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Twisted moiré materials, a new class of layered structures with different twist angles for neighboring
layers, are attracting great attention because of the rich intriguing physical phenomena associated with them.
Of particular interest are the topological network modes, first proposed in the small angle twisted bilayer
graphene under interlayer bias. Here we report the observations of such topological network modes in twisted
moiré phononic crystals without requiring the external bias fields. Acoustic topological network modes that
can be constructed in a wide range of twist angles are both observed in the domain walls with and without
reconstructions, which serve as the analogy of the lattice relaxations in electronic moiré materials.
Topological robustness of the topological network modes is observed by introducing valley-preserved
defects to the network channel. Furthermore, the network can be reconfigured into two-dimensional patterns
with any desired connectivity, offering a unique prototype platform for acoustic applications.
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Twisted moiré materials, formed by two-dimensional
(2D) material layers with twist angles between layers,
exhibit moiré patterns varied with twist angle. Tuned by the
moiré interlayer coupling and twist angle degrees of free-
dom, these moiré systems exhibit a plethora of interesting
physics [1–15], such as van Hove singularities [1,3], moiré
excitons [7,8], and topological phases [9–12]. Physics
arising from twisted moiré electronic systems has opened
a new field dubbed as twistronics. Of special interest is the
twisted bilayer graphene formed by two graphene layers
with a relative twist angle. Such systems typically exhibit
triangular moiré patterns consisting of three regions of AA,
AB, and BA stackings, where the AB and BA stacking
regions are separated by domain wall (DW) forms. Their
moiré patterns result in a strong modification of the
electronic structure by the superlattice band folding, lead-
ing to emergent superconducting and correlated insulating
states [5,6]. When a large interlayer bias is applied to a
twisted bilayer graphene, the top and bottom graphene
layers carry asymmetric potentials. The corresponding
AB and BA regions open band gaps, characterized by
opposite valley Chern numbers, supporting the presence
of the valley topological modes in the DWs [11,15–27].
These topological modes form a connected network that
provides a platform for performing complex valleytronic
operations, such as Fabry-Pérot [19] and Aharanov-Bohm
oscillations [23]. However, these topological network
modes (TNMs) are only observed in the DWs of recon-
structed structures of twisted bilayer graphene [19–26].
This happens only in small twist angles (e.g., less than 1°),

due to the spontaneous lattice reconstruction, a necessary
condition for realizing the TNMs in twisted bilayer graphene.
Inspired by the moiré electronic systems, some artificial

moiré lattices of classical waves have been realized recently
[28–45], in which some salient phenomena have been
demonstrated, such as moiré flat bands [28,29,33–36,38],
moiré fringe induced gauge field [30,40], moiré quasi-
bound states [41,42], and localization and delocalization
of light [43]. Although progress has been made in classical
wave moiré systems, the studies on inherent topology and
associated topological modes (e.g., TNMs) in classical
wave moiré systems are rare and highly desirable. Classical
wave moiré systems remain in a large unexplored realm.
Here we construct TNMs in twisted moiré phononic

crystals (TMPCs). Because of their macroscopic scale, the
DW structures and interlayer couplings of TMPCs can
be flexibly designed and accurately fabricated with both
large and small twist angles. Acoustic TNMs are observed
by directly measuring the pressure field distribution in
TMPCs. The topological robustness of TNMs is identified
by introducing a weak defect, referred to as valley-
preserved (VP) defect, which does not introduce valley
mixing into the channel of the network. Significantly, the
connectivity of the channels of the network can be blocked
by a strong defect, referred to as valley-mixed (VM) defect,
which introduces valley mixing. As such, we can design
network waveguides of arbitrary shapes and guide the
TNMs along any prescribed routes, which are conclusively
identified by our acoustic experiments. Our results provide
insight into the study of topological domain physics in
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twisted systems as well as an effective macroscopic plat-
form for exploring the highly intricate moiré physics.
Approach toward acoustic TNMs.—Before delving into

the details of our TMPCs, we first briefly describe the
design principle of our TNMs. Following the results
demonstrated in the electronic systems [16–27], the key
to obtaining TNMs is to let the top and bottom layers of the
twisted system carry asymmetric potentials, which leads to
the AB and BA regions of the system opening band gaps
and exhibiting opposite valley Chern numbers. In this
context, we start with 2D acoustic analog of graphene
monolayer systems with potentials V� ΔV, referred to
as acoustic graphene layers. As illustrated in Fig. 1(a),
two acoustic graphene layers are constructed following
the HamiltoniansH� ¼ ðV� ΔVÞσ0 þ d1σx þ d2σy of the
usual ones of the graphene, where d1 ¼ t½1þ 2 cosðkx=2Þ
cosð ffiffiffi

3
p

=2Þky�, d2 ¼ 2t cosðkx=2Þ sinð
ffiffiffi

3
p

=2Þky, and the
Hamiltonian H− (Hþ) correspond to the top (bottom)
layer. These two acoustic graphene layers support Dirac
points of frequencies f1 (top layer) and f2 (bottom layer) at
the inequivalent hexagonal Brillouin zone corners K0 and
K0

0, see Supplemental Material [46]. We then stack these
two acoustic graphene layers in the vertical direction
and create a TMPC by a twisting procedure sketched in
Fig. 1(a). As shown in Fig. 1(b), the TMPC exhibits a
triangular moiré pattern in the local stacking that smoothly

alternates between three basic stacking types AA, AB,
and BA. Hybridized with the interlayer coupling, the AB
and BA regions of our TMPC develop spectral gaps and
possess opposite valley Chern numbers [46], similar to
the twisted bilayer graphene with a large interlayer bias
applied [16–27]. Naturally, topologically protected modes
appear at the DWs between the AB and BA regions, giving
rise to a topological network [Fig. 1(c)]. Like the edge
modes at the boundary between two distinct valley topo-
logical phases [47–52], the TNMs are protected by the
valley topology and robust against the VP defects.
Furthermore, this network can be tailored into arbitrary
pattern by controlling positions of VM defects, which block
transmission in selected channels [Fig. 1(d)], thus provide
a unique way to engineer the sound waves. All these
extraordinary topological network transports will be dem-
onstrated by our simulation results and experimental data.
Acoustic TNMs and their topological transports.—Our

TMPC is implemented by twisting two coupled 2D
acoustic graphene layers for airborne sound. As shown
in Fig. 2(a), each acoustic graphene consists of cylindrical
cavities (red and cyan) coupled through straight tubes
(orange and gray). To obtain the potentials described in
the Hamiltonians H�, the radii of the cavities of the top
and bottom acoustic graphene layers are set to r1 ¼ 8.2
and r ¼ 10 mm, respectively. Other geometric parameters
are chosen as s ¼ 22, d ¼ 8.8, d1 ¼ 4, h ¼ 6 mm and
the lattice constant of two acoustic graphene layers are
a ¼ ffiffiffi

3
p

s. With these parameters, each acoustic graphene
layer possesses Dirac dispersions, where the Dirac points
of the two layers are located at different frequencies [46].
To construct a TMPC with twist angle θ, we first stack
these two acoustic graphene layers in z direction and
then counterclockwise twist the bottom layer with θ=2
while clockwise twist the top layer with θ=2, as shown in
Fig. 1(a). Figure 2(b) presents the unit cell of TMPC with
θ ¼ 5.085°, where the configurations of basic AA, AB,
and BA stacking types are shown in Fig. 2(c). The
interlayer coupling is introduced by uniform white vertical
tubes [Figs. 2(b) and 2(c)] of radius r0 ¼ 6 and height
h1 ¼ 4 mm for each cavity [46], and its strength depends
mostly on the contact area of the top and bottom tubes. The
lattice constant of the TMPC is L ¼ 429.4 mm and more
details can be found in Ref. [46]. Tuned with the interlayer
coupling, the regions of AB and BA stacking types develop
the same spectral gap (3.69–4.04 kHz) and possess oppo-
site valley Chern numbers [46], which is obtained from the
method in Ref. [53]. As proposed in Refs. [16–27,47–50],
the topological modes should exist in the DWs between the
AB and BA regions. Note that these topological modes are
forming a network in our TMPC. To confirm this, we have
calculated the band structure of TMPC along several
typical directions of moiré Brillouin zone [Fig. 2(c)], as
shown in Fig. 2(d). It is distinctly seen that numerous
modes (marked in red and blue dots) appear in the band gap
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FIG. 1. Approach toward TNMs in TMPCs. (a) Sketch of two
acoustic graphene monolayers with Dirac points of different
frequencies. (b) Sketch of top view of TMPC with twist angle θ.
The black hexagon labels the moiré unit cell, where AB and BA
regions are separated by DWs (green). (c) Schematic of topo-
logical network for the TNMs confined at DW channels. Arrows
in solid (dotted) lines represent the TNMs from the K0 (K0

0)
valley. (d) The same as (c), but for the case in the presence of VM
defects in y-directional channels, where the defect suppresses the
transmission through the corresponding link.
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3.69–4.04 kHz (yellow shadow) of the AB and BA regions.
As sketched in Fig. 2(e), the modes marked by red dots are
confined at DW channels of TMPC, forming a network of
triangular lattices. Similar to the topological boundary
modes in the bilayer valley topological crystals, the present
TNMs span the whole bilayer. Note that the modes marked
by blue dots are resonant modes localized away from the
AB, BA, and DW regions [46] and not of interest here.
Similar to the topological modes at the boundary

between two valley insulators with opposite valley Chern
numbers, the TNMs are protected by the valley topology
and robust against VP defects [51,54–56]. To elucidate this
property, we put the VP defect in the y directional channel
in each unit cell [Fig. 2(f)]. The VP defect is constructed by
exchanging some cavities of the top layer with those of the
bottom layer, see details in Ref. [46]. As demonstrated
by the pressure field in Fig. 2(g), TNMs can propagate
smoothly along the y directional channels as in the defect
free case, forming a perfect network, which gives the
possibility to design topological acoustic channels with
scatter immunity. Based on the fact that the topological
protection of the channels is weak, for strong defects (VM
defects) located in the channels, the intervalley scattering
could become sizable [16,54,55,57,58], indicating the
existence of valley mixing. We then turn to demonstrate
that the transmission of the TNMs channel can be blocked
by inducing local VM defects. To confirm this, we replace
the VP defects with the air cavities [Fig. 2(h)] of size
3s × 3s × 2ðhþ h1Þ that introduce the valley mixing, see

details in Ref. [46]. We find that any link with an air cavity
becomes efficiently blocked [Fig. 2(i)] within certain fre-
quency window (3.70–3.89 kHz), which allows us to con-
figure the network into any desired two-dimensional pattern
[46], providing a new scheme for controlling acoustic waves.
These exceptional performances of topological network
transports are of great importance in the fields of information
processing and multichannel information transfer.
Experimental observations.—The presence of the TNMs

has been directly visualized in our airborne sound experi-
ments. Figure 3(a) shows the experimental sample of size
1472 × 987 × 20 mm fabricated precisely with three-
dimensional printing. We have first performed the intensity
spectral measurements as a function of frequency to
confirm the existence of the band gaps of the AB and
BA regions and the TNMs [46]. The experimental intensity
spectra detected for three independent experiments are
shown in Fig. 3(b). As expected, sizable band gaps are
opened in the AB (black) and BA (gray) regions,
where band gaps of both regions are the same. The DW
spectrum (red) exhibits peak within the band gap, which
corresponds exactly to the TNMs. All the spectra are in
excellent agreement with predictions of the band dispersion
[Fig. 2(d)]. To conclusively confirm the presence of TNMs
at the DWs, we perform 2D field profile mapping mea-
surements [46]. Figure 3(c) presents the pressure field
of 3.87 kHz measured in the top layer of TMPC. It shows
that the sound signal is indeed confined at the DWs and
forms a network.

AA

x
y

z

AB

BA

3.5

3.9

4.3
F

re
q
u
en

cy
 (

k
H

z)

K MГ Г

r r1
h

d d1 AA

BAAB

BA

BA AB

AB

x

y

Without defect With VP defect With VM defect

K
M

Г

x

y

AA

BAAB

BA

BA AB

AB

s

Min

Max

��3
�

L

xy
z

�a� �b�

�c� �d� �e�

�f� �h�

�g� �i�

FIG. 2. Numerical demonstrations of the acoustic TNMs and their topological properties. (a) Two acoustic graphene layers for
stacking our TMPC. (b) Full and top views of the unit cell of TMPC with θ ¼ 5.085°. (c) Schematic of AA, AB, and BA stackings and
the first moiré Brillouin zone. (d) Simulated band structure of the TMPC with θ ¼ 5.085°. The yellow shadow region indicates the band
gap of the BA (AB) region (3.69–4.04 kHz). The red (gray) dots indicate the TNMs (bulk modes) and the blue dots indicate the resonant
modes. (e) Pressure field distribution for the TNM (f ¼ 3.87 kHz) marked by the green star in (d). (f) Top view of the unit cell of TMPC
with VP defects located at channels along y direction. (g) The same as (e), but for the TNM of TMPC formed by the unit cell in (f).
(h)The same as (f), but for the unit cell with VM defect. (i) The same as (g), but for the TNM of TMPC formed by the unit cell in (h). The
red dashed boxes indicate the VM defects. The black dashed circles in (e)–(i) denote the AA regions.
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We now turn to confirm the topological robustness of the
TNMs against VP defects. The experimental sample with
VP defects has the same size as the sample in Fig. 3(a),
where the VP defect is introduced in the y directional
channel of each moiré unit cell (Fig. S5 of Ref. [46]). In this
sample, the transmission through the y directional channel
with VP defects will not be blocked and the TNMs
transport smoothly through the defect. To confirm this,
we have experimentally scanned the pressure field on the
top layer of the sample. Figure 3(d) exemplifies the
experimental data at 3.87 kHz, where the acoustic wave
bypasses the defect and propagates along the prescribed
channels, forming a network pattern like the system with-
out the defect. To quantitatively characterize the topologi-
cal robustness of the TNMs against the VP defects, we
further extracted the sound energy at a y directional DW. As
shown in Fig. 3(b), the sound intensity spectrum (blue dots)
of the VP defect system exhibits almost the same as that of
the perfect system (red circles) inside the nontrivial gap
region (yellow shadow).
To experimentally demonstrate that the connectivity of

the network can be arbitrarily modified by controlling
the locations of VM defects, we consider a sample with
VM defects which has the same size as that employed in
Fig. 3(a). As shown in Fig. S6 in Ref. [46], an air cavity is
introduced in the y directional channel of each moiré unit
cell. In Fig. 3(e) we present the sound field scanned over
the top layer. It shows that sound signals in the y directional

channels with VM defects are indeed blocked and propa-
gate only along the perfect channels, forming a new
network pattern. We have checked the experimental data
and found that any link with an air cavity becomes
efficiently blocked [Fig. 3(e)] within a certain frequency
window (3.70–3.89 kHz), which agrees well with the
simulation results. The field distributions confirm the
physical picture introduced in Fig. 1(d): the networks
of TNMs can be reconfigured into any desired two-
dimensional patterns.
Note that the acoustic TNMs presented here exist in the

DWs of TMPC under no external bias fields and structure
reconstruction, which are different from the TNMs con-
sidered in electronic systems, where the external interlayer
bias and structure reconstruction are required. In electronic
systems, the large angle twisted moiré electronic system is
viewed as decoupled layers, strong interlayer couplings and
lattice reconstruction appear only in small angle twisted
systems, all of which lead to TNMs appearing only in small
angle twisted bilayer graphene systems (e.g., θ < 1°).
However, the interlayer couplings of our TMPC can be
arbitrarily designed and the structure reconstruction can be
precisely controlled. We have constructed a reconstructed
TMPC to serve as the analogy of the twisted electronic
moiré materials after the lattice reconstruction, which is not
discussed in the previously reported artificial moiré sys-
tems. Acoustic TNMs are also observed in the DWs of
reconstructed structures of TMPCs, see details in Ref. [46].
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FIG. 3. Experimental identifications of the acoustic TNMs. (a) Photograph of TMPC with θ ¼ 5.085°. The inset amplifies the details
of the top layer of sample, on which subwavelength holes are perforated for inserting the sound probe or sound point source.
(b) Measured intensity spectra. The black, gray, and red dots indicate the data measured in the AB region, BA region, and y-directional
DWof the sample without defects [46], respectively. Blue dots represent the data measured in a y-directional DWof the sample with VP
defects [46]. The dips around 3.9 kHz in the DW spectra result from the band gap of TNMs [Fig. 2(d)]. The yellow shadow region
indicates the band gap of AB (BA) region (3.69–4.04 kHz). (c) Measured pressure amplitude distribution of TNM at 3.87 kHz. (d) and
(e) Same as (c), but for the TMPCs with VP and VM defects in the y-directional channel in each unit cell, respectively. The black dashed
circles in (c)–(e) denote the AA regions.
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In this context, the TNMs constructed by our principle can
be observed in the DWs of both the unreconstructed and
reconstructed TMPC, and can be realized in a wide range
of twist angles, as demonstrated by the data in Ref. [46].
Compared to the TNMs recently revealed in monolayer or
biaxially strained phononic crystals [37,59] where the
TNMs appear in the discrete designed superlattices, the
TNMs observed here exhibit more flexibilities in wave
manipulations since their network patterns can be smoothly
and continuously tuned by twisting operations. We believe
that the method proposed here for constructing TNMs is
applicable to other classical wave systems, such as electro-
magnetic and elastic wave systems.
Conclusion.—In summary, we have theoretically proposed

and experimentally verified the TNMs in TMPC. Acoustic
TNMs propagate along the DWs between AB and BA
regions, which are protected by the valley topology. We have
demonstrated that the TNMs can be guidedwithout scattering
even in the networks with VP defects. Markedly, the VM
defects can shut down the transmission through a link due
to the valley scattering within a certain frequency, which
allows one to modify the connectivity of the network
arbitrarily, indicating that TNMs can be guided freely along
an arbitrary network path. The capability of freely and
topologically routing waves in mass channels is far beyond
that exhibited in the early reported conventional waveguides
[60–63] or the newly developed topological waveguides
[51,52,54–56,58,64–74]. Specifically, for example, com-
pared with topological edge or hinge states which exist only
on the one-dimensional boundaries or interfaces and propa-
gate usually along a few straight or specifically shaped
channels, the TNMs form a 2D network and can propagate
along the network with various shapes. In theoretical aspect,
our results will stimulate the investigation of exploring
controllable topological phases and valley-dependent phe-
nomena in various classical moiré systems. In application
aspect, unique topological network transport offers new
possibilities for information communication and energy
transportation and presents the possibility to implement the
topological device, such as topological beam splitter [46].
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excitons in van der Waals heterostructures, Nature (London)
567, 71 (2019).

[9] S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K.
Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R.
Dean, and M. Yankowitz, Electrically tunable correlated
and topological states in twisted monolayer–bilayer gra-
phene, Nat. Phys. 17, 374 (2020).

[10] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu,
K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young,
Intrinsic quantized anomalous Hall effect in a moiré
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J. Opt. Soc. Am. B 40, 260 (2023).

[43] P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov,
L. Torner, V. V. Konotop, and F. Ye, Localization and
delocalization of light in photonic moire lattices, Nature
(London) 577, 42 (2020).

[44] Q. Fu, P. Wang, C. Huang, Y. V. Kartashov, L. Torner, V. V.
Konotop, and F. Ye, Optical soliton formation controlled by
angle twisting in photonic moiré lattices, Nat. Photonics 14,
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