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We identify the thermodynamic conditions necessary to observe indefinite growth in homogeneous open
chemical reaction networks (CRNs) satisfying mass action kinetics. We also characterize the thermodynamic
efficiency of growth by considering the fraction of the chemical work supplied from the surroundings that is
converted into CRN free energy. We find that indefinite growth cannot arise in CRNs chemostatted by fixing
the concentration of some species at constant values, or in continuous-flow stirred tank reactors. Indefinite
growth requires a constant net influx from the surroundings of at least one species. In this case, unimolecular
CRNs always generate equilibrium linear growth, i.e., a continuous linear accumulation of species with
equilibrium concentrations and efficiency one. Multimolecular CRNs are necessary to generate non-
equilibrium growth, i.e., the continuous accumulation of species with nonequilibrium concentrations.
Pseudounimolecular CRNs—a subclass of multimolecular CRNs—always generate asymptotic linear growth
with zero efficiency. Our findings demonstrate the importance of the CRN topology and the chemostatting
procedure in determining the dynamics and thermodynamics of growth.
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Significant progress has been achieved over the last
decades in establishing a thermodynamic description
of open CRNs both at the stochastic and deterministic
level [1–7]. The thermodynamic framework complements
the dynamical one by enabling energetic considerations of
various complex chemical phenomena such as the cost
of sustaining nonequilibrium steady states [8], chemical
oscillations [9], chaotic dynamics [10], patterns [11–13],
waves [14,15]. It has also been used to study the efficiency
of energy transduction [16–18], energy storage [19] and
various forms of information processing [20,21]. But little
attention has been given to the phenomenon of chemical
growth. This is surprising given the importance of under-
standing how living systems can accumulate chemical
species that would otherwise never be found at equilibrium
by extracting matter and energy from their surroundings.
Therefore, the identification of the thermodynamic con-
ditions for open CRNs to undergo growth, along with the
evaluation of growth efficiency, is of direct relevance not
only for bioenergetics [22–24] but also for elucidating the
emergence of chemical complexity and life itself [25–27].
Previous works on growth have mainly focused on describ-
ing the growth dynamics of CRNs with irreversible
reactions [28–32], implicitly assuming infinite resources
to grow. Thus, exponential or even hyperbolic growth was
observed. In the case of reversible CRNs, transient growth
regimes have been studied numerically [33] and analyti-
cally (for dilute autocatalytic CRNs) [34]. In this Letter, we
focus on the question of asymptotic concentration growth
by considering the simplest setup of homogeneous, open,

and reversible CRNs in ideal dilute solutions [35]. The
dynamics of such CRNs is given by mass action kinetics.
We consider three different chemostatting mechanisms for
opening CRNs: holding the concentration of some species
constant (concentration control), imposing a constant
influx or outflux of some species (flux control), and a
constant influx and an outflux of species proportional
to their concentration (mixed control). Many standard
experimental setups can be described in terms of those
chemostatting mechanisms, such as batch control [36],
continuous-flow stirred tank reactors [37,38], and serial
transfer experiments [39]. By analytically studying grow-
ing unimolecular and pseudo-unimolecular CRNs and
numerically studying four multimolecular CRNs, we
clarify the important role of the topology of the CRN
and the chemostatting procedure in determining when
growth with equilibrium or nonequilibrium concentrations
is possible.
We start by introducing setup and dynamics of open

CRNs. Chemical species α are interconverted by (elemen-
tary [40], mass balanced) chemical reactions ρ,

α · νþρ ⇋
þρ

−ρ
α · ν−ρ; ð1Þ

where the vectors ν�ρ specify the number of each species
participating in the reaction �ρ and α ¼ ð…; α;…ÞT.
The topology of CRNs is encoded in the stoichiometric
matrix S, whose columns Sρ ≔ ν−ρ − νþρ, quantify the
net change in the number of the species after the reaction ρ.
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The concentration vector, zðtÞ ¼ ð…; ½α�ðtÞ;…ÞT, obeys
the rate equation

dz
dt

¼ SjðzÞ þ IðzÞ: ð2Þ

The first term in Eq. (2) is the product of the stoichiometric
matrix S and the reaction current vector jðzÞ ¼
ð…; jρðzÞ;…ÞT. It tracks the total change in concentrations
due to chemical reactions. Each reaction current is
expressed as the difference between a forward and a
backward flux, jρðzÞ ¼ jþρðzÞ − j−ρðzÞ. From mass action
kinetics,

j�ρðzÞ ¼ k�ρzν�ρ ; ð3Þ

where k�ρ are rate constants and the notation ab ≔ Πja
bj
j is

used. The second term IðzÞ in Eq. (2) results from chemo-
statting a subset of species (denoted Y) and quantifies the
exchange currents with the surroundings. The remaining
species (denoted X) are called internal species. As a result,
Eq. (2) splits into dtx ¼ SXjðzÞ and dty ¼ SY jðzÞ þ IYðzÞ,
where x and y represent the concentrations of the internal
and chemostatted species, respectively. The three types of
chemostatting procedures we consider are formalized as
follows (see Ref. [41] for details). Concentration control
maintains y constant in time: IYðzÞ ¼ −SY jðzÞ. Flux control
imposes a constant flux of species into or out of the system:
IYðzÞ ¼ Ĩ. Mixed control imposes a constant influx of
species into the system and extracts species from the system
proportionally to their concentrations: IYðzÞ ¼ −D̃yþ Ĩ,
where D̃ is a diagonal matrix and Ĩ is a constant (positive)
vector. Continuous-flow stirred tank reactors correspond
to a form of mixed control in which all the species are
extracted with the same rate, i.e., D̃ ¼ ke1 [39]. From
Eqs. (2) and (3), we note that unimolecular CRNs, which
consist exclusively of reactions of the form α ⇌ β, will
follow a linear dynamics for any chemostatting procedure.
CRNs with multimolecular reactions will always give rise
to nonlinear dynamics for flux and mixed control.
However, under concentration control, some of them
may give rise to linear dynamics. We call these pseudo-
unimolecular CRNs.
We now turn to the thermodynamics of open CRNs

[4,6,7]. The chemical potential for species in homogeneous
dilute solutions at temperature T is given by the vector
μðzÞ ¼ μ0 þ RT lnðzÞ, with R the gas constant and μ0 the
vector of standard chemical potentials. By integrating the
chemical potential, we deduce the nonequilibrium Gibbs
free energy,GðzÞ ¼ P

α μα½α� − RT
P

α½α�, and the entropy
production rate (EPR), TΣ̇ ¼ −μSj [4,42]. The thermody-
namics is linked to the dynamics via the local detailed
balance,

RT ln ðkþρ=k−ρÞ ¼ −μ0 · Sρ: ð4Þ

This allows us to express the EPR as Σ̇ ¼ R
P

ρðjþρ − j−ρÞ
lnðjþρ=j−ρÞ ≥ 0, and derive a nonequilibrium second law
TΣ̇ ¼ ẇc − dtG ≥ 0. The term ẇc ¼

P
α μαIα, called the

chemical work rate, is the total work done on the CRN per
unit time. Thus, the second law states that the dissipation is
the difference between the total work done on the CRN and
the change in its free energy. We further decompose the
chemical work rate ẇc using conservation laws, which
are linearly independent left null eigenvectors lλ of the
stoichiometric matrix S. They identify moieties, that are
parts of (or entire) molecules that are left intact by the
reactions. Their concentrations Lλ ¼ lλ · z are conserved in
closed CRNs. In open CRNs,

dtLλ ¼ lλ · dtz ¼ lλ · IðzÞ: ð5Þ

If lλ · IðzÞ ≠ 0 (resp. ¼ 0), the moiety concentration Lλ is
no longer conserved (resp. still conserved), and the con-
servation law lλ is said to be broken (resp. unbroken). Note
that every CRN has at least one conservation law that
involves all species, denoted lm, with the corresponding
moiety concentration Lm ¼ lm · z called the mass density
[43], which is always broken in an open CRN.
Since the moiety concentrations Lλ change only due to

the exchange currents, we split the chemical work rate into
the work done in changing Lλ and the remaining. However,
as chemostatting a species does not always break a
conservation law, we split the set of chemostatted species
Y into potential species Yp, each of which breaks a
conservation law, and force species Yf ¼ YnYp. This
allows us to associate each moiety corresponding to a
broken conservation law to a single Yp species and express
its concentration according to mðzÞ ¼ ðLb

Yp
Þ−1Lb · z, where

Lb is a matrix with broken conservation laws as rows while
Lb
Yp

is the square submatrix corresponding to the potential

species [6]. The work done in changing the exchanged
moiety concentrations, called the moiety work rate, then
reads ẇm ¼ μYp

· dt m. The remaining part of the chemical
work rate is called the nonconservative work rate,
ẇnc ¼ ẇc − ẇm. The nonconservative work rate identifies
the energetic cost of maintaining fluxes of the same moiety
between the various chemostats [4,6] and can be rewritten
as ẇnc ¼ ðμY − μYp

ðLb
Yp
Þ−1LbÞ · IY . As a result, the non-

equilibrium second law of CRNs can be rewritten in a form
particularly well suited to analyzing growth:

TΣ̇ ¼ ẇnc þ ẇm − dtG ≥ 0: ð6Þ

Closed CRNs always reach a fixed point, zeq, called the
equilibrium state, such that jðzeqÞ ¼ 0 and TΣ̇ ¼ ẇnc ¼ 0.
Fixed points in open CRNs can either be equilibria or
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nonequilibrium steady states (NESS), zss, with jðzssÞ ≠ 0

and TΣ̇ ¼ ẇnc > 0. Note, for any fixed point of a CRN,
ẇm ¼ dtG ¼ 0. Often, chemostatting CRNs is done by
concentration control. Generically, such open CRNs relax
to a NESS or exhibit complex behaviors like limit cycles
or multistability. However, no asymptotic growth was
observed till recently, in Ref. [7], where numerically, under
both flux and mixed control, a CRN was shown to
tend towards a state with infinite concentrations. In this
Letter, we investigate the dynamics and energetics of
growing CRNs.
Indefinite growth implies that at least one species keeps

accumulating in the system. It is thus equivalent to the
statement that limt→∞kzðtÞ − zð0Þk ¼ ∞ (where k • k
denotes the Euclidean norm), or that the mass density
diverges limt→∞ LmðtÞ ¼ ∞. Thermodynamically, the
accumulation of species results in free energy that diverges
in time. This tells us that the work needed from the
surroundings also has to diverge which immediately
implies that closed CRNs do not grow and only open
CRNs may grow. The chemostatting procedure plays a key
role in determining the growth conditions. For example, in
the case of continuous-flow stirred tank reactors, Eq. (5) for
the mass density becomes dtLm ¼ −keLm þ lm

Y · Ĩ, imply-
ing a bounded solution and therefore no growth for any
choice of rate constants fk�ρ; keg and current Ĩ [39]. As
another example, under flux control, all CRNs show growth
if dtLm ¼ lm

Y · Ĩ > 0, with all growing concentrations
diverging at most linearly in time.
For a systematic analysis, we first consider CRNs that

are dynamically linear and can thus be characterized
analytically. We note that the detailed calculations and
a more extensive analysis are reported in a companion
paper [41]. The first important result is that unimolecular
CRNs can produce equilibrium growth under flux control
and no growth otherwise. For any chemostatting procedure
of a unimolecular CRN, Eq. (2) can be rewritten in the form

dta ¼ Wa − Daþ Ī: ð7Þ

Here, a ¼ z under flux and mixed control, while
a ¼ x under concentration control. W is a rate
matrix [44,45] whose nondiagonal entries are given by

Wα;β ¼ fPρ kþρjρ∶β⇌
þρ

αg and diagonal entries are such
that the sum over each column is zero. Due to the local
detailed balance condition (4), W is a detailed balanced
matrix with a zero eigenvector proportional to
expð−μ0=RTÞ. Under all kinds of control, Ī is a constant
vector. Under mixed control or concentration control,D is a
non-negative diagonal matrix with at least one nonzero
element. As a result, all the eigenvalues of the matrix
W − D are negative and growth cannot occur.
Flux control instead corresponds to D ¼ 0 in Eq. (7).

The mass density grows linearly in time at a rate given by

the total injection current, dtLmðtÞ ¼ P
α Īα (since lm ¼

ð1; 1;…; 1ÞT for unimolecular CRNs), and the growth of all
species is controlled by it at large times:

½α�ðtÞ ¼
�

e−μ
0
α=RTP

α0e
−μ0

α0=RT

�
LmðtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼½α�eqðLmðtÞÞ

þ cαðĪÞ ¼ OðtÞ: ð8Þ

Here, fcαðĪÞg are time-independent coefficients and linear
functions of the injection currents, while ½α�eqðLmðtÞÞ is the
equilibrium value to which the CRN would relax if it were
closed (by stopping the injection) at time t. This means that
the growth process follows, up to the offset cαðĪÞ, that
equilibrium value. Turning to the second law, at large times
one finds that

TΣ̇ ∼ ẇnc ¼ Oðt−1Þ; ð9Þ
dtG ∼ ẇm ¼ OðlnðtÞÞ: ð10Þ

The physical interpretation of this result is simple. Since the
CRN concentrations scale extensively over time, while the
offset in Eq. (8) remains intensive, growth over large times
resembles a quasistatic process where the total dissipation
becomes negligible and the moiety work performed by the
injection is reversibly converted into free energy. Defining
the thermodynamic efficiency with which the chemical
work is converted into free energy, η ¼ dtG=ẇc, and using
Eqs. (10), (9), and (6), we see that η tends to one at large
times for unimolecular CRNs, indicating reversible energy
conversions. In other words, equilibrium growth can be
seen at large times as a moving equilibrium following the
mass density displaced by the injection.
We now analyze pseudo-unimolecular CRNs. These

are multimolecular CRNs where the concentrations of
certain species, called hidden species, are held constant
via concentration control, and where the dynamics of the
remaining concentrations, called dynamically linear spe-
cies, becomes linear. For example, consider the single
reaction Eþ S ⇌ ES. If the concentration [S] is held
constant, the dynamics becomes linear. By absorbing the
(constant) concentrations of the hidden species into the rate
constants, the rate equation for pseudo-unimolecular CRNs
can still be written as Eq. (7) with a rate matrixW that is not
detailed balanced. For the same reasons as for unimolecular
CRNs, mixed control and concentration control on the
dynamically linear species will not give rise to any growth.
Instead, flux control on the dynamically linear species will
produce growth which over long times reads

½α�ðtÞ ¼ πssα LmðtÞ|fflfflfflffl{zfflfflfflffl}
¼½α�ssðLmðtÞÞ

þ cα: ð11Þ

Here, πssα is a component of the normalized right null vector
of W and ½α�ssðLmðtÞÞ is the steady state (generically a
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NESS) to which the CRN would relax if it were closed (by
stopping the injection) at time t. In the long time limit, the
thermodynamic quantities are of the form,

TΣ̇ ∼ ẇnc ¼ OðtÞ; ð12Þ

dtG ∼ ẇm ¼ OðlnðtÞÞ: ð13Þ

Exactly as for growing unimolecular CRNs [see Eq. (10)]
the moiety work rate performed by the injection is con-
verted into free energy. The key difference is that this
conversion is generically irreversible, and thus gives rise to
an extensive EPR in time. In contrast to the unimolecular
case, the efficiency η ¼ dtG=ẇc tends to zero at large times
(using Eqs. (12), (13) and (6)) indicative of very inefficient
irreversible conversions. This nonequilibrium growth proc-
ess can be seen over long times as a moving NESS
following the mass density displaced by the injection.
The dissipation is essentially the nonconservative work
dissipated in the NESS due to the presence of the chemo-
statted hidden species.

In summary, by considering dynamically linear CRNs,
we prove that only flux chemostatting generates growth in
such CRNs. Unimolecular CRNs only display equilibrium
growth, while pseudo-unimolecular CRNs can give rise to
nonequilibrium growth. A striking feature of these CRNs is
a splitting of the second law, where the total dissipation is
essentially the nonconservative work rate whereas the
moiety work rate is essentially converted into free energy.
We now turn to multimolecular CRNs. General state-

ments are notoriously difficult to make in this case. A
widely accepted conjecture in the mathematical literature
states that any weakly reversible CRN (including the
reversible CRNs we consider) cannot grow under concen-
tration control [46]. However, it has been proven only for
certain special classes of CRNs [46–48]. Here, we consid-
ered four different multimolecular CRNs, based on their
different topological properties, which are analyzed
(analytically and numerically) in detail in the companion
paper [41]. Two of them are shown in the present Letter.
For all models, we numerically verify the conjecture. The
intuition behind this conjecture is that the accumulation
of any species will eventually produce reaction currents

FIG. 1. Evolution of (a) the concentrations, (b) the contributions to the EPR in Eq. (6) and the efficiency η, for the Michaelis Menten
CRN under mixed control when S is injected at the rate IS ¼ 1while P is extracted at the rate −keP½P�. We rescaled time, concentrations,
and energy-time by 1=k−1, k−1=kþ1, and RTk2−1=kþ1, respectively. ½E�ð0Þ ¼ 0.3, ½ES�ð0Þ ¼ 0.1, ½S�ð0Þ ¼ 1.9, ½P�ð0Þ ¼ 0.4, keP ¼ 0.5,
k�1 ¼ k�2 ¼ 1, μ0E ¼ 1, μ0ES ¼ 2, μ0S ¼ 1, and μ0P ¼ 1.

(a) (b)

FIG. 2. Evolution of (a) the concentrations, (b) the contributions to the EPR in Eq. (6) and the efficiency η, for the autocatalytic CRN
under flux control when S is injected at the rate IS ¼ 1while P is extracted at the rate IP ¼ −0.1. Here, we rescale time, concentrations,
and energy-time by 1=kþ1, kþ1=kþ3, and RTk2þ1=kþ3, respectively. ½E�ð0Þ ¼ 1.3, ½E��ð0Þ ¼ 0.1, ½F�ð0Þ ¼ 1.9, ½W�ð0Þ ¼ 0.4,
k�1 ¼ k�2 ¼ k�3 ¼ 1, μ0E ¼ 1, μ0E� ¼ 2, μ0S ¼ 1, μ0P ¼ 2.
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(due to mass action kinetics) which will consume the species
and are sufficiently large to balance the external currents
generated by the chemostats. Using these four models, we
also found that, contrary to dynamically linear CRNs, some
multimolecular CRNS can grow under mixed control.
Indeed, in Fig. 1(a), we show that the Michaelis Menten
CRN under mixed control grows out of equilibrium.
For all four models, irrespective of the type of control, in

growth regimes, we observed that there exists a choice of
potential species such that the thermodynamics displays the
same splitting of the second law seen in unimolecular
and pseudo-unimolecular CRNs [see Eqs. (9), (10), (12),
and (13)] of the form

TΣ̇ ∼ ẇnc ≥ 0; ð14Þ

dtG ∼ ẇm > 0: ð15Þ

However, the generality of this observation remains to be
tested beyond these models. Furthermore, the energy
conversions in growing multimolecular CRNs are generi-
cally such that the efficiency might be strictly between 0
and 1 [see inset of Fig. 1(b)]. Finally, multimolecular CRNs
can display growth regimes that are significantly different
from those in dynamically linear CRNs. Only a subset of
species may grow and the temporal scalings of the con-
centrations may differ, as shown in Fig. 2(a).
Conclusion and perspectives.—Our main findings

are summarized in Fig. 3. We considered growth in
dilute ideal solutions, implicitly assuming that over the
timescales considered, the species concentrations remain
negligible compared to the solvent. Approaches to growth
introducing an equation of state coupling volume and
species concentrations have been considered but only for
detailed balanced dynamics (which always relax to equi-
librium) [49–52]. A future perspective may be to consider
the energetics of such systems for nondetailed balanced
dynamics. Characterizing the effect of diffusion or the
effect of compartment division [53–55] on growth may also
be considered. Finally, we observed that autocatalysis does

not seem to play an important role on the long time
growth (see companion paper [41]). This is intriguing
given the role of autocatalysis in the short-time growing
behavior [33,34].
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