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Common models of circadian rhythms are typically constructed as compartmental reactions of well-
mixed biochemicals, incorporating a negative-feedback loop consisting of several intermediate reaction
steps essentially required to produce oscillations. Spatial transport of each reactant is often represented as
an extra compartmental reaction step. Contrary to this traditional understanding, in this Letter we
demonstrate that a single activation-repression biochemical reaction pair is sufficient to generate sustained
oscillations if the sites of both reactions are spatially separated and molecular transport is mediated by
diffusion. Our proposed scenario represents the simplest configuration in terms of the participating
chemical reactions and offers a conceptual basis for understanding biological oscillations and inspiring
in vitro assays aimed at constructing minimal clocks.
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Biological rhythms such as circadian, infradian and
ultradian ones often originate in oscillations at a cellular
level induced by complex mechanisms of gene auto-
regulation composed by a number of coupled molecular
reactions [1-4]. An activation-repression process alone
leads to a single-mode dynamical system with negative
feedback, which is unable by itself to support oscillatory
behavior. Therefore, cellular clocks must resort to some
form of delay mechanism that effectively complements the
negative feedback naturally implicit in the repression
component to achieve limit-cycle dynamics. Most common
models of such cellular rhythms are based on compart-
mental descriptions (individual substances reacting in a
homogeneous well-mixed batch) of the biochemistry,
including several intermediate molecular reactions such
as transcription, translation, phosphorylation, degradation,
etc. Although the spatial inhomogeneities inside of the cell
are recognized to play a role, and the transport of molecules
between different regions of the cell should be taken into
account, this is usually done by mimicking such transport
as an extra compartmental reaction [1,5]. For example,
messenger RNA (mRNA) migration from the nucleus is
represented as “nuclear mRNA” reacting to produce
“cytoplasmic mRNA” in the same hypothetical well mixed
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compartment. In order to oscillate, this kind of model needs
to include at least three reaction steps in the loop, but often
a much larger number is required to avoid unrealistic
parametrization of the reaction constants [6]. The purpose
of this Letter is to demonstrate that a much simpler reaction
scheme is possible if the inhomogeneities of the reactants
distributions and the transport are properly assessed. In
particular, we will show only one step expression-repres-
sion negative-feedback reaction is enough to produce
sustained circadian oscillations, provided that the locations
of transcription and translation are spatially separated and
molecular transport is mediated by intracellular diffusion.

In a well-mixed reaction model, a single expression-
repression reaction step is commonly represented in an
abstract manner by the following couple of ordinary
differential equations [6,7]

1
— —yuM(1),

P(t) = wpM(1) - 7pP(1). (1)

M(t) =

M(t) and P(r), respectively, denote the time evolution
of the concentrations of the mRNA—produced by a
given gene—and of the protein—translated from the same
mRNA—which repress the production of further mRNA.
The inhibitory ability of P is governed by the Hill type
function in the first term in the right hand side of the first
equation, while the second term represents the spontaneous
degradation process of mRNA at a rate y,,. In turn, the rate
of production of P is proportional to the concentration M,
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while P degrades at a rate yp. The so-called cooperativity
parameter / in the Hill function accounts for the number of
molecules necessary to inhibit the expression of the
corresponding gene. Notice that the divergence of the
vector field defining this dynamics is constant and negative
for any values of the pair (M, P). This means that the
dynamical system contracts areas of any element of the
state-space and therefore it cannot support limit cycles or
self-sustained oscillations [6]. Instead, it can be proved that
Egs. (1) only have stable fixed points as stationary
solutions.

In the context of compartmental models, hence, to
generate a cellular rhythm with a biochemical circuit
involving expression-repression feedback, it is imperative
to incorporate an additional intermediate reaction. This
reaction step is essential for introducing a delay capable of
destabilizing one of the resting states. One such example, as
proposed by Goodwin [7], is

M = wy———yuM,
M1+Rh Ym
P =wpM —ypP,
R:wRP_}/RR’ (2)

where P is an extra metabolite that mediates the production
of the blocking protein R. This model does produce
oscillations provided that 47 > 8, a value quite far from
a realistic interpretation so that more sophisticated models
resort to include a few extra steps of phosphorylation
and dephosphorylation before the actual repression takes
place [2]. An extension of Eqs. (2) to n reaction steps is
straightforward (see Supplemental Material [8]), and sche-
matically shown in Fig. 1(a). Figure 1(b) shows a plot of the
minimal £ that enables oscillations in a compartmental
model of n components, as dictated by the so-called secant
condition [14].

The real world, however, is neither compartmental nor
well mixed. The cells are of small but finite size and inside
them a great deal of inhomogeneity is present—Iocalization
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FIG. 1. (a) Scheme of the Goodwin model. A biochemical
negative feedback loop where each component is produced by a
first order reaction from the previous component, with the
exception of the first one, whose zero-order reaction is repressed
by the last component. (b) Secant condition. Minimal coopera-
tivity that leads to oscillations for each length n of the biochemi-
cal chain.

of species occur within nanodomains [15-19]. While
mRNA translation occurs in some place in the cytoplasm
relatively distant from the nucleus, it is in this nucleus
where the gene generates the mRNA and where the
resulting protein may exert its repressive influence.
Therefore, one trip of a new born mRNA molecule to
the cytoplasm sites populated by ribosomes and another
trip of the repressing proteins back to the nucleus are
needed to complete the cycle of expression and repression.
In the compartmental approach, this traffic is introduced
in the form of fictitious intermediate reaction steps:
mRNAnucleus - mRNAcytoplasm? Pcytoplasm - Pnucleus’ etc.,
each one providing an equation of a similar structure as
Eq. (2). A related and less realistic approach consists in
introducing a prescribed delay in the equations [3,20], with
the purpose of mimicking molecular transport times as well
as extra steps.

In our study, in contrast, we investigate the impact of
incorporating a realistic model for the transport across the
inhomogeneities of the cell relying on the process of
molecular diffusion. The outcome is startling: a loop
containing the processes described in Eqs. (1) now exhibits
oscillations. Furthermore, not only does it oscillate, but it
also requires a cooperativity 42 much smaller than the
simplest compartmental model capable of generating cel-
lular rhythms.

Indeed, the investigation of the role of heterogeneity in
the emergence of oscillations in reaction-diffusion systems,
where the homogeneous counterpart exhibits only intrinsic
homeostatic equilibrium, has a long history. For example,
this role in the oscillatory behavior of pancreatic f cells has
been thoroughly studied in [21]. More recently, several
studies have examined various gene regulatory networks
under the same framework [22-26]

In our model, as in real cells, the transcription and
translation processes occur in spatially distinct regions.
Specifically, the gene produces mRNA within the nucleus,
which is well separated from the ribosomes where protein
synthesis takes place. Both mRNA and protein migrate
through diffusion, a process that causes both space and time
dependence of the corresponding concentration distribu-
tions m(7,t) and p(7, t). Therefore, Eq. (1) reformulated to
account for diffusion, results in

oo wmfGEN(F)
NGO

p(r.)=w, fris(F)m(F.t)—y,p(F.t) +D,V?p(F.1), (3)

_ymm(’?’t) +Dmv2m(7’ t)’

where fgen(7) and frip(7) are the spatial distributions of
the gene and the ribosomes, respectively. D,, and D, are
the effective diffusion coefficients experienced by the
mRNA and P molecules. The parameters w,, and w, are
the rates of production of mRNA and P. Egs. (3) reduce to
the Goodwin model for two components if one neglects the
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dependence of the concentrations on the spatial coordinates
(well-mixed regime).

Of course, Egs. (3) can be generalized to include also
intermediate reactions, but we start by focusing on the
simpler case, equivalent to the nonoscillatory n =2
member of the Goodwin family [7]. Let us also begin
by considering the spatially one-dimensional (1D) version
of Egs. (3), obtained after the replacements 7 — x and
V? - d,,, within the spatial domain Q = [—R., Reen],
with impermeable (zero flux) boundary conditions. As a
preparatory analysis, we also set the diffusion and degra-
dation parameters as D, =D, =D and y, =y, =y.
Finally, we choose the corresponding distributions
foen(x) and frip(x) to be boxcar functions centered
around the positions x,, = 0 and x,, # 0 and of correspond-
ing widths 2R,, and 2R, respectively. x, is measured in

units of the characteristic length 1 = /D/y (see the model
details in Supplemental Material [8]).

For comparison with the compartmental models, we
compute the integrated quantities M(t) = [, m(x, f)dx and
P(t) = [o p(x, t)dx from the simulated m(x, ) and p(x, ).
These quantities are comparable to the corresponding
concentrations of the Goodwin’s family.

Figure 2(b) presents a parametric plot of M(¢) and P(¢)
evolving from two different uniform initial configurations
m(x,0) = mgy;, p(x,0) = pg;, i =1, 2, corresponding to
initial bulk quantities (M, P,) and (M,, P,), respectively.
The inter-reaction-sites distance has been set to x,, = 3 and
the cooperativity to &7 = 4. The asymptotic convergence to
a limit cycle is evident, confirming the existence of stable
oscillations in the system and suggesting a certain corre-
spondence with a compartmental model with at least three
reaction components. However, the compartmental model-
ing approach necessitates a much longer loop to produce
oscillations with the same level of cooperativity as our
model. In fact, Fig. 2(c) illustrates the onset of oscillations
as h is varied from small values, where no limit cycles are
observed, to larger values where oscillations emerge.
The bifurcation occurs at 2 <3, which in the compart-
mental model would require a loop of six reactions (n = 6,
see Fig. 1). The oscillations observed in our n =2
model arise from the delays induced by the diffusive
transport of the chemical species. The timescale
of these delays can be estimated from the analytical
expression of the spatial Green function of the degrada-
tion-diffusion equation, resulting in the relaxation time
tr = (1/4y)[\/1+4(x/2)* = 1]. 1z becomes asymptoti-
cally linearly dependent on the distance, a behavior that
reflects proportionally on the period of the oscillations, as
well as the slopes of the patterns in the spatiotemporal
distribution of m(x, ¢) and p(x, ) shown in Supplemental
Material [8], Fig. S9.

The series of 3D plots in Fig. 2(d), illustrates the
evolution of the asymptotic dynamics of M(z) and P(¢)
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FIG. 2. (a) Scheme of the 1D model with zero flux boundary
condition at the membrane [Eq. (3)]. (b) Parametric plot in terms
of the bulk quantities of mRNA and protein, M(¢) and P(¢),
showing two example trajectories (red, green) converging to the
limit cycle (black) for 7 = 4. (c) Plot of minima and maxima
(lines) as a function of h, with shaded regions indicating
oscillations, which occur below h = 3. (d) Trajectories after
initial transient of the quantities M(r) and P(t) for different
distances and cooperativities. The higher the cooperativity A, the
wider the range of distances where oscillations occur, up to the
interval [24,44] for h = 10. The case & = 3 shows oscillations for
a narrow range of distances. D = 0.1,y = 0.1, R,, = R, = 0.5,
Reey = 10, @, = 10, w, = 20.

as a function of x,, for several values of 4. For both small
and large distances x,,, the dynamics settle in fixed points.
For small x,, such behavior aligns with that of the two-
component well-mixed Goodwin model where oscillations
are absent. The death of the oscillations at large distances
(i.e., long delays) is instead due to the degradation of P
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before reaching the nucleus, leading to a deficiency in
protein to repress mRNA production. An estimation of the
upper limit of available proteins at the gene is provided in
Supplemental Material [8]. Remarkably, for intermediate
nucleus-ribosomes distances, the system exhibits sustained
oscillations. It is also worth noting that with increasing
cooperativity, the range of x, values conducive to oscil-
lations widens, and the minimum required value to induce
oscillations decreases. Even with the modest cooperativity
level of h =3, our model exhibits limit cycles across a
significant range of nucleus-ribosome distances. This
finding underscores the significance of purely diffusive
transport in enabling oscillatory behavior within a neg-
atively feedback-controlled circuit involving only two
species.

The emergence of self-sustained oscillations in this
scenario is not an artifact of the partial differential equations
(PDE) representation. We have confirmed their existence by
running simulations of an agent-based stochastic counter-
part of the deterministic PDE. In this alternative scheme,
diffusion of individual molecules throughout the spatial
domain is represented by a Langevin equation, while
creation and degradation of molecules is simulated via a
Gillespie algorithm. Molecules are therefore subjected to the
following set of transitions

mRNA — ¢;
protein — ¢;

x;(t+ At) = x;(1) + V2DA1

¢ — mRNA
¢ — protein

(4)
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FIG. 3.

whereby ¢ denotes fictitious dynamically irrelevant chemi-
cal species representing the residues of degradation and the
source of synthesis of both mRNA and protein molecules,
x;(t) is the position of the molecule i at time 7 and & is a
Gaussian white noise [27]. Each reaction rate is set equiv-
alent to Eq. (3) (see in Supplemental Material [8]). D is the
diffusion coefficient common to both species. Figure 3(a)
shows a comparison between the simulations of the 1D
deterministic and stochastic versions. Notice that both
display oscillations of similar periods for distances x
within the same ranges.

In a similar vein, we have confirmed that the emergence
of oscillations through this mechanism also occurs in
higher spatial dimensions [Fig. 3(b) and Supplemental
Material [8]]. For illustration we show in Fig. 3(b) the
results of simulations conducted with the stochastic version
for a two-dimensional (2D) circular cell, where the ribo-
somes are randomly distributed within annular regions of
different inner radii r,,;, and an outer radius R (the radius
of the cell). The nucleus is positioned at the center of the
cell. The qualitative agreement with the behavior observed
in the 1D versions is evident: oscillations also manifest for
intermediate values of the minimal distance r,;, between
the nucleus and the ribosomes, while disappearing for both
small and large values of r.;,. A detailed comparison
between 1D and 2D models for both the deterministic and
stochastic settings is included in Supplemental Material [8].

To explore the impact of diffusion in more complex
reaction schemes we studied the loop with three molecular
species of Egs. (2) including now segregation and

p
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(a) Stochastic (agent-based) and deterministic (PDE) representations show the onset of oscillations of the number of mRNA

and protein molecules in approximately the same range of separations. Left panel column: superimposed trajectories from the
deterministic and stochastic models. Middle and right columns: time series of mRNA and protein in a segment of the same trajectories.
h=10,D=0.1,y =0.1,R,, = R, = 0.5, Ry = 10, w,, = @, = 10 (b) Stochastic agent-based model in 2D, with minimal distance
T'min fOr the randomly localized protein production sites. The number of molecules fluctuates with no oscillations for small and large
distances, and oscillates for intermediate distances. See Supplemental Material [8] for model details.
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FIG. 4. Enhanced oscillations emerge in example biochemical
loops of three species when sources of molecular species are
spatially separated: (a) A fictitious feedback loop of three species
compatible with experiments [15,28] that would not oscillate in
the well-mixed case, displays oscillations if the distance between
sources is appropriate. (b) A feedback loop that oscillates in the
well-mixed case [29], exhibits reduced or disappearing oscilla-
tions as sources are separated, followed by rebounded oscillations
upon increasing distance (x, ~0.7 pm, & = 8-10).

diffusion. We have chosen two parameter sets. In one, both
kinetic and transport parameters are compatible with experi-
mental measurements on biological systems [15,28]. In the
second set, kinetic parameters are taken from published
compartmental models that display oscillations in the well-
mixed scenario [29] (see complete parameter list in
Supplemental Material [8]). The production site distributions
are set to be the same for both the P and R species (x, = x,,
R, = R,). Figure 4 displays in color code the regions in the
x,-h plane where oscillations appear. The results for the first
parameter set [Fig. 4(a)] demonstrate that a simple negative
feedback loop in a biological cell can transition from static to
oscillatory behavior for distances compatible with the
dimensions of a cell, provided the cooperativity is at least
5. The results from the second set [Fig. 4(b)] highlight a
significant observation: oscillations of a system prepared to
oscillate in the absence of spatial separation (well mixed)
may weaken as the distance between sources starts to
increase [upper-left corner of panel (b), in the region around
x,~0.7 pm] up to an extent where they eventually dis-
appear (h = 8-10). Interestingly, these oscillations rebound
with greater amplitude as the separation distance is further
extended (diffusion driven), see Fig. S10 in Supplemental
Material [8] for more details. Moreover, diffusion-driven
oscillations manifest over a broader parameter range, requir-
ing much smaller values of /& compared to the well-mixed
condition. The distinct characteristics of these two oscilla-
tory regions, including their shapes and amplitudes, suggest
that diffusion not only serves as a unique mechanism for
inducing oscillations but also enhances their robustness.
Finally, we want to stress that our results are robust
against the removal of simplifying assumptions of the
former description such as symmetries, coefficients uni-
formity, etc. For instance, we have tested the persistence of
the scenario in the presence of nonuniform diffusion
coefficients mimicking the complexity of the crowded
intracellular environment. We observed only moderate

quantitative changes to the same qualitative features of
the oscillatory regime (Fig. S7 in Supplemental Material
[8]). Moreover, the scenario remained also robust when the
location and number of ribosomes were made arbitrary.
Both 1D and 2D deterministic and stochastic numerical
simulations confirmed that symmetric and nonsymmetric
ribosome distributions of various sizes, situated at different
locations, and within cells of varying diameters, exhibit
oscillations across an appropriate range of nucleus-ribo-
some distances (see Supplemental Material [8] Figs. S3—
S6). Interestingly, ribosomes located closer to the nucleus
turn out to exert a dominant influence on the onset of
oscillations, due to the shorter delays they induce (see
Figs. S3 and S4 in Supplemental Material [8]).

Summarizing, we have shown that a simple biochemical
feedback loop, that in well-mixed conditions would be
doomed to display static behavior, can be turned into an
oscillator by physically separating the domains where
reactions occur. This study can reconcile the parameter
choice in mathematical modeling with the biologically
plausible values. It can provide the modeling framework to
recent experimental observations that suggest a crucial role
of the localization of synthesis within cells [15-18,30].
Furthermore, the scope of the results presented here can
find direct applications in the field of synthetic biology, in
which the dynamics of cell-like compartments can be tuned
via its geometry to display oscillations [31].
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