–41]. Throughout the
Letter, we study the Hilbert space Hd with an odd
dimension d, and if the dimension is not prime, it should
be understood as a tensor product of Hilbert spaces each
having an odd prime dimension. Let LðHdÞ be the space of
linear operators mappingHd to itself and DðHdÞ be the set
of density operators acting on Hd. It is worth noting that
qudit-based quantum computing is gaining increasing
significance, as numerous problems in the field are await-
ing further exploration [42].
Given a standard computational basis fjjigj¼0;…;d−1, the

unitary boost and shift operators X; Z∈LðHdÞ are defined
by Xjji ¼ jj ⊕ 1i, Zjji ¼ wjjji, where w ¼ e2πi=d and ⊕
is the addition in Zd. The discrete phase space of a single
d-level system is Zd × Zd. At each point u ¼ ða1; a2Þ∈
Zd × Zd, the discreteWigner function of a state ρ is defined
as WρðuÞ ≔ ð1=dÞTr½Auρ�, where Au is the phase-space

point operator given by A0≔ð1=dÞPuTu, Au ≔ TuA0T
†
u,

and Tu ¼ τ−a1a2Za1Xa2 , τ ¼ eðdþ1Þπi=d. We say a state ρ has
positive discrete Wigner functions (PWFs) if WρðuÞ ≥ 0,
∀ u∈Zd × Zd and briefly call it the PWF state. Let E ¼
fEjgn−1j¼0 be an n-valued POVM acting on Hd withP

n−1
j¼0 Ej ¼ 1. The discrete Wigner function of each effect

Ej is given byWðEjjuÞ ¼ Tr½EjAu�. E is said to be a PWF
POVM if each Ej has PWFs. More details can be found in
the Supplemental Material [43].
In odd prime dimensions, quantum circuits with initial

states and all subsequent quantum operations having
PWFs, which strictly include stabilizer (STAB) operations,
admit efficient classical simulations [17,37], extending the
Gottesman-Knill theorem. On the contrary, negativity in
Wigner functions is usually regarded as an indication of
“nonclassicality” [44,45] and identified as a computational
resource. Thus, PWF POVMs are recognized as classically
simulable measurements [46]. The exclusive applicability
of these results to odd prime dimensions may stem from the
unique property that only quantum systems of such
dimensions exhibit covariance of the Wigner function with
respect to Clifford operations [47]. It is worth noting that
there exist mixed magic states with PWFs, rendering them
useless for magic state distillation [13]. These states are
termed bound universal states [48], analogous to states
with a positive partial transpose (PPT) in entanglement
distillation [49]. Therefore, PWF POVMs strictly include
all STAB POVMs as

STAB POVMs ⊊ PWF POVMs ⊊ All POVMs:

Asymptotic limits of PWF POVMs for a pure state and its
orthogonal complement.—Our primary aim is to elucidate
the constraints inherent in measurements that can be
efficiently classically simulated. QSD describes a general
process of extracting classical information from quantum
systems via measurements. To distinguish two states, one
usually performs a two-outcome POVM on the received
state and then determines which state it is according to the
measurement outcome.
It is well known that the asymptotic regime of QSD can

unravel the underlying mechanism of entanglement
[22,25,50]. The limit of local measurements exhibits a
fundamental distinction between pure and mixed states
[22]. Moreover, the asymptotic error probability in QSD is
interlinked with the quantum relative entropy, Petz’s Rényi
divergence [51], and the sandwiched Rényi divergence
[52,53]. Notably, in the regime of many copies, greater
flexibility and options exist for the potential POVMs.
However, we shall show a wide range of quantum states
that cannot be unambiguously distinguished via PWF
POVMs, including STAB POVMs, no matter how many
copies are supplied.
Theorem 1.—Let ρ0 ∈DðHdÞ be a pure magic state and

ρ1 ¼ ð1 − ρ0Þ=ðd − 1Þ be its orthogonal complement,
where 1 is the identity matrix. Then for any integer
n∈Zþ, ρ⊗n

0 and ρ⊗n
1 cannot be unambiguously distin-

guished by PWF POVMs.
Theorem 1 reveals a significant disparity in the ability of

PWF POVMs and other measurements in QSD. It indicates
that the classical information you are allowed to extract
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from the encoded states is limited when the measurements
allowed are restricted to those classically simulable ones.
The limitation of the classically simulable measurements
cannot be overcome even by increasing the number of
copies of the states.
From the angle of quantum resource theories (QRTs)

[54], this theorem unravels the challenge of distinguishing
a pure resourceful state and its orthogonal complement via
free operations in the QRT of magic states. This parallels a
phenomenon in entanglement theory where any pure
entangled state and its orthogonal complement cannot be
unambiguously distinguished via PPT POVMs with an
arbitrary number of copies provided [38,50,55]. However,
perfect distinguishability is achievable through global
measurements. Notably, Takagi and Regula introduced a
quantifier of resourcefulness for measurements [56], dem-
onstrating that resourceful measurements can outperform
free measurements in certain QSD tasks [57]. Here, our
result further specifies the constraints of free measurements
within the QRT of magic states, revealing that free
operations cannot distinguish a pure resourceful state
and its orthogonal complement, even in the many-copy
regime.
The proof of Theorem 1 relies on Lemma 2 which

identifies the feature of PWF unextendible subspaces, and a
fact that the orthogonal complement of any pure magic
state is PWF since −1=d ≤ WρðuÞ ≤ 1=d, ∀ ρ∈DðHdÞ,∀ u [47]. We call a subspace S ⊆ Hd PWF unextendible if
there is no PWF state ρ whose support is a subspace of S⊥,
and PWF extendible otherwise. A subspace S ⊆ Hd is
called strongly PWF unextendible if for any positive integer
n, S⊗n is PWF unextendible. As a simple example, if we let
S⊥ be a one-dimensional subspace spanned by the strange
state jSi, then S is (strongly) PWF unextendible. In fact,
the unextendibility of subspaces indicates the distinguish-
ability of quantum states. It is well known that a UPB for a
multipartite quantum system indicates indistinguishability
under LOCC operations [26].
Lemma 2.—For a PWF unextendible subspace S ⊆ Hd,

if there is a PWF state ρ∈DðSÞ such that suppðρÞ ¼ S,
then S is strongly PWF unextendible.
We note that Lemma 2 implies that for a set of

orthogonal quantum states fρ1;…; ρng, if there is a ρi
whose support is strongly PWF unextendible, then
fρ1;…; ρng cannot be unambiguously distinguished by
PWF POVMs no matter how many copies are used. This
leads to and generalizes the result of Theorem 1. We sketch
the proof of Lemma 2 as follows.
First, we demonstrate that S⊗2 is PWF unextendible

through a proof by contradiction. Suppose ρs ∈DðSÞ is a
PWF state such that suppðρsÞ ¼ S. If there is a PWF state σ
supporting on ðS⊗2Þ⊥, then we have Tr½σðρs ⊗ ρsÞ� ¼ 0
which leads to Tr½ρsTr2½σð1 ⊗ ρsÞ�� ¼ 0. It is easy to check
that σ0 ¼ Tr2½σð1 ⊗ ρsÞ� is a positive semi-definite oper-
ator with PWFs if it is nonzero. If it is zero, we can check

that Tr1 σ is a positive semi-definite operator with PWFs. In
either case, we will get a PWF state supported on S⊥, a
contradiction to the PWF unextendibility of S. Hence, we
conclude that S⊗2 is PWF unextendible. Using a similar
technique, we can conclusively demonstrate that S⊗n is
PWF unextendible for any positive integer n. The details
can be found in Supplemental Material [43].
Asymptotic limits of PWF POVMs for mixed states.—

Followed by Lemma 2, we note that Theorem 1 displays a
special case of a strongly PWF unextendible subspace. The
orthogonal complement of a pure magic state turns out to
be a PWF state which lies in a d − 1 dimensional PWF
unextendible subspace. This prompts an intriguing inquiry
into the minimal dimension of such subspace. Notably, we
will show there is a much smaller strongly PWF unextend-
ible subspace, indicating the presence of mixed magic
states that cannot be unambiguously distinguished from
their orthogonal complements via PWF POVMs in the
many-copy scenario.
Proposition 3.—There exists a strongly PWF unextend-

ible subspace S ⊆ Hd of dimension ðdþ 1Þ=2.
This proposition implies there is a ðd − 1Þ=2-

dimensional subspace in which all states are magic states.
The detailed proof is in the Supplemental Material [43] and
we give a simple example as follows.
Example 1.—Consider a qudit system with d ¼ 5. We

have the following basis that spans H5.

jv0i ¼ j0i;
jv1i ¼ ðj1i þ j2i þ j3i þ j4iÞ=2;
jv2i ¼ ð−j1i þ j2i þ j3i − j4iÞ=2;
jv3i ¼ ðj1i − j2i þ j3i − j4iÞ=2;
jv4i ¼ ðj1i þ j2i − j3i − j4iÞ=2: ð1Þ

Let ρ0¼ðjv0ihv0jþjv1ihv1jþjv2ihv2jÞ=3, ρ1¼ðjv3ihv3jþ
jv4ihv4jÞ=2, and S0 ¼ suppðρ0Þ, S1 ¼ suppðρ1Þ. Followed
by the idea in the proof of Proposition 3, one can check that
there is no PWF state in S1, and ρ0 is a PWF state. Thus, S0

is a strongly PWF unextendible subspace. ρ0 and ρ1 cannot
be unambiguously distinguished by PWF POVMs, no
matter how many copies of them are supplied.
More generally, we establish an easy-to-compute cri-

terion for identifying the circumstances under which two
quantum states cannot be unambiguously distinguished by
PWF POVMs in the many-copy scenario.
Theorem 4.—Given ρ0; ρ1 ∈DðHdÞ, if any of them has

strictly positive discrete Wigner functions, i.e.,WρiðuÞ>0,
∀ u, then for any integer n∈Zþ, ρ⊗n

0 , and ρ⊗n
1 cannot be

unambiguously distinguished by PWF POVMs.
Theorem 4 is of broad applicability for both pure and

mixed states. The indistinguishability can be checked
through a simple computation of the discrete Wigner
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functions, streamlining the conventional method by ana-
lyzing exponentially large Hilbert space.
Minimum error discrimination by PWF POVMs.—After

characterizing the limits of PWF POVMs, we further study
the minimum error QSD to unveil the capabilities inherent
in PWF POVMs. For states ρ0 and ρ1 with prior probability
p and 1 − p, respectively, we denote PPWF

e ðρ0; ρ1; pÞ as the
optimal error probability of distinguishing them by PWF
POVMs. Mathematically, this optimal error probability can
be expressed via semidefinite programming (SDP) [58] as
follows.

PPWF
e ¼ min

E0;E1

ð1 − pÞTrðE0ρ1Þ þ pTrðE1ρ0Þ; ð2aÞ

s:t: E0 ≥ 0; E1 ≥ 0; E0 þE1 ¼ 1; ð2bÞ

WðE0juÞ≥0; WðE1juÞ≥0; ∀ u; ð2cÞ

where Eq. (2c) ensures fE0; E1g is a PWF POVM. We
provide the dual SDP in the Supplemental Material [43].
For ρ0 to be the strange state and ρ1 to be its orthogonal
complement, we demonstrate the following asymptotic
error behavior.
Proposition 5.—Let ρ0 be the strange state jSihSj and

ρ1 ¼ ð1 − jSihSjÞ=2 be its orthogonal complement. For
n∈Zþ, we have

PPWF
e

�
ρ⊗n
0 ; ρ⊗n

1 ;
1

2

�
¼ 1

2nþ1
: ð3Þ

The optimal PWF POVM is fE; 1 − Eg, where E ¼
ðjKihKj þ jSihSjÞ⊗n and jKi ¼ ðj1i þ j2iÞ= ffiffiffi

2
p

.
We remark what we obtain here is the optimal error

probability usingPWFPOVMs to distinguishn copies of the
strange state and its orthogonal complement. We first find
the protocol above for the desired error probability and then
utilize the dual SDP of (2) to establish the optimality of this
protocol. The detailed proof is provided in the Supplemental
Material [43]. It can be seen that the optimal error probability
will exponentially decay with respect to the number of
copies supplied. Nevertheless, it is important to note that the
error persists for all finite values of n, aligning with the
indistinguishability established in Theorem 1.
We further discuss the relationship between Proposition 5

and the Chernoff exponent in hypothesis testing. The
celebrated quantum Chernoff theorem [51,59,60] estab-
lishes that ξCðρ0;ρ1Þ≔limn→∞−ð1=nÞlogPeðρ⊗n

0 ;ρ⊗n
1 ;pÞ¼

−min0≤s≤1 logTr½ρ1−s0 ρs1�, wherePeðρ⊗n
0 ; ρ⊗n

1 ; pÞ is the aver-
age error of distinguishing ρ0 and ρ1 via global measure-
ments, ξCðρ0; ρ1Þ is the so-called Chernoff exponent. The
Chernoff exponent concerning a specific class of measure-
ments, e.g., {LOCC,PPT,SEP}, is defined in [50]. The
authors proved that the Chernoff bounds in these cases
are indeed faithful by showing an exponential decay of

PX
e ðρ0; ρ1; pÞ where X∈ fLOCC; PPT; SEPg. Similarly,

Proposition 5 may give an insight that the Chernoff bound
concerning PWF measurements is also faithful.
Proposition 5 also implies applications in quantum data

hiding [34,61,62]. Despite the original data-hiding setting
where pairs of states of a bipartite system are perfectly
distinguishable via general entangled measurements yet
almost indistinguishable under LOCC, it is conceivable to
extend data-hiding techniques to broader contexts dictated
by specific physical circumstances [56]. As discussed in
[56], one may consider the scenario that information is
encoded in a way that Pauli measurements have less
capability of decoding it than arbitrary measurements.
Then only the party with the ability to generate magic
can reliably retrieve the message. Here, we define k · kPWF
and RðPWFÞ as the distinguishability norm and the data-
hiding ratio [62] associated with PWF POVMs, respec-
tively. Proposition 5 directly gives a lower bound on the
data-hiding ratio against PWF POVMs as follows.

RðPWFÞ ¼ max
kpρ − ð1 − pÞσkAll
kpρ − ð1 − pÞσkPWF

≥
1

1 − 2−n
: ð4Þ

We also observe that a potential correlation between
RðPWFÞ and the generalized robustness of measurement
[56] merits further investigation, with preliminary evidence
provided in the Supplemental Material [43].
Distinctions between QRT of magic states and

entanglement in QSD tasks.—The asymptotic limits of
PWF POVMs share similarities with LOCC operations,
both of which are considered free within their respective
resource theories. Whereas, there are fundamental distinc-
tions between the QRT of magic states and entanglement,
considering the QSD tasks. In Table I, we display a
comparison between the QRT of magic states and entan-
glement in QSD, including their similarities and the
following distinctions.
Recall that in entanglement theory, the UPB is an incom-

plete orthogonal product basis whose complementary sub-
space contains no product state [26]. It shows examples of

TABLE I. Comparison between the QRT of magic states and
entanglement. The second row represents if any resourceful pure
state and its orthogonal complement are indistinguishable by free
measurements in the many-copy scenario. The third row repre-
sents whether there is a UPB phenomenon. The last row
represents whether the assistance of one copy of the maximally
resourceful state is sufficient for perfect discrimination.

QRT of
magic states

QRT of
entanglement

Asymptotic limits of free POVMs ✓ ✓
Existence of UPB phenomenon ✗ ✓
Perfect discrimination with the aid
of one copy of maximal resource

✗ ✓
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orthogonal product states that cannot be perfectly distin-
guished by LOCC operations. Correspondingly, we may
imaginewhether there is a similar “UPB” phenomenon in the
QRT of magic states. That is if there is an incomplete
orthogonal stabilizer basis whose complementary subspace
contains no stabilizer state.We show that this is not the case as
follows.
Theorem 6.—For a subspace S ∈Hd, if S has a set of

basis fjψ iign−1i¼0 where every jψ ii is a stabilizer state, then S
is PWF extendible.
A direct consequence of this theorem is that any set of

orthogonal pure stabilizer states fjψ iign−1i¼0 can be unam-
biguously distinguished via PWF POVMs as we can
choose Ei ¼ jψ iihψ ij for i ¼ 0; 1;…; n − 1 and En ¼ 1−P

n−1
i¼0 jψ iihψ ij. Therefore, we confirm the absence of an

analogous UPB phenomenon in the QRT of magic states.
Besides, it was shown that one copy of the Bell state is

always sufficient for perfectly distinguishing any pure state
ρ0 and its orthogonal complement ρ1 via PPT POVMs [38],
i.e., distinguishing ρ0 ⊗ Φþ

2 and ρ1 ⊗ Φþ
2 . However,

things are different in the QRT of magic states where we
find the strange state and its orthogonal complement cannot
be perfectly distinguished by PWF POVMs with the
assistance of one or two copies of any qutrit magic state.
Proposition 7.—Let ρ0 be the strange state jSihSj and

ρ1 ¼ ð1 − jSihSjÞ=2 be its orthogonal complement. ρ0 ⊗
τ⊗k and ρ1 ⊗ τ⊗k cannot be perfectly distinguished by
PWF POVMs for any qutrit magic state τ and k ¼ 1 or 2.
The main idea is to analyze the minimal mana [63] τ⊗k

must have to perfectly distinguish ρ0 ⊗ τ⊗k and ρ1 ⊗ τ⊗k

by PWF POVMs. A similar result can be obtained for the
Norell state jNi ≔ ð−j0i þ 2j1i − j2iÞ= ffiffiffi

6
p

[10]. Hence,
we have witnessed the distinctions of the QRT of magic
states and entanglement in regard to the resource cost for
perfect discrimination.
Concluding remarks.—We have explored the limitations

of PWF POVMs which can be efficiently classically
simulated and strictly include all stabilizer measurements.
Our results show that the QRT of magic states and
entanglement exhibit significant similarities and distinc-
tions in quantum state discrimination.
These results have implications in various fields, includ-

ing connections between the QRT of magic states and
quantum data hiding [36,56,61,62]. It remains interesting to
further study the limits of stabilizer measurements or
classically simulable ones in quantum channel discrimina-
tion [64–66] and other operational tasks [67–69]. Note that
as it is still open whether all operations with negative
discrete Wigner functions are useful for magic state
distillation [10], a comprehensive characterization of the
quantum-classical boundary of measurements is still
needed. Additionally, it is interesting to study the limi-
tations of stabilizer measurements in a multiqubit system
[70–73], and recent advances in generalized phase-space

simulation methods for qubits [74,75] offer potential
avenues to explore this, which we will leave to future work.
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