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Dissipative processes can drive different magnetic orders in quantum spin chains. Using a non-
perturbative analytic mapping framework, we systematically show how to structure different magnetic
orders in spin systems by controlling the locality of the attached baths. Our mapping approach reveals
analytically the impact of spin-bath couplings, leading to the suppression of spin splittings, bath dressing
and mixing of spin-spin interactions, and emergence of nonlocal ferromagnetic interactions between spins
coupled to the same bath, which become long ranged for a global bath. Our general mapping method
can be readily applied to a variety of spin models: we demonstrate (i) a bath-induced transition from
antiferromagnetic (AFM) to ferromagnetic ordering in a Heisenberg spin chain, (ii) AFM to extended Neel
phase ordering within a transverse-field Ising chain with pairwise couplings to baths, and (iii) a quantum
phase transition in the fully connected Ising model. Our method is nonperturbative in the system-bath
coupling. It holds for a variety of non-Markovian baths and it can be readily applied towards studying bath-
engineered phases in frustrated or topological materials.
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Introduction.—Spin chains offer a versatile platform for
the study of quantum materials. They can capture a wide
range of complex and exotic phenomena from magnetic
effects to topological phases. These effects are observed
in a variety of materials, including quantum magnets,
spin liquids, and quantum wires. Beyond ideal models,
in reality, environmental degrees of freedom such as lattice
phonons or engineered cavity modes couple to the spin
degrees of freedom. The resulting decoherence and dis-
sipative effects may largely impact magnetic ordering in
spin systems, even inducing quantum phase transitions,
effects that stem from the interplay between internal spin-
spin interactions and dissipation [1-46]. These demonstra-
tions were done using numerical approaches, facilitated by
analytical arguments. The behavior of a collection of spins
coupled to a common (global) bosonic bath was studied in
Refs. [1-16], where it was demonstrated, using techniques
such as the numerically exact quantum Monte Carlo
method [1-4], that such models can exhibit dissipation-
controlled quantum phase transition. Other numerical
studies focused on chains with sites independently (locally)
coupled to dissipative baths [4-6,17—43,47-49] demon-
strating, e.g., long-range antiferromagnetic order at any
coupling to the baths in an antiferromagnetic quantum
Heisenberg chain. Alternatively, other studies were done in
the premise of weak system-bath couplings and/or struc-
tureless dissipation using, e.g., the Lindblad quantum
master equation [5,6,12—15,33—45]. While numerical stud-
ies of bath-controlled spin phases were often accompanied
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by analytical arguments; a rigorous, unified, and general
analytic framework to bath-controlled phases is still
missing.

Here, we show that a general mapping approach can be
used to study a broad class of open spin systems and
provide an intuitive, unified, and comprehensive under-
standing of bath-induced phase transitions. Our method
can treat global, local, or partially local spin-bath coupling
schemes at finite temperature and different families of
baths’ spectral density functions. The method is nonper-
turbative in the spin-bath coupling, thus enabling the
capture of effects emerging from strong-coupling many-
body physics. In a nutshell, based on unitary transforma-
tions and a controlled truncation, the mapping turns the
spin + baths Hamiltonian into an effective Hamiltonian
with the spin system now weakly coupled to its environ-
ments. Most crucially, our mapping approach reveals the
generation of bath-mediated spin-spin interactions, which
extend beyond nearest-neighboring spins—depending on
the nonlocality of the attached baths. Here, the dissipative
system favors a ferromagnetic order, the result of our
specific choice of the interaction model. The mapping,
however, is not limited to generating only ferromagnetic
interactions. Bath-induced effects further mix and dress the
intrinsic spin-spin couplings and suppress spin splittings.
Through these bath-induced effects, our closed-form,
Hermitian, effective spin Hamiltonian immediately evinces
on the expected magnetic order as one tunes the system’s
couplings to its surroundings.

© 2024 American Physical Society
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After discussing the mapping approach, we apply it on
several spin models coupled globally or locally to different
non-Markovian baths (super-Ohmic, Brownian) and exam-
ine their equilibrium phases as a function of system-bath
couplings at low temperature.

Mapping.—We consider a many-body system described
by the Hamiltonian Hg coupled to a bosonic-harmonic
environment. For simplicity, we describe the mapping in a
model with a single heat bath. The total Hamiltonian of the
system, environment, and their interaction reads

H=Hs+Hyz+H,
= IA{S + Zuké‘zék —l—SZtk(frz + ek)? (1)
k k

where ?:,t(ék) are bosonic creation (annihilation) operators

with frequency v, for the kth harmonic mode. S is an
operator defined over the system’s degrees of freedom,
which couples to the reservoir with a coupling strength
captured by the bath spectral density function, K(w) =
Sy 25— 1y).

An “effective” Hamiltonian can be constructed by
sequentially applying the reaction coordinate and polaron
transformations onto the total Hamiltonian Eq. (1), fol-
lowed by a controlled truncation [50-52]. This mapping is
defined such that the coupling of the system to the reservoir
is made weaker in the new picture, while the effects of
strong system-bath couplings are absorbed into the effec-
tive system’s Hamiltonian [53]. Post mapping, the effective
(eff) Hamiltonian reads AT = AST(1, Q) + AT + AT,
and we highlight the dependence of the effective system’s
Hamiltonian on A4 and Q. These parameters are functions
of the original spectral function of the bath, K(w) [52].
They can be interpreted as a system-bath interaction
energy scale (1) and a characteristic frequency ()
of the bath, both corresponding to the original bath
described in Eq. (1). The effective system couples to

a modified (residual) bath AT = >k wklA),tlA)k through
AT = —(22/Q)S S, fi(bl + by); bl(by) corresponds to
new bosonic creation (annihilation) operators with fre-
quency wy. Importantly, a k scaling of the original coupling,
kK (w), does not impact the spectral function of the resi-
dual bath, KR (w) = 3", f76(w — w;) [50-53]; the spec-
tral function K (w) = (442 /Q*)KRC(w) characterizes the
redefined bath. The parameters for the original bath spectral
function are chosen to ensure weak residual coupling,
described by K®(w). The scaling observation allows
building effective models in which the residual bath only
weakly couples to the system [52]. This allows us to
compute the system’s equilibrium state resulting from its
interaction with the bath as the Gibbs state with respect to

the effective system’s Hamiltonian, pSf = (1/Z¢f)ePH5",;
freffq . .. . . .
7" = Tr[e=H5'] is the partition function with /3 the inverse
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FIG. 1. Models for spin-1/2 chains coupled to independent
reservoirs, whose range of interaction is depicted by the light blue
shades over the spins. (a) Fully global model: the entire chain is
coupled to the same bath. (b) Fully local case: individual spins are
coupled to their own local bath. (c),(d) Intermediate bath-locality
models: each bath couples to more than a single spin with,
e.g., (c) half-and-half coupling and (d) pairwise coupling.
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temperature of the bath [54-56]. This approach was
successfully validated on impurity models [50,51], and it
is utilized here as a general analytical method for tailoring
magnetic order in open quantum lattices.

Spin chains.—The dissipative Heisenberg chain with N
sites is given by Eq. (1), with the system’s Hamiltonian

N N-1
Ay = Z Ai67 + Z Zja?’??’ﬁl- (2)
i=1 « o1

Here, A; > 0 represents the spin splitting of the ith spin.
We set J, > 0 as the uniform interaction strength between
neighboring spins in the @ = {x,y, z} direction. We con-
sider four scenarios, depicted in Fig. 1: (a) fully global
and (b) fully local baths, as well as (c) half-and-half
and (d) pairwise coupling schemes. Cases (a) and (d)
are presented here; the other two models can be found
in Ref. [52].

We implement two complementary mapping procedures
on spin chains [52]: (i) we build on the reaction coordinate
mapping to adjust the system-bath boundary, followed by a
polaron rotation of the reaction coordinate and its trunca-
tion [50,51]. (ii) We apply a polaron rotation directly on
the interaction Hamiltonian, acting on all modes in the
bath. We show in Ref. [52] that the two mapping methods
build completely analogous system’s Hamiltonian AT,
along with a weakened system-bath coupling strength.
For equilibrium properties, the two approaches thus pro-
vide parallel results [51]; deviations may show in time-
dependent simulations. Conceptually, the methods can each
handle general spectral density functions, yet it is conven-
ient to enact the first (i) mapping method on a Brownian
bath with K(w) = 4yQ*w/[(0? — Q%) + 277Qw)?]; A
is the system-bath coupling energy and the bath is peaked at
Q with width energy yQ. In the effective picture, K (@) «
yo [57], thus the system-bath interaction in H°T becomes
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weak once y < 1. The second mapping (ii) can be readily
performed on the Ohmic family spectral functions, e.g.,
K(0) = a(o®/o?)e™®/ with a a dimensionless coup-
ling parameter. Under the polaron picture [58], the para-
meters A and Q that are used to define the effective system
Hamiltonian can be expressed in terms of a and w,. [52].

Fully global coupling.—The Hamiltonian is given by
Eq. (1) with the Heisenberg Hamiltonian Eq. (2). In the
fully global coupling model, all the spins couple to a single
bath and we use as an example the interaction operator

Sglob = Zi\,:l

67. The mapped system is given by [52]

with A; = A;e~?#/9") J = J_ and spin interactions re-
normalized according to J, ) = (J,()/2)(1 + e~ ®#/9)) 4
(J2()/2)(1 — e~ ®#/9)). First, as expected AL

as /1 — 0. Second, environmental effects on the magnetic
order at low temperature are transparent in this picture: As a

s"Hs

function of 4, with our particular choice of S glob (Which the
mapping is not limited to), the effect of the environment is
to mix the anisotropies with respect the x component, i.e.,
the y and z components. Furthermore, the individual spin
splittings A; are exponentially suppressed as A increases.
This suppression can be rationalized as the entire chain is
coupled in the x direction, which leads to spins aligning in
that direction as the coupling strength increases. One can
imagine an analogous scenario of turning on a strong
magnetic field in the x direction, which would similarly
suppress spin components in the z direction. Most dra-
matically, the last term in Eq. (3) describes all-to-all spin
interactions arising in the x direction at nonzero 4, favoring
ferromagnetic order in the present choice of system-bath
interaction model. For later use, we denote this energy by
E; = (1*/Q). In the super-Ohmic model, it is given by
E; =2aw, [52]. On physical grounds, this term with its
accompanied minus sign is to be expected since the spin
chain is coupled to a common environment [59]. Recall that
A and Q can be derived for distinct baths’ spectral density
functions, ensuring the versatility of the mapping.
Corroborating these observations, deduced from
Eq. (3), in Fig. 2 we simulate the structure factor S, =
(1/N?) >_ij(678%) for a Heisenberg chain with N spins.
The thermal average is done over the density matrix built
from the effective Hamiltonian of the system, I:Igf]b’ 5. The
structure factor manifests a clear crossover with increasing A,
from the antiferromagnetic (AFM) alignment of spins due
to J, > 0, to a FM order in the x direction, with S, going
from a value close to zero, to approaching 1 [Fig. 2(a)].
Furthermore, S, (and similarly S, not shown) demonstrate
that all correlations in the z (and y) directions are suppressed,

1.0 (a) i 0.25 (b) ’-—-——-——
— N = 4
038 | — x=s |00 |
hSy —_— N=8 | e
~20.6 p———— <015 !+
| N +]_ ....... —
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FIG. 2. Heisenberg spin chain in a global bath. We display the
structure factors S, = (1/N?)>",;(6¢69) in the (a) a = x and
(b) a@ = z directions as a function of the system-bath interaction
energy, A. Other parameters are A =0.1, Q=10, J, =1,
J, =0.9,J, = 0.8. We study chains with N = {4, 6, 8, 10} spins;
dash-dotted, dashed, and solid lines (about overlapping) corre-
spond to 7' = 0.2, 0.1, and 0.05, respectively.

except autocorrelators, thus reaching 1/N at strong coupling
[Fig. 2(b)]. Few other comments are in place: (i) S,
approaches zero at the asymptotically weak coupling limit
due to the choice J, > 0. (ii) To validate results, in [52] we
benchmark the mapping technique against the numerically
accurate reaction-coordinate (RC) method [51,53,57,60-64].
We demonstrate an excellent agreement, particularly as N
grows, even at low temperature. (iii) Given the collective
nature of the coupling, the AFM to FM transition point will
continue to shift to smaller 4 as N grows. In contrast, the
fully connected Ising model presented in Eq. (6) supports a
quantum phase transition at a converged value of 1 > 0,
independent of N, as we show in Fig. 4.

Pairwise coupling in the Ising chain.—We examine next
a simpler version of the system Hamiltonian, Eq. (2), by
setting J, = J, = 0, thereby making it a quantum Ising
chain. We couple the chain to a collection of baths as
follows: every odd site of the chain, along with its nearest
neighbor to the right, are coupled to a common bath as
shown in Fig. 1(d). The total Hamiltonian is

N2

Hpa]r o Hlsmg + Z Spalrnztn k n « T ¢, k)
=1

+ Zl/l’l kcn kcnk (4)

Here, A" = Hs(J, = J. = 0) and S, = 63,_, + 83,5
ne{l,...,N/2} is the bath index. After the mapping [52],
the effective system Hamiltonian becomes

N/2
frlsing.eff A Az X Az
Hy = E , (A2”—162n—1 +A2n‘72n)
n=1
N/2—1

N/2
+Z< i%"‘ )aén_lﬁéﬁ >

n=1

‘]Xdéndénqtl ’

(5)
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FIG. 3.

Ising chain with pairwise couplings to baths. We display spin-spin correlations (?rj‘?f’;) for N =

10, A=0.1, J, =1,

Jy,=J,=0,T=0.1,and w. = 0.5. Left-to-right: we increase a, the dimensionless coupling parameter in the super-Ohmic bath model.
Values of a are chosen to manifest the crossover from an AFM order to an extended AFM order. Spin-spin correlations for spins coupled
to the same bath precisely diminish at & = 0.5 where we lose all long-range correlations, with the two edge spins decoupled from the rest

of the chain.

where AZn 1= Aoy exp(—%ﬁ/Qﬁ) and A2n =
A, exp(=242/Q2). We expect the two spins that are
coupled to a common bath to build an FM alignment once
the prefactor [J, — (243, ,/9,_1)] becomes negative at
sufficiently strong coupling A. In contrast, intercell inter-
actions (between pairs) continue to prefer an AFM align-
ment, captured by the last term in Eq. (5). The combination
of these two effects creates an extended Neel order at
sufficiently strong coupling, where at low temperature the
preferred alignment is |11 11...11]]) in the x direc-
tion, or the opposite case.

In Fig. 3, we display spin-spin correlations (5757%) for an
N = 10-long chain. We clearly observe the buildup of spin
alignments in subcells within the larger-scale AFM order as
we increase the coupling parameter (left to right). As an
example, we assume here super-Ohmic spectral density
functions for the baths (before the mapping). As we show
in [52], the pairwise ferromagnetic coupling becomes
then E; = 2aw, (assuming identical baths). Thus, with
our choice of parameters (J, = 1, w, = 5A), at @ = 0.5,
we precisely observe the complete suppression of long-
range correlations once J, = 213, /3, _,. Furthermore,
at this value the two edge spins isolate from the rest of the
chain—resulting from the segmentation of the chain into
pairwise sectors.

Fully connected Ising model.—We now describe a model
that exhibits a bath-induced quantum phase transition
(QPT) at a particular coupling strength by allowing spins
to interact beyond nearest neighbor. We return to model
(a) in Fig. 1, with a spin system globally coupled to a single
common bath. The system’s Hamiltonian is the fully
connected Ising model,

. AL AL
fi=-3y g A

where A >0 is the spin splitting. Here, J >0 is a
dimensionless parameter which scales the all-to-all spin

interactions in the x direction with respect to A. This model
exhibits a QPT of a Beretzinski-Kosterlitz-Thouless (BKT)
type under Ohmic dissipation as demonstrated in Ref. [2]
via the quantum Monte Carlo technique. The mechanism
behind this QPT is the bath induced FM interaction
overcoming the intrinsic AFM interaction J. Importantly,
the critical coupling strength is system size independent
once J # 0, which allows us to identify the range of
coupling strength that will retain the isolated-bath state
even in the thermodynamic limit. This robustness contrasts
the critical interaction scaling as 1/N when J = 0.

Our analytical mapping technique allows us to directly
understand and predict this QPT from the effective
Hamiltonian picture, and for general spectral functions.
We couple the system (6) to a single bosonic bath and
achieve the following effective system Hamiltonian [52]

(5-5) i&f&;‘ )

Here, individual spin splittings A are suppressed to A in
exactly the same manner as in Eq. (3). However, unlike the
Heisenberg chain with only nearest-neighbor interactions,
bath-induced FM interactions compete with the positive
AFM interaction term JA. Thus, while the example of
Fig. 2 displayed a monotonic shifting of the critical
coupling strength to lower values as we increase N, in
the fully connected Ising model the critical coupling
converges to a constant value independent of N. In
Fig. 4, we demonstrate this by computing the structure
factor S, for both Brownian (a) and super-Ohmic (b) baths.
The critical bath coupling A.(a..) is directly obtained at the
points when the original AFM order shifts to a FM order:
(JA/8) = (2/Q) [(JA/8) = 2w.a.]. Furthermore, we
observe that the transition to a FM phase captured by S,
becomes steeper with decreasing temperature as well as an
increasing number of spins, and we expect to see a
discontinuous jump as f, N — oo [65].
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(b)

0.0 01 02 0.3

FIG. 4. Bath-induced quantum phase transition in the fully
connected and globally coupled Ising model. We present the
structure factor S, = (1/N?) Y, ;(6767) using parameters corre-
sponding to (a) Brownian (b) and a super-Ohmic spectral
functions. We use A = 0.1, J =3(10) for a(b), Q = 10, and
. = 0.5. Insets (al) and (bl) enlarge over the corresponding
main panels on the location of the quantum phase transition.
Results are presented for N = {4, 6,8, 10} at two temperatures
T = 0.05 (solid) and 0.1 (dashed). The dashed black line
indicates where the critical (4.)a. occurs, which corresponds
to the point where the spin-spin interactions turn into ferromag-
netic: notably, the critical coupling strength is independent of
temperature and chain length (insets).

Discussion.—We showed that an analytical mapping
scheme yields clear insights on dissipative phase transitions
in a broad class of spin systems, shedding light on
phenomena that were previously approached independ-
ently, and with costly numerical tools. The mapping takes a
many-body spin Hamiltonian at potentially strong coupling
to heat baths and transforms it into an effective spin model
at weak coupling to (modified-residual) environments,
for which equilibrium expectation values can be readily
evaluated using the Gibbs equilibrium state. Specifically,
we demonstrated that in Heisenberg chains a global bath
turns a low-temperature AFM order into a FM phase;
an extended Neel phase is created when pairs of spins
couple to a common bath; a bath-induced QPT occurs in
the fully connected Ising model. Regarding the validity of
our results, one needs to operate in the regime where
the system-bath coupling—in the effective Hamiltonian
picture—remains weak. Furthermore, the reaction coordi-
nate mapping assumes high-frequency baths [57,66]. As for
temperatures, a comparison against more precise numerical
tools [52] reveals that the mapping method progressively
becomes more accurate with increasing chain length,
even at low temperature. The mapping approach was
formulated for harmonic baths, but one can generalize it
to other environments, including spin baths. The scheme
can also be readily generalized to higher spin systems
and more complex system-bath operators. Moreover, the
method lends itself to the analysis of bath-induced phases
in disordered systems. With its generality and transparent
form, the mapping method could be employed to design
dissipation-controlled topological phases at finite temper-
ature, the focus of our future work.
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