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ZrTe5 has recently attracted much attention due to the observation of intriguing nonreciprocal transport
responses which necessitate the lack of inversion symmetry (I ). However, there has been debate on the exact
I -asymmetric structure and the underlying I-breaking mechanism. Here, we report a spontaneous I
breaking inZrTe5 films,which initiates from interlayer sliding and is stabilized by subtle intralayer distortion.
Moreover, we predict significant nonlinear anomalousHall effect (NAHE) and kinetic magnetoelectric effect
(KME), which are attributed to the emergence of Berry curvature and orbital magnetization in the absence of
I symmetry. We also explicitly manifest the direct coupling between sliding ferroelectricity, NAHE, and
KME based on a sliding-dependent k · pmodel. By studying the subsurface sliding in ZrTe5 multilayers, we
speculate that surface nonlinear Hall current and magnetization would emerge on the natural cleavage
surface. Our findings elucidate the sliding-induced I-broken mechanism in ZrTe5 films and open new
avenues for tuning nonreciprocal transport properties in Van der Waals layered materials.
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Introduction.—Zirconium pentatelluride ZrTe5 is a ver-
satile topological material that has attracted broad interest.
Previous theoretical and experimental studies have uncov-
ered various novel quantum phenomena of ZrTe5, such as
giant resistivity anomaly [1–4], large anomalous Hall effect
(AHE) [5–10], three-dimensional (3D) quantum Hall effect
[11–13], chiral magnetic effect [14,15], exotic thermoelec-
tric response [16–20], and diverse topological phase
transitions driven by various external stimuli, such as
temperature [21–25], strain [26–28], light [29–32], and
Zeeman field [33–37]. The emergence of these fascinating
phenomena reflects the characterization of distinct phases
of ZrTe5. In contrast, the recently observed gigantic
magnetochiral anisotropy [38], nonlinear anomalous Hall
effect (NAHE) [39], and circular photogalvanic effect [40],
which all necessitate the lack of inversion symmetry (I)
[41,42], have brought intense debates on the exact lattice
structure and crystal symmetry of the I-asymmetric phase
of ZrTe5. In particular, the specific I-breaking modes and
their underlying mechanism have remained elusive.
On the other hand, the reduction of dimensionality brings

up more intriguing properties that are unique relative to their
bulk counterpart [43,44]. For example, few-layer ZrTe5 is
actively investigated due to the emergent large-gap quantum
spin Hall effect [45–47], giant optical and electric anisotropy
[48,49] that may be promising for quantum device applica-
tions. More importantly, quasi-2D thin films with Van der

Waals (vdW) layered structures also enable markedly differ-
ent I-breaking mechanisms, allowing for the emergence of
interlayer sliding ferroelectricity [50–56], electrically switch-
able NAHE [57–62], and kinetic magnetoelectric effect
(KME) that generates a net magnetization by an electric
current [63–65]. Although broken I symmetry is a prerequi-
site for these effects, the corresponding electric polarization,
nonlinear anomalous Hall current, and current-induced mag-
netization depend sensitively on the degree of asymmetry and
are clearly correlated to each other, as shown in this Letter.
In this Letter, we report that a spontaneous I symmetry

breaking occurs in thin films of ZrTe5 which originates from
interlayer sliding and subtle intralayer distortion. Taking
trilayer ZrTe5 as an example, we show the existence
of sliding ferroelectricity where two I-related polar
phases exhibit sizable in-plane electric polarization, and
the low energy barrier along the polarity reversal path
enables ultrafast ferroelectric switching via low voltage.
Remarkably, the sliding-initiated I breaking also induces
prominent distributions of Berry curvature (BC) and orbital
magnetization (OM),which gives rise to a significantNAHE
and KME that are controllable by sliding ferroelectricity. In
addition, we discuss the role of subsurface sliding on these
effects in multilayers and argue that the natural cleavage
surface leads to themanifestation of a surface nonlinear Hall
current and magnetization solely arising due to the local
spontaneous symmetry breaking at the surface.
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Noncentrosymmetric polar trilayer structures.—Bulk
ZrTe5 crystallizes in an orthorhombic layered structure
with space group Cmcm, where 2D layers stack in the AB
sequence along the b axis and interact via weak vdW
interactions [66], as shown in Fig. 1(a). For each layer in
the a-c plane, trigonal prismatic chains of ZrTe3 along the a
axis are connected by the adjacent zigzag chains of Tez1;2
atoms [45]. Bulk ZrTe5 is centrosymmetric with two
inversion centers (Ia and Ie), which are located at the
intralayer Tez1;2 bond and interlayer space, respectively. Our
first-principles calculations show that previously proposed
I-breaking modes (e.g., staggered displacements of adja-
cent Tez1;2 chains [38]) are energetically unfavorable [see
Fig. S2 and Tables S1 and S2 in Supplemental Material
(SM) [67] ]. Because of these inversion centers, prototypi-
cal ZrTe5 multilayers are also centrosymmetric without any
polarizations. Given that the interlayer sliding cannot break
I in the bilayer as well as the bulk ZrTe5, we first consider
the trilayer ZrTe5, which is the minimum system for
studying interlayer sliding-induced I breaking.
For trilayer ZrTe5, the initial ABA-stacked configura-

tion cut from the bulk belongs to space group Pmmn and
is centrosymmetric nonpolar, which serves as a hypo-
thetical reference phase P0. After structural optimization
based on first-principles calculations [67], we find two
stable noncentrosymmetric polar structures with space

group Pmn21, which are related by a spatial inversion.
We, therefore, label them as P1 and P−1, one of which is
shown in Fig. 1(b). Detailed atomic structural analysis
indicates that they are initiated by interlayer sliding of the
middle layer by a distance of 0.255 Å along the c axis
(green arrow) and accompanied by subtle intralayer
distortions composed of alternative clockwise and
counterclockwise twist of alternating ZrTe5 pentagons
(red arrows), as shown in Fig. 1(b). Noticeably, in bulk
ZrTe5, such twisted crystal lattice motion corresponds to
the dynamic I breaking induced by light [40], but
spontaneously happens in thin films of ZrTe5. More
importantly, we found an increase in the total energy if
we only continuously varied degrees of interlayer sliding
from the initial configuration but without structural
relaxation to accomplish intralayer distortion. In contrast,
the intralayer distortion offsets the energy increase which
ultimately stabilizes the sliding structure (see Fig. S9 in
SM [67]). Therefore, the subtle intralayer distortion plays
an important role in the spontaneous I breaking.
Spontaneous polarization and sliding ferroelectricity.—

Interestingly, spontaneous electric polarizations emerge in
both noncentrosymmetric trilayer structures. Because
of the existence of mirror Mx and glide mirror Gz ¼
ðMzj1=2; 1=2; 0Þ symmetries, the nonzero component of
polarization is aligned along the c axis (y direction). Our

FIG. 1. (a) Atomic structure of bulk ZrTe5 where the intralayer and interlayer inversion centers (Ia and Ie) are marked by blue dots.
The mirror (Mx andMy) and glide mirror plane Gz are colored in red. (b) Slide structure (P−1) of trilayer ZrTe5 (formed by an overall
interlayer sliding of the middle layer (light green arrow) and subtle intralayer distortions (red arrows). (c) Illustration of subsurface
sliding in multilayer ZrTe5 slab cut from the bulk. (d) Energy profiles for ferroelectric switching of trilayer ZrTe5. (e) Variation of in-
plane electric polarization under ferroelectric switching from P−1 to P1. (f) Change in energy versus the numbers of layers in slide ZrTe5
films [as illustrated in (c)] with different optimal sliding displacement λ coloring the same as corresponding marker dots.
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Berry-phase calculations show that the two stable structures
(P1 and P−1) have significant opposite polarizations of
�1.2 × 10−9 C=m. Notably, the electric polarization of
trilayer ZrTe5 is 3 orders of magnitude larger than typical
values of sliding ferroelectricity in the bilayer ofBN [52] and
WTe2 [55] (∼10−12 C=m), and is even one order of magni-
tude larger than experimental values of prototypical 2D
ferroelectric materials, such as atomic-thick GeS [95,96],
SnTe [97], and α-Bi monolayer [98,99] (∼10−10 C=m).
We further explore the minimum energy path for

ferroelectric switching through the nudge-elastic-band
method [85]. As the bistable noncentrosymmetric struc-
tures of trilayer ZrTe5 are mainly characterized by opposite
interlayer sliding of the middle layer, we identify the
adiabatic pathway using the sliding displacement λ. As
shown in Fig. 1(d) the ferroelectric switching barrier is
2.5 meV=u:c:, which is comparable to that of conventional
sliding ferroelectrics (9 meV=u:c: for bilayer BN and
0.6 meV=u:c: for bilayer WTe2) [50,100], indicating the
experimental feasibility of polarization reversal via an
applied electric field. As shown in Fig. 1(e), the electric
polarization depends linearly on λ and changes its sign
when λ goes between positive and negative. Moreover, the
electric polarization which is along the sliding direction
comes from both ionic displacements and electronic charge
redistributions (see Sec. VI G in SM [67]), indicating its
close relation to the interlayer sliding.
Multilayers and natural cleavage surfaces of ZrTe5.—

Similar mechanisms also apply to ZrTe5 multilayers. As an
example, we consider the spontaneous sliding of the second
subsurface layer near the top surface of ZrTe5 films with
their thickness of up to 15 layers [Fig. 1(c)]. Figure 1(f)
shows that the optimized sliding distance is around
0.1–0.2 Å and the sliding-induced energy reduction is

about 1–7 meV in comparison to the initial multilayer films
cutting from the bulk without any sliding or twisting. By
scanning the sliding of different layers, we found similar
spontaneous I-breaking effects near surfaces, which dimin-
ish for inner layers (see Sec. IV in SM [67]). In addition, by
examining the sliding effect in bulk with thick unit cells, we
found metastable I-breaking phases separated from the
centrosymmetric Cmcm phase by an activation energy of
about 6 meV which requires external stimuli to facilitate
the sliding. We, therefore, expect that similar sliding-
initiated mechanisms with multiple possible sliding con-
figurations [101,102] are also valid on the natural cleavage
(010) surface as well as the bulk of ZrTe5 with the average
energy barrier on the order of a few meV, implying a
relatively low ferroelectric Curie temperature of tens of
kelvin [39].
Ferroelectrically induced BC and OM.—Having clari-

fied the sliding ferroelectricity in trilayer ZrTe5, we further
study the unique polarization-dependent BC Ωkn and OM
morb

kn [103–106], which are given by

Ωkn ¼ ∇k × Akn ¼ −Imh∂kuknj × j∂kukni; ð1Þ

morb
kn ¼ e

2ℏ
Imh∂kuknj × ðHk − EknÞj∂kukni; ð2Þ

whereAkn ¼ ihuknj∂kukni is the Berry connection andEkn is
the band energy. In 2D, only the out-of-plane components
Ωz

kn and morb;z
kn are well defined, which are odd (even)

functions of kx (ky) enforced by the mirror Mx and time-
reversal T symmetries (see Table S4 in SM [67]). As shown
in Fig. 2(a), the polar P−1 phase exhibits a similar band
structure as the nonpolar P0 phase (see Fig. S8 in SM [67])
and has an energy gap of 39 meV. Nevertheless, the

FIG. 2. (a) Band structure (top) for the P−1 phase, BC (middle), and OM (bottom) of all occupied bands along the high-symmetry lines
in the first BZ. (b),(c) BC and OM as contour maps in the full BZ. The insets show the enlarged plots around Γ.
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spontaneous I breaking in P�1 results in band splitting at
arbitral k points, except for the Γ-Y and X-S paths where the
double degeneracy is preserved by Mx, Gz, and T sym-
metries. Correspondingly, largeΩz

k andm
orb;z
k of all occupied

bands appear along the path with band splitting, as shown in
the middle and bottom panels of Fig. 2(a). Interestingly,
the distribution of Ωz

k in the full Brillouin zone (BZ) [see
Fig. 2(b)] shows a pair of positive and negative BC peaks
around Γ, naturally linking to the BC dipole that will be
discussed later. In contrast, the morb;z

k distributes more
scattered over the entire BZ but still obeys the symmetry
constraints. Moreover, the overall sign of BC and OM is
reversed by ferroelectric switching between P�1 with
opposite interlayer sliding and electric polarization,
revealing a direct coupling between polarization, BC,
and OM.
Nonlinear anomalous Hall effect.—The presence of two

adjacent and opposite BC peaks around Γ yields a nonzero
BC dipole (BCD), which induces the NAHE [69].
Specifically, a second-harmonic transverse current can be
generated by an electric field oscillating at a low frequency
ω: j2ωa ¼ χabcEbEc, where a; b; c∈ fx; y; zg. The nonlinear
Hall conductivity associated with the BCD (Dbd) is
χabc ¼ −εadc½e3τ=2ℏ2ð1þ iωτÞ�Dbd, where τ is the relax-
ation time and Dbd is expressed as

Dbd ¼
Z
BZ
½dk�

X
n

vnbΩd
kn

�
−
∂f0
∂E

�
E¼Ekn

: ð3Þ

Here, vnb ¼ ð∂Ekn=∂kbÞ is the group velocity component for
band n, f0 is the equilibrium occupation factor, and the
integral is over the BZ with ½dk�≡ d2k=ð2πÞ2. In the
presence of I symmetry (i.e., the nonpolar P0 phase),
the BCD vanishes completely. Instead, in the polar P�1

phases, a nonvanishing BCD component Dxz is allowed.
Because of the derivative of f0 in Eq. (3), the BCD depends
only on quantities around the Fermi surface and is sensitive
to the chemical potential μ. Figure 3(a) shows that Dxz is
zero in the energy gap, whileDxz exhibits finite values once
μ arises to the conduction bands via electron doping.
Especially, there is one significant negative (positive) peak
of 0.042 Å (0.139 Å) at μ ¼ 0.06 eV (0.114 eV) near the
band edges. These values are comparable with that in
monolayer Td-WTe2 (∼0.11 Å) and strained H-WSe2 and
H-MoS2 (∼0.02 Å) [57,59,61,64,65,107]. Furthermore, the
band-resolved BC distribution in Figs. 3(b) and 3(c)
indicates that the negative and positive BCD peaks are
predominantly contributed by the large Ωz

k and steep slope
(i.e., large vx) of the slightly split bands around the Γ and S
points (see Fig. S12 in SM [67]).

FIG. 3. (a) BCD Dxz versus the chemical potential (μ). (b),(c) BC Ωz
kn for bands along the (ð−XÞ-Γ-X and Y-S-ð−YÞ paths. (d) The

KME Kxz versus μ. (e),(f) OM morb;z
kn for bands along the same k paths. The insets show the enlarged plots around Γ and S.
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Taking the relaxation time τ ∼ 57 fs from experiment
[38], we estimate that the nonlinear anomalous Hall
conductivity peak in the ω → 0 limit is χ0xxy ¼
−χ0yxx ¼ 1.46 × 10−13 AmV−2, which can be detected in
experiments. Therefore, one interesting measurement
would be the observation of transverse current j0y ¼
2χ0yxxjExj2 induced by an electric field along the x direction,
if one can raise μ via gating [68]. In addition, we found that
the ferroelectric switching from P1 to P−1 phase reverses
the sign of Dxz, while keeping its magnitude intact, thus
allowing one to flip the polarity of the transverse current,
indicating a remarkable ferroelectric NAHE [58,60].
Kinetic magnetoelectric effect.—Another intriguing

effect closely related to the NAHE is the generation of
net magnetization by an electrical current, a phenomenon
known as KME [108,109]. Within the relaxation-time
approximation, the magnetization arises as a linear
response to an applied electric field: Ma ¼ αbaEb, where
αba ¼ ½eτ=ð1 − iωτÞ�Kba, with

Kba ¼
Z
BZ
½dk�

X
n

vnbm
a
kn

�
−
∂f0
∂E

�
E¼Ekn

: ð4Þ

It has the same form as Eq. (3) but with the BC replaced by
the magnetic moment mkn ¼ morb

kn þmspin
kn , which includes

orbital and spin components. Similar to the BCD of polar
P�1 phases, only the Kxz component is allowed due to
symmetry constraints, as shown in Fig. 3(d). Noteworthily,
Kxz originates primarily from the OM with negligible
contribution from spin due to the nontrivial topological
nature of ZrTe5 (see Sec. VI E in SM [67]) [75]. This is in
contrast to 2D inversion layers [110–112] and chiral
conductors [92,113] where spin magnetization is predomi-
nant or at least comparable with the orbital contribution. As
a Fermi surface property, Kxz vanishes in the energy gap.
Moreover, Kxz increases monotonically with electron
doping, but exhibits a sign reversal with hole doping,
which may be attributed to distinct dispersions of con-
duction and valence bands. We note that the magnitude of
Kxz is ∼10−6 AÅ, which is considerable compared to the
values of p-doped gyrotropic crystal tellurium (10−7 A)
[92] and strained monolayer NbSe2 (∼7.63 × 10−6 AÅ)
[63]. Given the significant Kxz in trilayer ZrTe5 with
doping, a flow of electric current along the x direction
develops a net out-of-plane magnetization Mz. Further-
more, a structural transition between P� reverses the
direction of Mz.
Physically, NAHE can be understood as the combination

of KME and AHE. Specifically, the current-induced mag-
netization breaks the T symmetry, leading to the emer-
gence of AHE which generates a transverse current
by the electric field in the resulting T -broken system.
Actually, Ωkn and mkn are closely related [92] and
exhibit similar distributions in the conduction bands [see

Figs. 3(b), 3(c), 3(e), and 3(f)]. Consequently, Dxz and Kxz
are also strongly correlated [64], as we discuss below.
Minimal k · p model analysis.—To explicitly elucidate

the underlying mechanism for the sliding-induced BC and
OM dipoles, we construct a minimal k · pmodelH0 at Γ for
P0 based on symmetry, and introduce the sliding-induced
term Hslide which drives the system to P� phases (see SM
for detailed derivations [67]),

H0 ¼ Δτz þ vxkxτxσz þ vykyτy; ð5Þ

Hslide ¼ λða1τx þ b1kxσz þ b2kxτzσzÞ; ð6Þ

where τ and σ are two sets of Pauli matrices for the orbital
and spin degree of freedom, Δ, vx;y, a1, b1;2 are real para-
meters. We assume that the sliding-induced term depends
linearly on λ for simplicity. The energy spectrum of H0 þ
Hslide is EsgnðμÞ

k ¼ �λb1kx þ sgnðμÞhðkÞ, where hðkÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1λ∓vxkxÞ2þðΔþb2λkxÞ2þv2yk2y

q
, and sgnðμÞ ¼ �

denotes conduction and valence bands. The bands are split
when λ ≠ 0 except for the kx ¼ 0 line, which coincides with
the band structure in Fig. 2(a). Moreover, these band
splittings give rise to significant BC and OMwhich together
with the band velocity yield the BC and OM dipoles:

Dxz ¼ sgnðμÞ 3Δb1
4πμ4

ðμ2 − Δ2ÞλþOðλ3Þ;

Korb
xz ¼ −

eΔb1
2πℏjμj3 ðμ

2 − Δ2ÞλþOðλ3Þ; ð7Þ

where jμj > Δ. One observes that nonzero Dxz and Korb
xz

emerge only if λ ≠ 0, and can be switched by reversing the
interlayer sliding. Because of the same symmetry constraint
at Γ and S, which form the same little group of C2v (D2h) in
the presence (absence) of sliding, a similar analysis also
applies at S, which generates additional contributions if one
raises μ to reach the Fermi pocket around S. Therefore, our
model study indicates a strong coupling between sliding
ferroelectricity, NAHE, and KME.
Discussion and conclusion.—An interesting aspect of

these intriguing phenomena is that they are also allowed at
multilayer films and surfaces of ZrTe5. Although antiferro-
electric configurations with antiparallel sliding on opposite
surfaces may occur in multilayer films (see SM [67]), the
spontaneous sliding on the natural cleavage (010) surface
and possible bulk sliding transition driven by various
external stimuli, which break I symmetry, would give
rise to the nonlinear Hall currents and out-of-plane mag-
netization associated with the conductivity χyxx and KME
coefficient αxz, which provides a plausible interpretation
for previous experimental observations [39] and renders a
challenge for future efforts at experimental detection
of surface nonlinear Hall and kinetic magnetoelectric
responses [68,75].
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In summary, we have proposed the spontaneous
I-breaking mechanism in ZrTe5 films which originated
from the fantastic structural modification including inter-
layer sliding and subtle intralayer distortion. We reported
the emergence of BC and OM dipoles and unveiled the
close connection of associated phenomena, including slid-
ing ferroelectricity, NAHE, and KME. Such sliding-
induced ferroelectric switch also adds another ingredient
to the intriguing interplay between band topology and
nonreciprocal responses already observed in ZrTe5 where
more exotic and anomalous behaviors were revealed
recently but have yet to be understood very well.
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