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Inspired by path integral solutions to the quantum relaxation problem, we develop a numerical method to
solve classical stochastic differential equations with multiplicative noise that avoids averaging over
trajectories. To test the method, we simulate the dynamics of a classical oscillator multiplicatively coupled
to non-Markovian noise. When accelerated using tensor factorization techniques, it accurately estimates the
transition into the bifurcation regime of the oscillator and outperforms trajectory-averaging simulations
with a computational cost that is orders of magnitude lower.
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Stochastic differential equations (SDEs) are fundamental
models for dynamical systems subjected to statistical fluctu-
ations. In many processes in physics, like Brownianmotion,
the fluctuations appear as a noisy, additive, external driving
force. SDEs of this type characterize the behavior of systems
near thermal equilibrium and are some of the most rigorous
and well-studied models in statistical physics.
In many cases, however, the noise is multiplicative and

effectively modulates parameters of the system. When the
noise is multiplicative, the dynamics of the system become
intertwined with the dynamics of the noise, making even
approximate solutions challenging. Multiplicative noise
occurs in a broad range of systems, including stochastic
oscillators [1], dye lasers [2], bistable systems that exhibit
stochastic resonance [3], and active matter [4].
Kubo was one of the first to formulate approximate

theories for multiplicative noise problems in statistical
physics, where he modelled how fluctuating magnetic fields
give rise to line-broadening in spin resonance experiments
[5]. He [6] also pioneered the use of cumulant expansion
methods that van Kampen [7,8] and many others [9]
extended. Cumulant expansions are approximate for multi-
variate SDEs with multiplicative noise. While low-order
cumulant expansions may be tractable, they do not system-
atically converge and are usually only accurate when the
fluctuations are weak, decay quickly, or both. These con-
ditions are sometimes calledMarkovian. No exact analytical
solutions exist for multivariate systems coupled to non-
Markovian multiplicative noise sources, and unlike the case
of Markovian additive noise, the connection between the
SDE and the Fokker-Planck equation remains elusive.
Open quantum systems present perhaps the most press-

ing examples of multiplicative noise SDEs, where the noise
leads to dephasing and decoherence. Many theories of
quantum dissipation model the multiplicative noise as a
closed system comprised of a system that is linearly
coupled to a heat bath of harmonic oscillators. This
formulation removes many uncertainties—for example,

the fluctuations satisfy detailed balance. However, because
observables require a trace over the heat bath, this approach
introduces a many-body problem that is difficult to solve.
Numerical methods, like Makri’s quasi-adiabatic path
integral [10] (QUAPI) and the hierarchical equations of
motion (HEOM) [11] have become increasingly popular
over the last few decades. They find the reduced density
matrix by numerically reducing the computational com-
plexity of the quantum many-body problem, providing
insights into quantum relaxation dynamics in regions of
parameter space that are otherwise inaccessible.
In this Letter, we exploit a correspondence between

classical SDEs and open quantum systems to solve SDEs
numerically. While our method, accelerated stochastic
propagator evaluation (ASPEN), does not appeal to the
path integral, it shares many similarities with QUAPI.
Using a stochastic oscillator as a benchmark, we solve for
the noise-averaged position directly and compare those
results against noise-averaged trajectories. It produces
numerically accurate results compared to well-converged
trajectory averages in all regions of the parameter space we
have examined. In particular, the method correctly predicts
the bifurcation transition [12] of the oscillator where some
perturbative methods qualitatively fail—similar to the
localization-delocalization transition in the analogous
spin-boson model—and where trajectory averaging con-
verges slowly. By accelerating convergence using a tensor
train, we obtain numerically accurate results with orders of
magnitude less computational time than trajectory averag-
ing takes to converge.
We consider dynamical systems whose equation of

motion is isomorphic with the stochastic Liouville equation
for the reduced density matrix in an open quantum system
[13,14],

d aðtÞ
dt

¼ ½L0 þ L1ðtÞ� aðtÞ; ð1Þ
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where aðtÞ is the state of the system, and L0 is a linear
operator that generates the system’s dynamics in the
absence of fluctuations. The random operator L1ðtÞ enc-
odes the fluctuations. In classical and quantum mechanics,
the objective is to compute the mean state, averaging over
the noise haðtÞi from a given initial condition aðt0Þ. The
formal solution is haðtÞi ¼ Φðtjt0Þaðt0Þ, where Φðtjt0Þ is
Kubo’s relaxation operator [6], a positively time-ordered
exponential

Φðtjt0Þ ¼
�
exp←

�ðt − t0ÞL0 þ
Z

t

t0

dsL1ðsÞ
��
: ð2Þ

One critical difference between SDEs for classical and
quantum systems is that in quantum systems, L1ðtÞ has
complex-valued noise fields [13], which can make trajec-
tory-averaging difficult to implement and slow to converge.
One can ignore the imaginary part of the noise correlations,
but this violates detailed balance [14]. Because of these
complexities, accurate solutions are only known for simple
open quantum systems, like the spin-boson model, and they
are only known in limited regions of parameter space.
Even when the system is classical and both the variables

and noise are real, Eq. (1) presents many of the same
difficulties one encounters in solving the reduced density
matrix of a quantum system that evolves according to the
stochastic Liouville equation. In particular, although the
statistics of L1ðtÞ may be Gaussian, a cumulant resumma-
tion of the relaxation operator does not close at second
order other than in the trivial cases where either the noise is
Markovian or L1ðtÞ commutes with itself and with L0 at all
times. As a result, there is no way to obtain a simple closed-
form expression of the relaxation operator by resumming
its cumulants.
A classical damped harmonic oscillator multiplicatively

coupled to a random field is a realization of Eq. (1). With
aðtÞ ¼ ðpðtÞ; xðtÞÞ and unit mass, the equation of motion is

d
dt

�
p

x

�
¼

��
−γ −ω2

0

1 0

�
þ ξðtÞ

�
0 −1
0 0

�	�
p

x

�
: ð3Þ

L0 is the first 2 × 2 matrix on the right-hand side and L1

is the second. The decay rate is γ, ω0 is the resonance
frequency, and ξðtÞ is a Gaussian random noise field that
obeys an Ornstein-Uhlenbeck (OU) process, dξðtÞ ¼
−τ−1c ξðtÞdtþ α

ffiffiffiffiffiffiffiffiffi
2=τc

p
◯ dW, where dW is a Wiener proc-

ess interpreted in the Stratonovich sense. While we use this
system as a simple model, the parametric stochastic
oscillator in Eq. (3) appears in a surprisingly broad set
of applications [1] from cosmology [15] to quantum
transport phenomena [16], decoherence [9], and critical
dynamics [17].
In the weak noise limit or when the noise correlations are

short lived (ατc ≪ 1), perturbative expansions in λL1ðtÞ
can be accurate and yield useful results, like the Redfield

theory for the density matrix in the quantum Liouville
equation. We, therefore, repeat the procedure here for
Eq. (3) (see Supplemental Material [18]). Perturbation
theories are, in some sense, a natural extension of the
scalar cumulant expansion to noncommuting stochastic
matrices. As in the quantum literature, however, averaging
a time-ordered exponential of a noncommuting operator
produces nonunique and ambiguous perturbative results at
finite order in λL1ðtÞ. These problems are generic to
noncommuting time-dependent stochastic matrices and
not specific to quantum relaxation phenomena.
Mukamel, Oppenheim, and Ross [9] study two different

time-ordering prescriptions, called partially ordered prod-
ucts (POP) and chronologically ordered products (COP).
When applied to this problem, at second-order in λ, the
COP theory produces a time-nonlocal (TNL) integrodiffer-
ential equation for haðtÞi, while the POP theory yields a
time-local (TL) differential equation for it. Formally, the
POP convention preserves the stationary Gaussian distri-
bution [9], while the COP prescription preserves Wick
factorization of higher-order moments. In practice, for
noncommuting stochastic matrices, these two formal prop-
erties give little guidance into which equation of motion
will yield the more accurate dynamics for systems that
obey Eq. (1).
An alternative theoretical approach takes a direct average

of Eq. (1) and employs the Novokov-Furutsu (NF) theorem
[19] to split moments containing both the system state and
noise variable. However, this approach leads to an infinite
hierarchy of coupled equations for their correlations [20].
Interestingly, truncating the hierarchy at second order
yields the TNL from perturbation theory. Both approaches,
one based on cumulant expansions and another on the
application of the NF theorem, yield an infinite number of

(a)

(b)

(c)

FIG. 1. Schematic derivation of the method. (a) Break the
propagation into small steps and apply symmetric Trotter splitting
to each. (b) Expand each resulting stochastic matrix using a
spectral decomposition to separate the propagator into deter-
ministic matrices G0 and stochastic, scalar exponentials S.
(c) Compute the average of the scalar part analytically, which
generates a high-rank influence tensor I that couples different
state-time points.
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terms that are not uniformly convergent, making systematic
expansions to higher order fraught.
The mathematical structure of Eq. (1) suggests a simpli-

fication for calculating the relaxation operatorΦ numerically.
Because the stochastic matrix L1ðtÞ is a constant matrix
multiplied by a scalar stochastic variable, L1ðtÞ ¼ ξðtÞL1,
we develop a numerical technique based on the exact cumu-
lant resummation of the scalar stochastic variable ξðtÞ. Our
method, ASPEN, addresses the problem of computing the
average of the exponential of noncommuting stochastic
matrices. Discretizing the propagation, performing Trotter
factorizations, and approximating noncommutingmatrices as
exponentials of symmetric and antisymmetricmatrices allows
us to calculate the relaxation operator Φ by using spectral
decomposition and cumulant resummation to average over
the scalar noise exactly.
Figure 1 illustrates the derivation presented here. Begin

by discretizing the propagation into time steps of dura-
tion τ using the composition property of the pro-
pagator, Φðt ¼ NτÞ ¼ �Q

N
n¼1 Gn

� ¼ �Q
N
n¼1 exp←ðτL0þ

ðξ−n þ ξþn ÞL1Þ
�
, where the integration over ξðtÞ splits into

a lower ξ−n ¼ R τðn−1=2Þ
τðn−1Þ ds ξðsÞ and an upper part

ξþn ¼ R
τn
τðn−1=2Þ ds ξðsÞ. The first Trotter factorization is a

symmetric splitting between the exponential of L0 and L1,
eτL0þðξ−nþξþn ÞL1 ≈ eτL0=2eðξ−nþξþn ÞL1eτL0=2. However, unlike in
the quantum case, the matrices L0 and L1 are not Hermitian.
They are 2 × 2 antisymmetric and defective, respectively.
Thus, although L1 has a matrix exponential, it too is
defective, and the resulting form is not conducive to
performing a cumulant resummation. Expressing L1 as a
sum of symmetric and antisymmetric matrices, however,
L1 ¼ − 1

2
ðσx þ iσyÞ, where σx and σy are Pauli matrices,

does allow for an optimal approximation of its matrix
exponential in terms of matrix products, ultimately
allowing a cumulant resummation. Using a splitting
approximation for time-ordered exponentials, eðξ−nþξþn ÞL1 ≈
e−

1
2
ξþn σxe−

i
2
ðξ−nþξþn Þσye−1

2
ξ−n σx [21].

Applying a spectral decomposition to each stochastic
matrix (eðξ−nþξþn ÞL1) separates it into a stochastic scalar part
and a deterministic matrix product. After averaging the
stochastic part over the Gaussian noise, the relaxation
operator is

ΦðNτÞ ¼
X

fμg

YN

k¼1

G0ðμkÞ exp
� XN

n;m¼1

Hðμn; μmÞ
�
; ð4Þ

where G0ðα; β; γÞ ¼ eτL0=2Ex
αE

y
βE

x
γeτL0=2 is a deterministic

free propagator. Greek indices correspond to the matrices
of the spectral decomposition, for example, σx ¼P

α¼�1 jx; αiαhx; αj≡P
α¼�1 αE

x
α. For a given time point

nτ, there are eight 2 × 2 matrices for G0 corresponding to
the entries of the μn ¼ ðαn; βn; γnÞ vector.

The effective pairwise Hamiltonian Hðμn; μmÞ ¼
1
2
λ⊺ðμnÞCn;mλðμmÞ, emerges after applying Gaussian sta-

tistics to average over the noise. Cn;m ¼ hξn ⊗ ξmi is a
correlation matrix, λðμÞ ¼ − 1

2

�
αþ iβ; γ þ iβ

�
is a two-

component spin with complex-valued components and
ξn ¼

�
ξ−n ; ξþn

�
. Written in this way, Φ has the form of a

partition sum, where the sum runs over path variables
fμg ¼ fμN;…; μ1g with H corresponding to a one-
dimensional Heisenberg-like Hamiltonian with long-
ranged interactions between spins λðμÞ. The analogy to
equilibrium statistical mechanics is helpful in framing
certain results. For example, the interactions are limited
to nearest neighbors in the Markov limit. For the OU
process studied here, there is an emergent thermal factor
H → βH, where β ¼ κ2 and κ ¼ τcα is the Kubo number.
Weak coupling (κ ≪ 1) therefore corresponds to high
temperature.
Equation (4) is the central result of this Letter. We have

obtained a closed form of the relaxation operator, which
systematically converges as τ → 0. The structure of Eq. (4)
is similar to the propagator that one obtains in discre-
tized path integral techniques like QUAPI [10] for quan-
tum relaxation problems. However, computing Φ is as
computationally complex as calculating the partition func-
tion of a one-dimensional quantum spin lattice. Just as the
entropy must be extensive, the number of configurations in
the partition sum grows exponentially with N ¼ t=τ.
Tensor factorization shares some commonalities with

transfer matrix methods and is an efficient way of finding
the highest weight configurations in the partition sum,
taming the curse of dimensionality. The time-evolving
matrix product operator (TEMPO) method [22] rephrases
the problem of computing the partition sum of a one-
dimensional long-ranged quantum lattice into one of
contracting higher dimensional tensor objects using a
tensor network called a tensor train. TEMPO has been
used to dramatically improve convergence in the QUAPI
method. To improve convergence in ASPEN, we borrow
the mapping and topology of the TEMPO tensor train but
extend it by adding a node for the propagator G0 and
contracting over three legs rather than one for all contrac-
tions with the influence tensor (see Supplemental Material
[18]). The structure of our tensor train appears somewhat
similar to a recent paper from Gribben et al. [23] for a
quantum relaxation problem.
To compare the accuracy of ASPEN and the TL and TNL

perturbation theories, we benchmark them against trajec-
tory averaging, which is computationally expensive but
arbitrarily accurate. To average trajectories, we integrated
Eq. (3) using an explicit Heun integrator and averaged
350 million trajectories. Initial conditions were xð0Þ ¼ 1,
pð0Þ ¼ 0 with initial values of the noise drawn to yield
an unconditioned OU process. In the OU process, the
noise correlation functions are characterized by a strength
α and corrrelation time τc such that correlations obey
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hξðtÞξðsÞi ¼ α2e−jt−sj=τc . In Fig. 2, we simulate the para-
metric oscillator defined in Eq. (3), choosing time in units
of τc and setting parameters ω0 ¼ γ ¼ 1=τc. For the OU
process, the perturbation expansions are equivalent to an
asymptotic expansion for the relaxation operator about
small Kubo number κ. For small κ, shown in Fig. 2(a), the
perturbation theories, both TL and TNL, agree with
trajectory averaging and with the ASPEN method quanti-
tatively. As the Kubo number increases to κ ¼ 1, shown in
Fig. 2(b), however, the TNL and TL begin to deviate with
the numerically exact solutions and with one another in the
transient regime (inset). At high noise strengths, the para-
metric stochastic oscillator is known to undergo a noise-
induced bifurcation [12], which results in a nonequilibrium
steady state where the oscillator decays to a nonzero
displacement. In this case, shown in Fig. 2(c), the TL
perturbation theory fails qualitatively. While the TNL
method predicts the existence and qualitative behavior of
the bifurcation, it gives an estimate of the critical Kubo
number that is about 10% higher than found either in
trajectory averaging or with ASPEN.
ASPEN yields quantitative agreement with trajectory

averaging over all noise strengths and for all times
examined. Solutions using ASPEN take no more than an
hour on a laptop. While trajectory averaging is arbitrarily
accurate, it becomes more computationally costly as the
Kubo number increases. Trajectory averaging takes tens of
hours of CPU time to achieve similar results to ASPEN.
Even with 3.5 × 108 trajectories, trajectory averaging does

not converge for long times (t=τc ≥ 15) in the bifurcation
regime. Thus, ASPEN significantly outperforms trajectory
averaging in terms of accuracy and computational cost.
Drawing on the mathematical isomorphism between

classical SDEs and the stochastic Liouville equation of
quantum relaxation theory, we have derived a new numeri-
cal method for simulating linear dynamical systems con-
taining multiplicative, non-Markovian noise. Because we
chose to analyze a stochastic Liouville equation that closely
corresponds with the spin-boson model, several results we
found have parallels in that system. There, too, the system
undergoes a localization-delocalization transition past a
critical Kubo number reminiscent of the bifurcation tran-
sition in the classical stochastic oscillator. TL and TNL
perturbation theories converge at low Kubo number and
become unreliable near the bifurcation transition—again,
similar to the spin-boson model.
Methods similar to those that underlie QUAPI and

TEMPO—Trotter splitting, spectral decomposition, and
tensor-train acceleration—are employed here to solve
similar problems and to similar effect. Another similarity
ASPEN has with both QUAPI and HEOM is that it
becomes much more computationally expensive with
increasing Kubo number. In our language, this is because
the number of state-time configurations required to com-
pute the relaxation operator is exponentially large. In
QUAPI, the small matrix path integral formalism from
Makri and co-workers [24,25], is a computationally effi-
cient method for treating systems with multiple states and,

(a) (b) (c)

FIG. 2. Comparing different solution methods for the noise-averaged position of the stochastic parametric oscillator [Eq. (3),
γ ¼ ω0 ¼ 1=τc]. Exhaustive trajectory averaging (dashed dotted orange lines) is arbitrarily accurate and is the standard to which all other
methods should be compared. ASPEN agrees quantitatively (solid blue line) with trajectory averaging for all noise strengths and all
times but with orders of magnitude lower computational cost. Time local (red alternating dashed lines) and time nonlocal (green dashed
line) are the results of the perturbation theories described in the text that correspond to different types of cumulant expansions. (a) At low
noise strength κ ¼ 0.5, all methods agree. (b) At a moderate noise strength κ ¼ 1, the perturbative methods showmoderate disagreement
with trajectory averaging and with one another for the transients (inset). (c) At high noise strength, near the bifurcation transition
(κ ¼ 1.581), the oscillator coordinate reaches a nonzero steady state because it cannot dissipate the power of the noise. Perturbation
theories fail qualitatively in this regime. The time nonlocal perturbation theory predicts a bifurcation, but at an incorrect Kubo number
κc ¼

ffiffiffi
3

p
(shown in gray).
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in that language, a long memory. These methods may apply
in ASPEN to accelerate convergence at long times and
large Kubo numbers. Finally, while tensor-train factoriza-
tion can find the highest-weight states, it is not the only
way. Future work will use importance sampling methods,
familiar in equilibrium statistical mechanics, to locate and
sample the ensemble of the highest weight configurations
in the partition sum that comprises the relaxation operator.
Our work suggests an alternative approach to method

development for quantum relaxation phenomena—
benchmarking methods not only against quantum problems
but against the analogous classical problem. The reason
that one devises a numerical solution method for a quantum
problem is to probe regions of parameter space that are
difficult to explore. There is no guarantee that a numerical
method developed in an easy region of parameter space,
shown to agree well with other methods developed in the
easy region, will perform well in the hard region. While
there are methods for trajectory-averaging complex-valued
noise for the quantum Liouville equation [13,26,27], they,
too, can be technically challenging to implement and can
also be slow to converge. Trajectory averaging the classical
system is much more straightforward, arbitrarily accurate,
and likely much less computationally demanding—even in
hard regions of parameter space. It is possible, and perhaps
even likely, that a method that is accurate in hard regions of
classical parameter space will function well in similarly
hard regions for a quantum system.
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