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The yielding transition in athermal complex fluids can be interpreted as an absorbing phase transition
between an elastic, absorbing state with high mesoscopic degeneracy and a flowing, active state. We
characterize quantitatively this phase transition in an elastoplastic model under fixed applied shear stress,
using a finite-size scaling analysis. We find vanishing critical fluctuations of the order parameter (i.e., the
shear rate), and relate this property to the convex character of the phase transition (β > 1). We locate
yielding within a family of models akin to fixed-energy sandpile (FES) models, only with long-range
redistribution kernels with zero modes that result from mechanical equilibrium. For redistribution kernels
with sufficiently fast decay, this family of models belongs to a short-range universality class distinct from
the conserved directed percolation class of usual FES, which is induced by zero modes.
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Yield stress fluids make up a broad class of soft materials,
including emulsions, foams, and gels [1,2]. Under imposed
mechanical stress Σ, they behave like viscoelastic solids
below a yield value Σy, and otherwise flow like viscoelastic
fluids [3–5]. Flow occurs via irreversible plastic events
localized in space and timewhich redistribute stress through
elastic interactions [6–10]. Within the elastoplastic picture,
the yielding transition under imposed shear stress Σ (as
opposed to imposed shear rate) is an absorbing phase
transition (APT) [11], that is, a continuous transition from
fluctuating, active states into so-called absorbing states that
trap the dynamics. In the case of yielding, the active phase is
for stresses exceedingΣy, and the plastic activityA, which is
proportional to the shear rate γ̇, scales as A ∼ ðΣ − ΣyÞβ.
Below the yield value, plastic flow stops after a finite strain
(A ¼ 0) and the dynamics is frozen in a jammed (absorbing)
state. Elastoplastic models [11] built on this mesoscopic
phenomenology are minimal models for the statistical
physics of yielding, capturing quantitatively plasticity ava-
lanche statistics [12–16] and qualitatively the rheology
[17–19].
APTs form a broad group of nonequilibrium transitions

arising in various areas, e.g., epidemics or fracture propa-
gation [20–22], and have sparked a continued interest for
more than 30 years (recent focus points include hyper-
uniformity close to APTs [23–26] or the relation to
reversible-irreversible transitions in particulate systems
under oscillatory driving [27–31]). A few known univer-
sality classes encompass most APTs [22,32]. APTs with
short-range interactions, a conserved quantity, and infi-
nitely many absorbing states not related by any symmetry
are conjectured to form a universality class called con-
served directed percolation (CDP) [33–37], whose expo-
nents are well characterized. In particular, the depinning

transition of driven elastic manifolds in random media
[13,38–40], which shares much of its phenomenology with
yielding, belongs to CDP [37,41,42].
By contrast, it is unclear where yielding stands within the

APT landscape. Strikingly, it is a convex transition (β > 1)
at odds with many other APTs. Qualitatively, two features
distinguish yielding from depinning, both tied to mechani-
cal equilibrium: the Eshelby kernel exhibits a long-range
decay (as 1=rd, where d is space dimension), as well as zero
modes [38–40,43]. Yet, how these features set yielding
apart from other APTs, and specifically from those in the
CDP class (such as depinning), remains an open issue.
In this Letter, we characterize yielding in d ¼ 2 as an

APT and show how mechanical equilibrium takes yielding
apart from the CDP class. Applying a finite-size scaling
analysis specifically designed for APTs [44] to the Picard
elastoplastic model [17], we determine the static critical
exponents of yielding. We show that shear-rate fluctuations
vanish at the transition, in stark contrast with the CDP class
where critical fluctuations diverge. We then construct a path
from yielding to CDP, using as stepping stones variants of
the Picard model with non-Eshelby kernels violating the
condition of mechanical equilibrium under linear elasticity.
Making stress redistribution short-ranged or decaying to
zero at least as fast as 1=r6 leads to a short-range APT class
with a concave transition (β < 1), which differs from CDP.
The latter is recovered only if the redistribution kernel does
not have zero modes. We show how the zero modes and the
long-range nature of the stress redistribution kernel modify
the stress dynamics (akin to the conserved field dynamics
in CDP), paving the way toward a field theory for yielding.
For our demonstration we choose the simplest two-

dimensional dynamical model featuring a realistic elastic
interaction kernel [8,11], known as Picard model [17].
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Space is discretized in N ¼ L2 sites arranged on a square
lattice fr1;…; rNg of extension L. Sites represent material
elements at a mesoscopic scale where continuum quantities
are well defined but fluctuating. A site at position ði; jÞ
carries a shear stress σi;j, a plastic strain ϵi;j, and a
mechanical state ni;j ¼ 1 if plastic or ni;j ¼ 0 if elastic.
The dynamics reads

∂tσi;j ¼ μ
X
k;l

GE
i−k;j−lϵ̇k;l; ϵ̇i;j ¼

ni;jσi;j
μτ

; ð1Þ

ni;j∶

8<
:

0⟶
τ−1

1 if σi;j > σc

1⟶
τ−1

0 ∀ σi;j;
ð2Þ

with μ ¼ 1 the elastic modulus, τ ¼ 1 the elastic relaxation
time, and σc a site-independent local yield threshold. When
a site yields, its stress is redistributed according to the
discretized Eshelby kernel [45,46], defined via its Fourier
transform, G̃E

qx;qy ¼ −4q2xq2y=jqj4 for q≡ ðqx; qyÞ ≠ ð0; 0Þ
and G̃E

0;0 ¼ 0. Mechanical equilibrium in a continuum ma-
terial under constant stress is enforced in discretized and
scalar elastoplastic models by requiring that the sum of the
propagator over one of its arguments vanishes,

P
kG

E
k;l¼P

lG
E
k;l¼0, which is satisfied here as G̃Eðqx; 0Þ ¼

G̃Eð0; qyÞ ¼ 0. These constraints are zero modes: any con-
figuration for which the plastic rate is restricted on a line (or
column)m on which it is uniform, that is, ϵ̇i;j ∝ δj;m, has no
effect on stress values, ∂tσi;j ¼ 0, ∀ i; j. Except when
specified otherwise, we impose the total stress Σ ¼ σ̄i;j and
measure the shear rate γ̇ ¼ ¯̇ϵi;j.
We first determine the yield stress in rate-controlled

simulations with L ¼ 1024, where we set γ̇, measure hΣi,
and look for the value of Σy giving the straightest relation
between log γ̇ and log ½hΣi − Σy� [47]. We then measure the
average shear rate hγ̇i and shear-rate fluctuations,
NhΔγ̇2i≡ Nh½γ̇ − hγ̇i�2i, in stress-controlled simulations,
as shown in Fig. 1(a). As expected, we find critical
behaviors hγ̇i ∼ ðΣ − ΣyÞβ and NhΔγ̇2i ∼ ðΣ − ΣyÞ−γ0 .
Surprisingly, however, we measure γ0 < 0, that is, rate
fluctuations vanish at the transition, in contrast with stress
fluctuations under imposed rate, which diverge in the
quasistatic limit γ̇ → 0 [17,38]. This is an unusual feature
of yielding as an APT.
To determine the critical exponents, we perform finite-

size scaling, measuring hγ̇i, NhΔγ̇2i, and cumulant Q ¼
1 − hγ̇4i=ð3hγ̇2i2Þ [44], varying the value of L∈ ½32; 1024�.
Because absorbing states prevent determination of steady-
state averages close to the critical point, we follow [44] and
introduce a field h allowing for an extra plasticity channel,
alongside Eq. (2):

ni∶ 0⟶
h
1; ∀ σi: ð3Þ

This field can be thought of as a result of non-thermally-
activated barrier hopping, from, e.g., vibration [49], activity
[50], or local damage [51], but is here merely a process to
avoid absorbing states [44]. For Σ ¼ Σy, we expect a
critical behavior hγ̇i ∼ hβ=ζ.
Under finite-size scaling hypothesis, at Σ ¼ Σy all curves

for different L should collapse under the rescalings h →
hLζ=ν⊥ , hγ̇i → hγ̇iLβ=ν⊥ , andNhΔγ̇2i → NhΔγ̇2iL−γ0=ν⊥ .We
then adjust exponents to get the collapse shown in Figs. 1(b)
and 1(c). We find β ≈ 1.5, in agreement with previous results
[52], ν⊥ ≈ 1.14, slightly larger than the value reported for the
imposed rate case [14], and γ0 ≈ −0.70, which to our knowl-
edge was never measured.
These values satisfy the hyperscaling relation γ0 ¼

dν⊥ − 2β [32,53,54], we find ð2β þ γ0Þ=ðdν⊥Þ ≈ 1.01.
Hyperscaling can be rationalized in a scaling scenario
assuming that contributors to the global shear rate hγ̇i are
concurrent but independent quasistaticlike avalanches with
spatial extent of order ξ [38]. The correlation length ξ is the
distance over which an avalanche induces a significant
density of plastic events; beyond ξ the induced plasticity is
negligible compared to the average density ∼hγ̇i. The
duration and period of avalanches of this size scale in
the same way, so the local plastic activity, which must
remain positive, has fluctuations of the order of its average
hγ̇i, that is, the local variance hΔγ̇2iξ ≡ h½γ̇ − hγ̇i�2iξ ∼ hγ̇i2.
This leads to the hyperscaling relation via hΔγ̇2i ¼
ðξ=LÞdhΔγ̇2iξ. The global variance NhΔγ̇2i thus results
from a competition: on a scale ξ, the variance of the local
plastic activity decreases when approaching the transition,
but at the system scale the shear rate results from a

(a)

(b) (c)

FIG. 1. Picard model. (a) Shear-rate variance as a function of the
imposed stress. Inset: shear rate versus stress L ¼ 512. Bottom
panels: Finite-size scaling. Scaled shear-rate average (b), shear-
rate variance (c), and cumulant Q [in inset of (c)] as a function of
scaled field. Inset of (b): Eshelby propagator in real space.
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decreasing number of independent regions, which tends to
increase its variance. The vanishing of rate fluctuations at
the transition is thus due to the fast enough decrease of the
variance of local plastic activity as ½Σ − Σy�2β, and therefore
to the large value of β. Indeed, vanishing critical fluctua-
tions were reported for few other convex APTs [30,55,56].
To clarify to what extent the specifics of yielding come

from the long-range nature of the Eshelby kernel, we turn to
a short-range analog of the Picard model [18] (which we
denote SR-Picard), based on the kernel shown in the inset
of Fig. 2(c). When a site yields, the stress is redistributed
only to the eight nearest neighbors, with GSR

0;0 ¼ −1,
GSR

0;�1¼GSR
�1;0¼1=2, GSR

�1;�1 ¼ −1=4, and GSR
i;j ¼ 0 other-

wise. Crucially,GSR retains the quadropular structure of the
Eshelby kernel and its zero modes.
The SR-Picard model is superficially similar to fixed-

energy sandpile (FES) models [34,57], especially those
with continuous variables [58,59]. The stress (mass or
energy in FES models) on a plastic site is redistributed
according to the imposed stress condition, which acts as a
conservation law (“fixed energy”). One might thus expect
that the SR-Picard falls into the CDP class like FES models
[21,32,34–36].
Performing finite-size scaling [47], we find β ≈ 0.59,

ν⊥ ≈ 0.70, and γ0 ≈ 0.26. Hence we recover a concave
transition (β < 1) with diverging fluctuations (γ0 > 0), see
Figs. 2(a) and 2(b). Hyperscaling is still satisfied, as
ð2β þ γ0Þ=ðdν⊥Þ ≈ 1.03. Intriguingly though, these expo-
nent values are not far from, but not quite the CDP values
[22,32]. We check that the collapse is significantly worse if
we use CDP exponents [47], which indicates that CDP is
not the class of the SR-Picard [60].
A fundamental difference between FES models and

stress redistribution models is the presence of zero modes
of the propagator, whose consequences are better

understood at the continuum level. In the CDP field theory
the conserved field ρ has a nondiffusive dynamics con-
trolled by an activity field Aðr; tÞ with ∂tρ ¼ Dρ∇2A, while
the activity field follows a Ginzburg-Landau-type dynam-
ics coupled to ρ, with multiplicative noise [28,35–37,61].
The Picard, SR-Picard, or more generic sandpile models
actually share the same stress or mass dynamics on lattice,
as given in Eq. (1), provided we use the appropriate
redistribution kernel G,

∂tσi;j ¼
X
k;l

Gk;lAi−k;j−lðtÞ; ð4Þ

with Ai;j ≡ ϵ̇i;j. To infer the continuum equations, we
introduce a stress field ða=LÞ2σðr; tÞ≡ σi;j and an activity
field ða=LÞ2Aðr; tÞ≡ Ai;j, with r ¼ fai=L; aj=Lg and a
the lattice spacing. When Gk;l is short-ranged (that is,

decays faster than any inverse power law of s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
for large s) and has no zero modes, a gradient expansion of
A shows that in the continuum limit, L=a → ∞, we recover
the isotropic CDP dynamics for the conserved stress field
[47]. By contrast, when G has zero modes, Eq. (4) is
dominated by a quartic anisotropic derivative,

∂tσðr; tÞ ¼ K∂2x∂2yAðr; tÞ; ð5Þ

with K ¼ 1
4

P
k;l Gk;lk2l2 and with a rescaled time t →

ða=LÞ4t [47]. Quantifying how much such modification of
the CDP normal form affects the critical behavior is
challenging and out of the scope of this work, but it is
reasonable to expect that it does induce a class distinct from
CDP, which we call CDP-0 (Fig. 4).
To numerically evidence that CDP is recovered without

zero modes, we modify the SR-Picard kernel to remove
them, as shown in Fig. 2(d). The resulting model, that we
coin FES� to outline the alternate-sign redistribution
kernel, unambiguously falls into CDP (see Table I for
exponent values and [47] for the finite-size scaling).
Furthermore, as shown in Figs. 2(c) and 2(d), comparing
the large-scale critical behavior of the SR-Picard and FES�
models reveals the trading of the isotropic CDP dynamics
for the anisotropic dynamics in Eq. (5): while for the FES�
plasticity localizes in isotropic clusters [Fig. 2(d)], for the
SR-Picard a distinctive anisotropy along ex and ey is visible
[Fig. 2(c)].

(a) (b)

(c) (d)

FIG. 2. Short-range models. L ¼ 512. (a) Mean shear rate as a
function of stress for the SR-Picard. (b) Shear-rate variance as a
function of stress for the SR-Picard. (c),(d) Activity fields for
h ≈ 10−9 for the SR-Picard (c) and FES� (d) models. The activity
is averaged over a time span of 100τ. Inset: stress redistribution
kernels.

TABLE I. Measured critical exponents.

Model or class β γ0 ν⊥ ζ

Picard or yielding 1.5 −0.70 1.1 2.5
SR-Picard 0.59 0.26 0.70 2.1
FES� 0.62 0.36 0.79 2.25
CDP [22] 0.64 0.37 0.80 2.23
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Coming back to models with zero modes, we now argue
that yielding belongs to a continuum of classes associated
with long-range stress redistribution kernels with algebraic
decay, much like equilibrium models with long-range
interactions [62]. We first note that Eq. (5), derived for a
short-range kernel, is also valid for a power-law kernel
decaying as 1=sα, as long asK is finite, that is, for α > 6. To
deal with the case α < 6, we introduce an α-Picard model
by considering a kernel G̃αðqx; qyÞ ¼ −bαq2xq2y=q6−α in
Fourier space, with 1 < α < 6. In real space and in the
continuum limit L=a → ∞, this corresponds to a kernel
ða=LÞαGαðrÞ≡Gαði;jÞwith r ¼ ðr cos θ; r sin θÞ≡ ðaiL ; ajLÞ,
GαðrÞ ∝ ½Cα þ cos 4θ�=rα, and Cα a constant. Yielding
corresponds to α ¼ 2 (in this case C2 ¼ 0). The critical
behavior for hγ̇i in the α-Picard model is shown in Fig. 3(a)
for different values of α, and the corresponding exponents β
are given in Fig. 3(b). Varying α, we observe a long-range
interaction regime, with β being a continuous function of α
interpolating from the short-range value β ≈ 0.59 for large
α values to β ≈ 2 for α ¼ 1, reminiscent of the behavior of
avalanches exponents in a statistically isotropic model of
yielding [43]. The value β ¼ 2 is the mean-field value
observed, for instance, in the Hébraud-Lequeux model
[63], which suggests that for α≲ 1 the model is mean field
(range denoted MF in Fig. 4). In parallel to the increase of β
when α decreases, the fluctuations turn from diverging to
vanishing at the transition (γ0 changes sign) around α ≈ 3
[inset of Fig. 3(a)], which is also roughly where the
transition turns convex (β ≈ 1).
Following the reasoning that led us to Eq. (5), the large-

scale behavior for α < 6 is of the form [47]

∂tσ ¼
Z

dsGαðsÞF ½A�; ð6Þ

with a rescaled time t → ða=LÞα−2t, and where the func-
tional F ½A� depends on the range of α. For 4 < α < 6, the
presence of zero modes implies

F ½A� ¼ ΔAðr; s; tÞ − sαsβ
2

∂
2
αβAðr; tÞ; ð7Þ

with ΔAðr; s; tÞ ¼ Aðr − s; tÞ − Aðr; tÞ. This long-range
behavior is specific to the zero mode property of the
kernel, since when relaxing it, the stress evolution equation
takes the CDP form for α > 4 [47], consistently with
depinning with power-law decaying kernels which follows
CDP for these values of α [64–66]. This confirms that the
presence of zero modes defines for 4 < α < 6 a continuum
of classes (denoted LR-0 in Fig. 4) distinct from depinning
or CDP, and characterized by Eqs. (6) and (7). Numerically,
we find only a mild dependence of β on α in this regime
[Fig. 3(b)]. In contrast, for 1 < α < 4 (which includes
yielding), the dependence of β on α is steeper (range de-
noted LR in Fig. 4). In this regime, we getF ½A� ¼ ΔAðr; tÞ,
a result that does not rely on the presence of zero modes.
More precisely, a kernel with zero modes leads to the same
scaling in ðL=aÞα−2 for the convolution in Eq. (6) as a
kernel without zero modes [47] (in contrast with the case
α > 4 where scalings differ and lead to two distinct
classes). This could mean that depinning and yielding
belong to the same class for α < 4, but simulations rather
support a continuum of classes between pure mean-field
depinning and pure yielding (α ¼ 2) in d ¼ 2 [40]. For the
α-Picard model, we find numerically that the long-range
behavior for which there is a dependence of β on α holds for
1 < α < 6 [Fig. 3(b)], whereas for depinning models this
holds only for 3 < α < 4 [LR-dep in Fig. 4] and the
behavior is mean field for α < 3 [64].
To summarize, we quantitatively characterize yielding as

an APT by performing an extensive finite-size scaling, and
find that critical fluctuations vanish at the transition, a
property related to the convexity of the transition due to the
hyperscaling relation that we verify numerically. Using
both large-scale numerical simulations and an analytical
derivation of the continuum stress field dynamics, we
provide a classification of yielding-type APTs with zero
modes as a function of the stress redistribution range, to

(a) (b)

FIG. 3. (a) Flow curves hγ̇i versus ε ¼ ðΣ − ΣyÞ=Σy and shear-
rate variance versus ε in inset for the α-Picard model with α ¼
½5; 4; 3; 2; 1.5; 1� and for the SR-Picard. (b) Critical exponent β as
a function of the decay exponent α of the redistribution kernel.
HL ¼ Hébraud-Lequeux model. CDP-0 ¼ conserved directed
percolation with zero modes.

FIG. 4. Top row: classification of the large-scale behavior of
yielding-type models (models with zero modes) as a function of
the decay exponent α of the redistribution kernel, summarizing
the results of the present work (LR, long-range; SR, short-range;
MF, mean field). Bottom row: similar representation for depin-
ning models (models without zero modes) [64]. Representative
models studied here (α-Picard, SR-Picard, FES�) are also
indicated.
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locate yielding in a broader APT landscape, as summarized
in Fig. 4. We also find that the short-range yieldinglike
class is distinct from CDP or depinning, pointing to the key
role of zero modes for short-range models.
Our results on stress field dynamics constitute a first step

toward a field theory for yielding. Such a field theory would
predict stress correlations under slow flows, for which the
system is anisotropic, or for yield stress fluids at rest, as they
carry anisotropic residual stresses accumulated during past
flows [67–70]. Stress correlations in isotropic amorphous
materials at rest show a long-range spatial structure mim-
icking the Eshelby kernel [71–77]. Using Eq. (6) combined
with the linearized CDP activity dynamics as a putative
field theory for yielding, we get a fluctuating hydro-
dynamics estimate of stress correlations hσ̃ðqÞσ̃ð−qÞic ∝
−G̃ðqÞ=ðhγ̇i þDq2Þ with D proportional to the plasticity
diffusion coefficient [47], so that the Eshelby structurewould
also dominate at large scale. Future works should aim at
determining a continuum description of the activity dynam-
ics coupled to the conserved stress, which seems particularly
challenging, as well as addressing the role of thermal
activation to bridge with the “solid that flow” picture of
supercooled liquids [78–80].
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