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It is well known that the set of statistics that can be observed in a Bell-type experiment is limited by
quantum theory. Unfortunately, tools are missing to identify the precise boundary of this set. Here, we
propose to study the set of quantum statistics from a dual perspective. By considering all Bell expressions
saturated by a given realization, we show that the Clauser-Horne-Shimony-Holt expression can be
decomposed in terms of extremal Tsirelson inequalities that we identify. This brings novel insight into the
geometry of the quantum set in the (2,2,2) scenario. Furthermore, this allows us to identify all the Bell
expressions that are able to self-test the Tsirelson realization.
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Introduction.—Quantum physics predicts the existence
of statistics in a Bell-type experiment which are nonlocal in
the sense that they can violate a Bell inequality [1]. The
observation of this striking physical property has raised
awareness on the importance of the statistical distributions
that can be observed in a Bell scenario upon measurement
of a quantum system, which form the set of quantum
behaviors—or simply the quantum set Q. By defining
statistics that are experimentally realizable, this set plays a
central role in quantum information science, with applica-
tions ranging from foundational questions to device-inde-
pendent information protocols [2–7]. Indeed, every
quantum realization, consisting of a density matrix and
local measurements on some Hilbert spaces of arbitrary
dimension, generates statistics according to Born’s rule
which belong to the quantum set. Given a statistical
distribution, it is however generally a difficult question
to determine which quantum realization may generate it, or
even whether the distribution belongs to the quantum set in
the first place.
The Navascués-Pironio-Acín hierarchy of semidefinite

programming offers a tool to tackle this question in terms of
a family of statistical sets converging to the quantum set
from the outside [8,9]. However, this construction involves
additional variables whose value is a priori unknown, and
the level of the hierarchy which must be reached in order to
provide a definitive answer is unknown even in the simplest
Bell scenario. Another approach is motivated by the
convexity of the quantum set and involves decomposing
quantum behaviors in terms of extremal points. Despite
much effort, a complete description of extremal quantum
behaviors remains to be discovered [10–12]. Here, we take
a different path, also enabled by Q’s convexity property,
which consists in studying its dual set Q�.
The dual of the quantum set encodes the Tsirelson

bounds of all possible Bell inequalities [13,14].
Describing it is therefore as challenging as finding the

quantum bound of an arbitrary Bell inequality, but is also as
important, since quantum bounds play a key role in many
quantum information results [15–17]. The duality perspec-
tive already brings insight into the local and no-signaling
sets, which are the two other major sets of interest in Bell-
type experiments. Namely, for Bell scenarios with binary
inputs and outputs it was shown that the local set,
describing statistical distributions compatible with a local
hidden variable model, is dual to the no-signaling set,
whose behaviors are only limited by the condition that the
parties cannot learn each other’s inputs [18]. In other
words, every extremal (or ‘tight’) Bell inequality in this
scenario is in one-to-one correspondence with an extremal
point of the no-signaling polytope.
Unlike its local and no-signaling counterparts, the

quantum set is not a polytope and little is known about
its dual picture. In the simplest Bell scenario exhibiting the
nonlocal property of quantum physics, with 2 parties, 2
inputs, and 2 outputs, the quantum set belongs to a space of
dimension 8. A first result concerns the subset Qc with
uniformly random marginal statistics, corresponding to a
subspace of dimension 4. It was recently shown that this
subset is self-dual, i.e., Qc ≅ Q�

c [18,19]. This striking
property sets the quantum set apart from both the local and
the no-signaling sets. In fact, the analytical descriptions of
Qc and Q�

c are fully known within this subspace: a first
explicit description of the quantum set in the subspace of
vanishing marginals was provided in [10,13,20]; see also
[19,21,22] for explicit descriptions of its (isomorphic) dual.
Here, we study the dual of the quantum set in the full

eight-dimensional space. Specifically, we determine ana-
lytically all elements of the dual which are related to the
Tsirelson point, the unique quantum point maximally
violating the Clauser-Horne-Shimony-Holt (CHSH)
inequality [23]. This allows us to describe for the first
time a complete face of the dual quantum set Q�’s
boundary. In turn, this provides a tight first order
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description of the quantum set around this maximally
nonlocal point.
Dual of the quantum set.—In a bipartite Bell experiment,

two parties obtain outcomes a and b upon performing
measurements x and y respectively. A behavior PðabjxyÞ in
this scenario belongs to the quantum set Q iff there exists
Hilbert spacesHA,HB, a density matrix ρ ≥ 0 with trρ ¼ 1
acting on their tensor product HA ⊗ HB, and POVMs
Majx; Nbjy⪰0 with

P
a Majx ¼ 1,

P
b Nbjy ¼ 1 such that

PðabjxyÞ ¼ trðMajx ⊗ NbjyρÞ. Since the dimensions of the
Hilbert spaces HA and HB are not bounded, any convex
mixture λP1 þ ð1 − λÞP2 with λ∈ ½0; 1� of two behaviors P1

and P2 in Q can be obtained by combining the two
corresponding realizations into larger Hilbert spaces, and
therefore Q is convex [24].
By taking into account the normalization and no-signal-

ing conditions, the 16 conditional probabilities PðabjxyÞ
can be expressed simply in terms of eight linearly inde-
pendent ones [25,26], which can be represented by the
corresponding table of correlators

P ¼
1 hB0i hB1i

hA0i hA0B0i hA0B1i
hA1i hA1B0i hA1B1i

: ð1Þ

Here, Ax ¼ M0jx −M1jx and By ¼ N0jy − N1jy are observ-
ables with �1 eigenvalues. This allows one to define the
dual of the quantum set Q� in R8 as the set of all Bell
expressions β whose quantum maximum is smaller than a
constant, e.g., 1 (see [27], Sec. A]:

Q� ¼ fβ∈R8∶ β · P ≤ 1; ∀ P∈Qg: ð2Þ

Since the double dual of a cone is the closure of the initial
cone, the description of Q� is equivalent to the description
ofQ itself, and any insight onQ� is an insight onQ as well.
Note that all elements of Q� with

β · P ¼ 1 ð3Þ

for some P∈Q are Bell expressions defining supporting
hyperplanes of the quantum set Q. Such inequalities
provide a description of the quantum set around the point
P to first order. More generally, the dual of the quantum set
Q� being convex, admits extremal points, which are of
particular interest. An example of an extremal point of Q�
is the positivity constraint PðabjxyÞ ≥ 0. However, this
point is not specific to the quantum dual as it is shared with
every other physically meaningful dual, including the local
and no-signaling duals. In the remainder of this manuscript,
we are going to identify nontrivial extremal points of Q�.
The Tsirelson behavior.—The Tsirelson point is given by

the following table of correlators

PT ¼
1 0 0

0
1ffiffi
2

p 1ffiffi
2

p

0 1ffiffi
2

p − 1ffiffi
2

p
: ð4Þ

This point is particularly remarkable because it is the only
point in Q that achieves the maximal quantum value of the
CHSH Bell inequality hβCHSHi ≤ 2 [29]. Furthermore, this
point is extremal in Q, and it can only be realized by
performing complementary measurements on a maximally
entangled state, i.e., the point PT self-tests the quantum
realization [17]:

jϕþi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ;

Ax ¼
ZA þ ð−1ÞxXAffiffiffi

2
p ; B0 ¼ ZB; B1 ¼ XB: ð5Þ

As shown in Eq. (4), the Tsirelson point has vanishing
marginals, and when considering Qc, the quantum set
within the subspace of vanishing marginals, i.e., with
hAxi ¼ hByi ¼ 0, it is known that this point is only exposed
by the CHSH inequality. In other words, the hyperplane
hβCHSHi ¼ 2

ffiffiffi
2

p
is the only linear function of fhAxByigx;y

such that H ∩ Qc ¼ fPTg. Recent numerical results sug-
gest however that this may not be the case outside the
subspace of vanishing marginals [30]. In the following, we
identify all Bell expressions that are maximized by the
Tsirelson point.
Bell expressions for the Tsirelson point.—In general, all

possible Bell expressions can be parametrized by eight real
coefficients ax; by; cxy for x; y∈ f0; 1g and be written in
terms of formal polynomials [21] as

β ¼ a0A0 þ a1A1 þ b0B0 þ b1B1

þ c00A0B0 þ c10A1B0 þ c01A0B1 þ c11A1B1: ð6Þ

In order to find restrictive conditions that ensure that β has
quantum bound 1 and verifies Eq. (3) for the Tsirelson
point PT , we make use of the variational method [21,31,32]
and consider the Bell operator corresponding to these
polynomials for the choice of measurements of Eq. (5).
In general, this operator is given by

Ŝ ¼ p1ZA þ p2XA þ p3ZB þ p4XB

þ p5ZAZB þ p6XAXB þ p7ZAXB þ p8XAZB; ð7Þ

where parameters pr are linear combinations of para-
meters ax; by; cxy.
For any given state, the value of the Bell inequality is

then given by hψ jŜjψi. Since Ŝ is a real hermitian operator,
its eigenvalues are real and β∈Q� imposes that all of its
eigenvalues are smaller than 1. The condition Eq. (3) for PT

then implies that jϕþi is an eigenstate of Ŝ of eigenvalue 1,
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i.e., Ŝjϕþi ¼ jϕþi, which grants the following conditions
on the parameters pr:

p1 þ p3 ¼ 0; p5 þ p6 ¼ 1;

p2 þ p4 ¼ 0; p7 − p8 ¼ 0: ð8Þ

Taking these equations into account, we can now rewrite a
new parametrization:

β ¼ r0

�
A0 þ A1ffiffiffi

2
p − B0

�
þ r1

�
A0 − A1ffiffiffi

2
p − B1

�

þ r2

�
A0 þ A1ffiffiffi

2
p B1 þ

A0 − A1ffiffiffi
2

p B0

�

þ λ
A0 þ A1ffiffiffi

2
p B0 þ ð1 − λÞA0 − A1ffiffiffi

2
p B1; ð9Þ

where r0; r1; r2; λ∈R are the remaining free parameters.
Perturbative restriction.—Now, remember that we

require that no other quantum point gives a value larger
than 1 for this Bell expression. In particular, the function
β · Pθ;ax;by should admit a local maxima at PT , where

ð10Þ

are the statistics resulting from measuring the two-qubit
state jϕθi ¼ cθj00i þ sθj11i in the Z − X plane, and
cφ ≔ cosðφÞ, sφ ≔ sinðφÞ denote the cosine and sine
functions. This condition gives a set of five linear equa-
tions:

0 ¼ β ·
∂Pθ;ax;by

∂θ
¼ β ·

∂Pθ;ax;by

∂ax
¼ β ·

∂Pθ;ax;by

∂by
ð11Þ

which reduce to

λ ¼ 1=2; r2 ¼ 0: ð12Þ

The search space for the Bell inequalities is thus reduced to

βr0;r1 ¼ r0

�
A0 þ A1ffiffiffi

2
p − B0

�
þ r1

�
A0 − A1ffiffiffi

2
p − B1

�

þ 1

2
ffiffiffi
2

p βCHSH; r0; r1 ∈R; ð13Þ

where βCHSH ¼ ðA0 þ A1ÞB0 þ ðA0 − A1ÞB1. As shown in
[27], Sec. C, further order perturbations can be considered
to reduce the range of the parameters r0, r1, but it turns out
to be more restrictive at this stage to eliminate parameters
based on the local bound of the Bell expressions. Indeed,

any βr0;r1 with a local bound larger than 1 also admits a
quantum value larger than 1 (and hence larger than the
value provided by measuring the jϕþi state).
Local bounds.—Since the convex combination of two

Bell expressions with a local bound smaller than 1 also has
a local bound smaller than 1, the set of Bell expressions
βr0;r1 with a local bound smaller than 1 forms a convex
region of the r0, r1 plane. Furthermore, the local maxima of
a Bell expression is reached at one of the 16 extremal points
of the local polytope. These points are given by

Lijkl ¼
1 i j

k ik jk

l il jl

; i; j; k; l∈ f−1; 1g: ð14Þ

The convex region of expressions of the form Eq. (13) with
a local maxima smaller than 1 is thus given by all points
ðr0; r1Þ satisfying the conditions βr0;r1 · Lijkl ≤ 1. The
intersection of these half planes defines a polytope, namely,
a regular octagon, whose eight summit are given by (see
Fig. 1)

��
1 −

1ffiffiffi
2

p
�
Rk

π
4
ð1; 0Þ; k∈ ⟦0; 7⟧

�
; ð15Þ

where Rðπ=4Þ is the rotation of angle π=4 in the ðr0; r1Þ
plane. Any Bell expression outside this octagon has a local
bound larger than 1, and thus is not maximized by PT.
Quantum bounds.—Having excluded a range of Bell

expressions βr0;r1 from their local bound, we need to
compute the Tsirelson bound of the expressions inside
the octagon. To formalize this problem, let us consider the

FIG. 1. Face of Q� in the two-dimensional affine slice defined
by βr0;r1 for real parameters r0, r1. The red point in the middle, the
normalized CHSH expression, is non-extremal: it can be decom-
posed in terms of the eight summits of the octagon, which are
extremal Tsirelson inequalities.
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algebra of quantum operatorsR made of arbitrary products
of Ax and By. The only generating rules of this algebra are
that, for all x, y, A2

x ¼ B2
y ¼ 1 and ½Ax; By� ¼ 0. We know

that a sufficient condition to have β⪯1 is that 1 − β is a sum
of squares (SOS) in R:

1 − β ¼
X
s

O†
sOs; Os ∈R: ð16Þ

This is known as an SOS relaxation [33,34]. However, the
search space R is of infinite dimension. Since an SOS
decomposition of the form of Eq. (16) where Os are
restricted to a set subspace T ⊂ R still provides a valid
bound, a common approach to tackle this problem consists
in considering operatorsOs within a chosen relaxation level
T , such as the set of all polynomials of Ax and By of a given
degree. But even this quickly results in a large problem.
To further reduce the SOS search space, let us identify a

relevant subspace of T in which the operatorsOs should be
chosen. Let us consider the case where a SOS decom-
position exists. For the implementation of the Tsirelson
realization, this would imply

0 ¼
X
s

hϕþjOs
†Osjϕþi ¼

X
s

kOsjϕþik2; ð17Þ

where Os is the specific implementation of the operator Os
using measurements of Eq. (5). Since all terms on the right-
hand side of the above equation are positive, this implies
that for all s, Osjϕþi ¼ 0, i.e., that all Os are nullifying
operators of jϕþi [21,35]. This condition restricts the
operators Os to

AT ¼ fO∈ T ∶Ōjϕþi ¼ 0g: ð18Þ

For a finite relaxation T , let us consider a generating
sequence fNsgs of AT and denote by N⃗ the vector of
elements Ns. All elements in AT can thus be written as
w⃗ · N⃗ where w⃗ is a real vector. A valid SOS decomposition
in T can then be written as

1 − β ¼
X
s

O†
sOs ¼ N⃗†

X
s

w⃗†
sw⃗sN⃗ ¼ N⃗† ·W · N⃗; ð19Þ

where W ¼ P
s w⃗

†
sw⃗s is a positive matrix. We see that the

problem of obtaining an SOS decomposition, Eq. (16),
reduces to finding whether there exists a positive matrix
W⪰0 such that

1 − β ¼ N⃗† ·W · N⃗: ð20Þ

If such a matrixW can be found, we say it is a certificate of
the inequality β.
Different relaxations T could be considered here. The

first order relaxation T 1þAþB ¼ f1; A0; A1; B0; B1g only

gives a certificate for the CHSH inequality. The relaxation
at the almost quantum level [36], T 1þAþBþAB ¼ T 1 ∪
fAxBy; x; y∈ f0; 1gg can also be computed numerically
and gives a certificate for a disk in the ðr0; r1Þ plane of
center (0,0) and radius ð1=4 ffiffiffi

2
p Þ, cf. [27], Sec. C. The next

relaxation is given by

T 1þAþBþABþABB0 ¼ T 1þAB ∪ fAxByBy0 ; y ≠ y0g: ð21Þ

We can show analytically that a certificate can be found for
the inequality β1−1=

ffiffi
2

p
;0 at this level of relaxation [27],

Sec. B. This ensures that the Bell expression

βT ¼
�
1 −

1ffiffiffi
2

p
��

A0 þ A1ffiffiffi
2

p − B0

�
þ βCHSH

2
ffiffiffi
2

p ð22Þ

is maximized by the Tsirelson point. Since we already
concluded that a larger value of r0 admits a local value
larger than 1, this bound for r1 ¼ 0 is the best we could
have hoped for. One can check that this inequality is an
extremal point ofQ�, that it is exposed, in the sense that the
quantum set admits a point which only saturates this
Tsirelson inequality [27], Sec. A, and that it is only
maximized by 3 extremal points of Q: PT and two
deterministic realizations [27], Sec. D.
To analyze the rest of the octagon, we make use of some

symmetries of the problem. Both the family of Bell
expressions βr0;r1 and the set Q are preserved by several
discrete symmetries. One of them is described by the
following action:

S∶ ðr0; r1Þ → Rπ
4
ðr0; r1Þ;

�
A0 → −B1; A1 → −B0;

B0 → −A0; B1 → A1:

ð23Þ

Because of this symmetry, the quantum bound of any Bell
expression with parameters ðr0; r1Þ∈R2 can be computed
by looking at the bound of the inequality with parameters
rotated by π=4. This ensures that the quantum bounds of
the eight inequalities Sk · βT of polar coordinates ½1 −
ð1= ffiffiffi

2
p Þ; kðπ=4Þ� for k∈ ⟦0; 7⟧ are also 1. Therefore, the

octagon is exactly the convex region of quantum bound
equal to 1. This completes the characterization of the slice
βr0;r1 (see Fig. 1).
Interestingly, the CHSH inequality lies in the middle of

this dual face. Therefore, the CHSH inequality is not an
extremal Tsirelson inequality. In particular, we can write it
as the convex mixture

βCHSH ¼ 1

2
ðβT þ S4 · βTÞ: ð24Þ

Note that this description is not unique because βCHSH lies
on a face of Q� of dimension 2.

PHYSICAL REVIEW LETTERS 133, 010201 (2024)

010201-4



From the point of view of the quantum set, this means
that the Tsirelson point PT is an exposed extremal point of
Qwith dimension pair (0,2), i.e., with a face dimension of 0
and a dual dimension of 2 [27], Sec. A. Furthermore, it is
exposed by all the inequalities on the inside of the octagon
(see Fig. 2). In fact, any Bell expression inside the octagon
can be written as a convex combination of the CHSH
expression and an expression βb on the border of the
octagon: β ¼ pβCHSH=2

ffiffiffi
2

p þ ð1 − pÞβb, where p∈ ð0; 1�.
If a point P verifies β · P ¼ 1, then it implies βCHSH · P ¼
2

ffiffiffi
2

p
and the self-testing result of βCHSH implies that

P ¼ PT . From the self-testing point of view, this means
that any inequality inside the octagon self-tests the quantum
realization of Eq. (5) associated to the Tsirelson point. As
far as inequalities on the border of the octagon are
concerned, those are also maximized by local points and
as such cannot provide a self-test of the realization.
Conclusion.—In this Letter, we studied the quantum set

Q from a dual perspective. In particular, we derived
constructively all the Bell expressions that the Tsirelson
point PT maximizes. This provides fresh insight on the
geometry of the quantum set. In particular, we show
analytically that PT is an extremal point of Q of dual
dimension 2 that lies at the top of a pyramid. We identify
eight new exposed extremal points of Q�, all of dual
dimension 2 as well, thus fully describing a face of Q� of
dimension 2. In turn, this allows us to describe all the Bell
expressions that are able to self-test the Tsirelson realiza-
tion. It would be interesting to find out whether it is a
generic property of extremal quantum statistics to have a
nonzero dual dimension.
Our work also sheds light on the relation betweenQ and

Q�. In [18], a map was introduced to prove that L� ≅ NS

and it was proven that this map also sends the subset Qc
with uniformly random marginals statistics to its dual.
However, since this map sends the extremal point PT onto
βCHSH, which admits the decomposition Eq. (24), it cannot
be used to mapQ toQ�. While other maps could be found,
analysis such as ours might help proving that the quantum
set Q is not self-dual, making Q� a set of physical interest
with a possibly very different geometrical structure.
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