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When slowly sheared, jammed packings respond elastically before yielding. This linear elastic regime
becomes progressively narrower as the jamming transition point is approached, and rich nonlinear
rheologies such as shear softening and hardening or melting emerge. However, the physical mechanism of
these nonlinear rheologies remains elusive. To clarify this, we numerically study jammed packings of
athermal frictionless soft particles under quasistatic shear γ. We find the universal scaling behavior for the
ratio of the shear stress σ and the pressure P, independent of the preparation protocol of the initial
configurations. In particular, we reveal shear softening σ=P ∼ γ1=2 over an unprecedentedly wide range of
strain up to the yielding point, which a simple scaling argument can rationalize.
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Introduction.—A disordered packing of grains becomes a
solid when its density, or the packing fraction φ, exceeds the
jamming transition density φJ [1]. Critical behaviors are
observed in the vicinity of φJ, which is established both
theoretically [2,3] and experimentally [4]. Examples include
the nontrivial but universal criticality of the contact number,
pressure, elastic moduli, and non-Debye vibrational pro-
perties at low frequencies, to name a few [2,3,5,6]. However,
these behaviors are established for undeformed systems.
The jamming criticality of the mechanical response under

deformation, or the nonlinear rheology, is far less understood
than the undeformed counterparts. The stationary nonlinear
rheology under a constant strain-rate γ̇ (and, thus, at large
strain γ ≫ 1) has been studied for decades, and the scaling
law (typically for the viscosity η) is being actively updated
[3,7–14]. The transient nonlinear rheology at a finite γ in the
quasistatic limit is as rich as the stationary rheology, but this
regime remains largely unexplored even in frictionless
grains. Jammed packing responds elastically if the strain γ
is small and yields and becomes plastic if γ exceeds the
yielding point γy. Recent numerical studies revealed diverse
mechanical properties between elastic and plastic regimes.
The linear elastic window becomes progressively narrow as
φ → φJ from the above and completely disappears at the
transition point, whereas yielding point γy is insensitive to
the distance from φJ. As the system is deformed beyond the
elastic window, it first experiences the “shear softening,”
where stress is proportional to γ1=2 [15–20]. This shear
softening is universally observed near φJ right next to the
elastic regime. When strained further, the stress increases
sharply. This is called shear hardening, and it persists until
the system eventually yields [21]. A similar sudden increase
of the stress is observed even below φJ, where the system
originally in a stress-free unjammed phase acquires the
rigidity beyond a finite strain, which is called shear jamming
[21–24]. Though the shear jamming was originally thought

to occur only in frictional particle systems [25,26], it is
observed also in frictionless particles if the systems are
exposed to mechanical training [22,27] or thermal annealing
[23,28–35]. The shear hardening in trained packing should
be contrasted with the shear melting, observed in untrained
packings, which are fragile against deformation [36–38].
These diverse rheologies imply that they sensitively depend
on the preparation protocols of the packings, such as training
and annealing. Significant dependence of nonlinear rheology
on the training and annealing has been reported for a wide
range of amorphous solids [39–43]. However, the unified
understanding of these complex rheologies remains elusive.
In this Letter, we disentangle the shearmelting, jammingor

hardening, and softening by numerically investigating the
two- and three-dimensional jammed packings of frictionless
soft particles under athermal quasistatic (AQS) shear strains γ
for varieties of jammed packing. We recognize that φJ varies
dependingonboth thepackingpreparationprotocoland,more
importantly, the strain γ.We also show that the shear softening
is the only essential mechanism at work, and σ=P is propor-
tional to γ1=2 between the onset of the softening at γs and the
yieldingpoint at γy.Our results lucidly demonstrate that stress
and pressure undergo the shear melting or shear hardening
because the jamming transition density φJ progressively
increases or decreases depending on the initial configurations
as the system is deformed. Therefore, if the distance fromφJ is
monitored to be fixed (or if one observes the ratio of the stress
to pressure), one can eliminate the effects of hardening and
melting. We also provide a simple scaling argument that
rationalizes the numerical results.
Numerical modeling.—The systems we study are two-

and three-dimensional (2D and 3D) equimolar binary
mixtures of frictionless particles with diameters σL and
σS. The size ratio of small and large particles is
σL=σS ¼ 1.4. The interaction potential between the jth
and kth particles is given by
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UðrjkÞ ¼
ϵ

α
f1 − ðrjk=σjkÞgαΘðσjk − rjkÞ; ð1Þ

where rjk ¼ jrj − rkj, σjk ¼ ðσj þ σkÞ=2, and ΘðxÞ is the
Heaviside step function [44]. Here σj is the diameter of the
jth particle. In our simulations, we use σS, ϵ, and ϵ=σ2S as
units of length, energy, and stress (pressure), respectively.
The particle number is N ¼ 1156 and the power in the
potential is α ¼ 2.0 (harmonic potential) unless otherwise
stated. To confirm that the finite size effect does not affect
the conclusions, we performed simulations in the range
N ¼ 288 to 16 384 in 2D harmonic potential (see Figs. S1,
S2 in the Supplemental Material [45]). We also perform
simulations of 3D harmonic or 2D Hertzian potential
systems (α ¼ 2.5), which show qualitatively the same
results as 2D harmonic systems, as shown in Figs. S6
and S7 in Supplemental Material [45]. The particles are
driven to a quasistatic state using the FIRE algorithm
[46,47] for energy minimization. We also apply shear stabi-
lization to remove residual stress for the initial configura-
tions [36] (see Ref. [45]).
We consider a configuration quasistatic when the aver-

age force amplitude acting on a particle is less than
10−14ϵ=σS. This threshold value is determined by the
numerical accuracy of double-precision numbers plus
round-off errors. We perform constant volume simulations
for most parts of the main text, except for the data of φJðγÞ
shown in Fig. 3, obtained from constant pressure simu-
lations. Figures S3–S9 in Supplemental Material [45]
present the stress-strain curves and other relevant results
with constant pressure simulations.
Results.—We generated the initial configurations

through mechanical training by a quasistatic compres-
sion-decompression cycle with various amplitudes, or
“depths” [22,28]. Depth here is defined as the maximum
density φMAX to which the system is compressed during the
cycle. The mechanical training stabilizes the jammed
configurations. Figure 1(a) presents the potential energy
per particle U ¼ ð1=NÞPj>k UðrjkÞ as a function of φ
during the cycle. We first prepare a random configuration
with φ≲ 0.84 and increase φ by Δφ ¼ 10−4 each steps up
to φMAX. Then we decrease φ by Δφ ¼ 10−4 each step if
U > 10−8 and Δφ ¼ 10−6 otherwise. We define the initial
jamming transition density, φJ0, as the point where U
becomes U < 10−16 for the first time. Figure 1(b) shows
φJ0 as a function of φMAX. We observe that as φMAX
increases, φJ0 also increases when φMAX is less than 1.2;
when φMAX is greater than 1.2, φJ0 slightly decreases and
then converges to φJ0 ≈ 0.846. This indicates that an
optimal training amplitude may exist at which the system
is most efficiently packed at the bottom of the geometric
landscape, leading to the largest φJ. Similar optimal
amplitudes have been observed in sheared systems
[43,48]. We only consider the mechanically trained initial
configuration. We believe other protocols, such as thermal

annealing, will have similar effects [21,34]. In the present
study, once the jamming transition point is reached, the
packing fraction is gradually changed toward the target φ to
obtain the initial configuration for the mechanical response.
Next, we investigate the mechanical response of thus-

obtained initial configurations toquasistatic steady shear [49],
using the Lees-Edwards boundary conditions [50]. A small
affine shear strain ΔγðnÞ is applied to drive the particles in
each step. Then, the positions of the particles are relaxed to
the equilibrium position using the FIRE algorithm to mini-
mize the energy. The shear strain evolves as γðnþ 1Þ ¼
γðnÞ þ ΔγðnÞ. When the accumulated shear strain is in the
regime γ < 10−3, ΔγðnÞ is logarithmically increased from
10−7 (or10−9) to10−3;whenγ > 10−3,ΔγðnÞ is fixed to10−3.
The shear stress and the pressure are measured using a
quasistatic steady shear configuration. The stress tensor is
defined asσαβ ¼ ð1=L2ÞPj>kðrαjkrβjk=rjkÞð∂U=∂rjkÞ,where
α; β∈ fx; yg, rxjk ¼ xjk and r

y
jk ¼ yjk [50]. The shear stress is

given by the off-diagonal components of the stress tensor, σxy
or σyx. The pressure is computed from the diagonal compo-
nents, P ¼ −ðσxx þ σyyÞ=2. We consider the mechanical
response to quasistatic shear of the initial configurations that
aremechanically trained with differentφMAX. All data shown
below are averaged over at least 15 independent runs
(typically, more than 100).
Figure 2 shows the mechanical response with respect to γ

for various δφð¼ φ − φJ0Þ at φMAX ¼ 1.2. Figure 2(a) is
the γ dependence of the shear stress σxyðγÞ, or the stress-
strain curves. Slightly above the jamming transition,
δφ≳ 0, the stress-strain curve exhibits a unique behavior
as the shear strain increases. For small γ, we observe an
elastic response σxy ¼ Gγ, where G is the shear modulus.
After the elastic regime, the system enters the shear-
softening regime where σxy ∼ γ1=2. A shear hardening is

(a) (b)

FIG. 1. (a) Preparation protocol for initial configurations: φ
dependence of potential energy per particle U during the
compression-decompression process. φMAX is the maximum
packing fraction during this process, and φJ0 is the packing
fraction when U < 10−16 for the first time during decompression.
(b) Jamming transition density, φJ0 as a function of the depth of
the mechanical training, φMAX.
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observed at larger γ, where the stress increases sharply as
σxy ∼ γ2. The system eventually yields at even larger γ,
where σxy becomes almost constant. The yielding point
γy ≃ 5 × 10−2 is insensitive to the densities. When the
initial configuration is in the unjammed phase, or δφ≲ 0,
the system undergoes the shear jamming behavior; σxyðγÞ is
0 (unjammed) at small γ’s, but it abruptly jumps to a finite
value before the system enters the hardening regime
σxyðγÞ ∼ γ2 at intermediate γ’s. We also focus on the γ
dependence of the pressure PðγÞ, which will provide
important insight for our understanding of the nonlinear
mechanical response [as in Fig. 2(b)]. When δφ > 0, as γ is
increased, P remains almost constant through both elastic
and softening regimes, but it sharply increases as P ∼ γ1.5 in
the shear hardening regime. Note that in the hardening
regime, the power law exponents for PðγÞ differ from that
of σxyðγÞ ∼ γ2 by 0.5.
We summarize the pressure-strain curves in Fig. 2(b) as

the jamming phase diagram for a wide range of φ and shear
strain γ (see the color map of Fig. 3). We observe that, when
φ≳ φJ0, the system is always jammed and P is finite. When
φ≲ φJ0, on the other hand, P ¼ 0 at small γ’s but becomes
nonzero, and the system shear jams at γ ∼ 10−2, that is
observed as the sharp boundary in the color map. The shear
jamming is not observed if φ≲ 0.842, however large the
strain is. This color map clearly demonstrates the fluid and
jammed phases are demarcated by the sharp jamming

transition line φJðγÞ, which is an S-shaped continuous
function of γ.
So far, we focused on the well-trained system with

relatively large φMAX (¼ 1.2), for which φJ0 is conceivably
large compared with that of the untrained system.
Henceforth, we study how the jamming transition line
φJðγÞ varies with the initial jamming transition density φJ0,
which can be tuned by varying φMAX. This is key to
understanding the complicated mechanical responses
observed above. To compute φJðγÞ, we switch to the
constant pressure simulation under steady shear [23] (see
Supplemental Material [45]). Superimposed on the color
map in Fig. 3 discussed above is the γ dependence of the
volume fraction obtained at small but finite pressure at
P ¼ 10−6. As P is infinitesimally small, the measured
volume fraction is interpreted as the jamming transition
point φJðγÞ. Different lines correspond to the simulation for
initial packings obtained for different φMAX’s. φJðγÞ in the
small γ limit is φJ0 shown in Fig. 1(b). φJðγÞ’s starting from
different φJ0’s are constant at small γ but start bending
around γ ≈ 10−2, and eventually converge to a common
density φJ∞ ≈ 0.843 at large γ (due to the loss of the
memory imprinted in the initial configurations [22,35,51]).
The convergence occurs at γ ≳ 0.1, slightly above the
yielding point γy. φJ∞ agrees with the jamming transition
point estimated from stationary nonlinear rheology under a
constant γ̇ [11,35,49,52–55]. Note that φJ0’s obtained for
small φMAX’s (< 0.86) are smaller than φJ∞ [53,55,56].
When these poorly trained jammed packings slightly above
φJ0 are strained, the density crosses φJðγÞ at a finite γ and
undergoes the shear melting (see Fig. S4 in Supplemental
Material [45]).
Inspired by the fact that in constant-volume simulations,

both σxy and P show the shear jamming and shear hard-
ening, we plot the ratio of the stress to the pressure, or the
friction coefficient μ ¼ σxy=P in Fig. 4(a). We use the same

FIG. 2. Constant volume mechanical response to strain γ for
various δφð¼ φ − φJ0Þ. Initial configurations are prepared with
φMAX ¼ 1.2, where φJ0 ∼ 0.8465. (a) σxy vs γ. The dashed lines
represent σxy ∝ γ, σxy ∝ γ0.5, and σxy ∝ γ2.0, respectively. (b) P vs
γ. The dashed line represents P ∝ γ1.5.

FIG. 3. P as a function of γ and φ at φMAX ¼ 1.2 by integrating
constant volume simulation data as shown in Fig. 2(b). (Plotted
points overlaid on the color map) φ dependence of γ obtained
under constant pressure at P ¼ 10−6 representing as φJðγÞ for
various φMAX.
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data of Fig. 2 at φMAX ¼ 1.2 for various δφ ¼ φ − φJ0 for
both below and above the transition point. The result
uncovers surprisingly simple and novel rheology.
Between the elastic regime at small γ where μ ∝ γ and
the yielding regime at large γ where both σxy and P are
independent of γ, there lies a wide range of the softening
regime where μ ∝ γ0.5. No shear jamming or hardening is
observed in μ. The shear jamming or hardening is apparent
when looking at σxy and P in the constant volume
simulations. This is due to the progressive change of the
jamming transition density as the strain is increased. We
address that μ is independent of δφ in the softening regime,
indicating that the softening is the critical behavior. One
reads two messages in Fig. 4(a). First, the shear-softening
persists over an unprecedentedly wide range. It is observed
even for originally unjammed packings (φ < φJ0) exactly
when the system crosses φJðγÞ and acquires the rigidity at
the shear-hardening point (see the discontinuous change of
μ for δφ < 0 in the figure). Second, the data reveal that the
shear softening alone dictates the critical behavior above

and below the jamming transition point. The fact that shear
jamming or hardening originates from the continuous
increase of φ − φJðγÞ with γ implies that σxy at the constant
pressure should show the same behavior as μðγÞ since the
distance from the jamming transition point is always kept
constant if P is fixed. This is the case, as shown in Figs. S3,
S5–S9, in Supplemental Material [45].
As Fig. 4(a) clearly demarcates the elastic and softening

regimes, we estimate the onset strain of the softening, γS.
We find γS ∼ ðφ − φJ0Þx with x ¼ 1, as shown in Fig. 4(b),
consistent with the values reported in the literature
[16,18,19]. A different scaling exponent x ¼ 3=4 was
reported [17] which was derived from a scaling argument
[57]. We will discuss the discrepancies in the exponents
later. The origin of the scaling of the onset strain is purely
geometrical. The softening sets in when the particles are
displaced by an overlap distance to exchange the excess
contacts proportional to δφ. We verify that the cage-relative
displacement of the particle (i.e., the relative displacement)
[58,59] is proportional to the γ, and softening occurs where
this exceeds the overlap length, as shown in Fig. S9 in
Supplemental Material [45]. Here we also find that the
yielding point γy is insensitive to δφ because the corre-
sponding particle displacement is equivalent to the cage
size, which is always Oð0.1Þ regardless of the overlap
length.
Lastly, let us explain the observed softening behaviors

using a simple scaling argument in the softening regime.
The prerequisites are a scaling ansatz σxy ∼ Paγb, and our
observations that γs ∝ δφ. First, from the fact that γy is
insensitive to δφ and σxy is proportional to P beyond γy [see
Fig. 4(a)], thus σxy ∼ Pa1b ∼ P and then we readily obtain
a ¼ 1. Second, in the opposite limit at γs, σxy should be
converged to Pγbs ∼ δφα−1δφb, where P ∼ δφα−1 [2,3,5].
For the stress to match at the elastic region σxy ¼
Gγs ∼ δφα−1=2, we arrive at b ¼ 1=2. Here we used G ∼
δφα−3=2 [2,3,5,60]. From this argument, we finally obtain a
deceptively simple scaling law for μðγÞ ¼ σxyðγÞ=PðγÞ as,

μðγÞ ¼ δφ1=2F ðγ=δφÞ; ð2Þ

where F ðxÞ ¼ xðx ≪ 1Þ and F ðxÞ ¼ x1=2 (otherwise). We
emphasize that φJ used in δφ ¼ φ − φJ is a function of γ,
not the initial jamming density φJ0 at γ ¼ 0.
The above scaling argument dissolves the controversy

over the different exponents x ¼ 1 and 3=4 for the onset
strain γs [17,57]. x ¼ 3=4 originates from the scaling
argument for the energy under shear EðγÞ ¼ E0 þ Gγ2.
Using the scaling for the energy E0 ∝ δφα and modulus
G ∝ δφα−3=2, we obtain E ∼ δφαf1þ ðγ=δφ3=4Þ2g. This
expression implies that the crossover strain γs is scaled
as δφ3=4. However, the shear modulus is assumed to be
independent of γ in this argument. As we demonstrated in

FIG. 4. Constant volume nonlinear rheology with initial con-
figurations trained at φMAX ¼ 1.2. (a) Friction coefficient μðγÞ ¼
σxyðγÞ=PðγÞ vs γ for various δφ ¼ φ − φJ0. (b) The crossover
shear strain γS between the elastic and softening regimes as a
function of δφ ¼ φ − φJ0, found to follow γS ∼ δφ. (c) μðγÞ=δφ0.5

vs γ=δφ for the data shown in (a), where δφ ¼ φ − φJ0.
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this Letter, the elastic-softening crossover takes place at
γs ∼ δφ before γ reaches δφ3=4.
Summary.—In this Letter, we resolved the mechanism of

nonlinear rheology observed near the jamming transition
by systematically tuning the stability of the initial jamming
configuration by mechanical training [22,28,61]. This
allows us to explore a wide range of jamming density
φJ0 from the very fragile packing at low φJ0 to the stable
packing at high φJ0. We numerically found that complex
nonlinear mechanical responses such as melting, shear
jamming, and hardening can be explained solely by the
distance from the jamming transition points, which varies
continuously with strain. They can be all scaled out, and
the emerging scaling picture is simple and robust; only the
softening prevails between the linear elastic and the
yielding regime. We also find the softening region over
the unprecedently wide range of γ. The next natural
question is the interplay of the softening σxyðγÞ ∼ γ1=2

and the critical viscoelastic scaling σxyðωÞ ∼ ω1=2 [62].
Both algebraic scalings share the same exponent, and they
both claim a criticality where δφ is scaled out as the
jamming transition point is approached from above. We
have already demonstrated that the stress shows the soft-
ening behavior even below jamming, i.e., φ < φJ, but only
if thestrain rate is finite. Inotherwords,σxy ∝ γ̇1=2 ¼ ðωγÞ1=2,
a result implying the scaling for σxyðω; γÞ [42].
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