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Weyl fermions are hypothetical chiral particles that can also manifest as excitations near three-
dimensional band crossing points in lattice systems. These quasiparticles are subject to the Nielsen–
Ninomiya “no-go” theorem when placed on a lattice, requiring the total chirality across the Brillouin zone
to vanish. This constraint results from the topology of the (orientable) manifold on which they exist. Here,
we ask to what extent the concepts of topology and chirality of Weyl points remain well defined when the
underlying manifold is nonorientable. We show that the usual notion of chirality becomes ambiguous in
this setting, allowing for systems with a nonzero total chirality. This circumvention of the Nielsen–
Ninomiya theorem stems from a generic discontinuity of the vector field whose zeros are Weyl points.
Furthermore, we discover that Weyl points on nonorientable manifolds carry an additional Z2 topological
invariant which satisfies a different no-go theorem. We implement such Weyl points by imposing a
nonsymmorphic symmetry in the momentum space of lattice models. Finally, we experimentally realize all
aspects of their phenomenology in a photonic platform with synthetic momenta. Our work highlights the
subtle but crucial interplay between the topology of quasiparticles and of their underlying manifold.

DOI: 10.1103/PhysRevLett.132.266601

Weyl fermions are massless particles of definite chirality
allowed by the standard model of particle physics [1].
Although they remain elusive as high-energy particles,
they can emerge as low-energy excitations in quantum
systems [2–5], and their dispersion also appears in certain
classical systems [6–11]. Such Weyl quasiparticles occur
near band degeneracies, known as Weyl points, in the
momentum space of three-dimensional lattices, and exhibit
a number of unique properties: (1) as monopoles of Berry
curvature, they carry an integer topological charge, the
first Chern number, the sign of which defines their
chirality [12,13]. They are therefore robust to perturbations,
even some that break translational symmetry [14–16].
(2) A bulk-boundary correspondence associates Weyl
points with Fermi arcs—dispersive surface states that
connect Weyl points of opposite charges [17]. (3) In the
presence of gauge fields, they can generate a violation of
chiral charge conservation, a phenomenon known as the
chiral anomaly [18].
Formulating lattice theories that describe Weyl fermions,

or chiral fermions more broadly, imposes global constraints
on their chirality. The most noteworthy example is the
Nielsen–Ninomiya theorem, that asserts, under general
assumptions of locality, Hermiticity, and translational
invariance, that the net chirality of all Weyl fermions
vanishes [19,20]. In lattice field theories, the Nielsen–
Ninomiya theorem generates additional unwanted fermion

species, leading to the important problem of fermion
doubling [21,22]. Additionally, since condensed matter
systems are often crystalline, this theorem applies and
constrains the total Weyl-point chirality in the Brillouin
zone to vanish. This, in turn, directly impacts physical
observables, e.g., the spectrum and dispersion of Fermi
arcs [23], the chirality of Landau levels under an applied
magnetic field [18,24], and electromagnetic responses to
circularly polarized light [25,26].
Several approaches for circumventing the Nielsen–

Ninomiya theorem have been proposed, all of which violate
one or more of its assumptions [27–37]; however, none
have explored the role of the topology of the underlying
manifold. Indeed, the strong constraint imposed by this
no-go theorem ultimately results from the topological
properties of the momentum-space fundamental domain,
i.e., the toroidal Brillouin zone [38]. Here, we demonstrate
that the notions of chirality and topology for Weyl points
are fundamentally altered on nonorientable momentum-
space manifolds. We show that, while an absolute notion of
chirality of Weyl points becomes inherently ambiguous,
a relative chirality still exists, and that nonorientability
provides a natural setting for the Nielsen–Ninomiya theo-
rem to be circumvented in an atypical fashion. We also
show that Weyl points on nonorientable manifolds carry a
Z2 topological charge and have an associated no-go
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theorem that places global constraints on both the number
of Weyl points and their total chirality. Finally, we
experimentally realize such Weyl points in a photonic
system endowed with synthetic momenta, paving the way
to a wider exploration of the interplay between orientability
and chirality.
We begin by discussing our scheme for obtaining

Hamiltonians of lattice systems with nonorientable
momentum-space manifolds. The Bloch Hamiltonian
HðkÞ, in an appropriate basis, is invariant under translations
by any reciprocal lattice vector G, i.e., HðkÞ ¼ HðkþGÞ.
This reflects a redundancy in k space, since both k and
kþG label the same physical momentum point. By
restricting k to the set of unique momenta, the Brillouin
zone takes the form of a three-dimensional torus, denoted as
T3 (Fig. 1(a)). This toroidal nature of momentum space is
unavoidable for a lattice.
Interestingly, under certain circumstances it is possible

to subdivide the torus into closed manifolds that are
nonorientable [39–43]. This can be achieved, e.g., by
imposing a momentum-space glide symmetry on the
Hamiltonian

Hðkx; ky; kzÞ ¼ Hð−kx; ky þ π; kzÞ; ð1Þ

where we have set the lattice constant to unity. This
symmetry leads to a further redundancy in k space,
since the Hamiltonian, along with its eigenstates and
energy spectrum, is identical at momenta ðkx; ky; kzÞ and
ð−kx; ky þ π; kzÞ. This symmetry operation subdivides
the torus into two fundamental domains: without loss of
generality we select the domain −π ≤ kx; kz < π and
−π ≤ ky < 0 as their representative. The nonsymmorphic
nature of the symmetry in Eq. (1) allows for boundary
identifications to be made at the ky ¼ 0 and ky ¼ −π planes
in a twisted fashion [Fig. 1(b)], resulting in a closed
manifold. The fundamental domain can consequently be
expressed as the direct product of a nonorientable Klein
bottle ðK2Þ in the ðkx; kyÞ plane and a circle ðS1Þ in the kz
direction, i.e., K2 × S1. The Klein bottle can be visualized
by gluing one pair of opposite sides of a rectangle and
twisting and gluing the other pair [Fig. 1(c)]. Figure 1(d)
shows an immersion of a Klein bottle in R3.
We note that the direct equality in Eq. (1), without

unitary conjugation of the Hamiltonian, is crucial [44], and
distinguishes this symmetry from spatial symmetries, such
as rotations, that subdivide the Brillouin zone into identical
smaller copies, but which are open manifolds. This unitary-
free symmetry is analogous to translational symmetry
which reduces the domain of the Hamiltonian from R3

to T3, leading to identical physics at the identified boun-
daries. In further contrast to spatial symmetries, the non-
symmorphic nature of this symmetry in momentum space
leaves no momentum point invariant.
Next, we consider the consequences of this symmetry

using a two-band, spinless model on the three-dimensional
cubic lattice with a Bloch Hamiltonian of the form

HðkÞ ¼ d · σ ¼ dxðkÞσx þ dyðkÞσy þ dzðkÞσz; ð2Þ

where σx;y;z are the Pauli matrices, and the components of
dðkÞ ¼ ½dx; dy; dz�ðkÞ are individually subject to Eq. (1).
As a concrete example, we take

dxðkÞ ¼ cos kx;

dyðkÞ ¼ sin kz − sin kx sin ky − 1
2
;

dzðkÞ ¼ cos kz þ sin kx cos ky þ 1 ð3Þ

and note that, physically, the constraints on dðkÞ imply a
suppression of certain hoppings in real space [45].
The bands touch at Weyl points where jdðkÞj ¼ 0. For

our model, we find two Weyl points in the K2 × S1

fundamental domain [Fig. 2(a)]. Their chiralities can be
computed by enclosing each Weyl point within a spherical
shell and integrating the Berry curvature flux through
it [46]. However, since K2 × S1 is nonorientable, there is
no globally consistent orientation. This is relevant for the
calculation of the Chern number since it is a pseudoscalar,

(a) (b)

(d) (c)

FIG. 1. (a) The momentum space of three-dimensional materi-
als is typically represented as a torus, T3. (b) In the case of
Hamiltonians obeying the symmetry in Eq. (1), the fundamental
domain in momentum space takes the form of a nonorientable
manifold, K2 × S1. The arrows indicate boundary identifications.
(c) Two-dimensional cuts in the ðkx; kyÞ plane form a Klein bottle,
K2. The Hamiltonian is identical at the pair of points labeled by A
and B, and similarly along the entire ky ¼ −π and ky ¼ 0 lines.
(d) K2 can be visualized as a closed manifold created by twisting
and gluing one pair of opposing sides of a rectangle and gluing
the other pair without a twist (as indicated by the arrows).
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and therefore flips sign upon orientation reversal. Thus,
while an absolute sign for the chirality cannot be estab-
lished, an orientation choice can be made on any finite
region that does not include the orientation-reversing
planes ky ¼ −π and ky ¼ 0, such that it contains all the
Weyl points. This choice can be used to assign the signs of
their charges through a Berry curvature flux integral, which
provides an unambiguous definition of relative chirality
within the region. Interestingly, this implies that nonorient-
ability allows all Weyl points on the manifold to have the
same relative chirality. For example, if we start with two
Weyl points of opposite chiralities, we can change the
chirality of one of them by moving it along an orientation-
reversing path, i.e., one that crosses the planes ky ¼ −π and
ky ¼ 0 an odd number of times, resulting in both Weyl
points having the same relative chirality. This is similar to
the chirality flip observed in non-Hermitian systems when
Weyl points encircle exceptional nodal lines [58,59].
In our model, we find that both Weyl points on the

K2 × S1 manifold carry a charge of þ1 [Fig. 2(a)].
Evidently, the Nielsen–Ninomiya theorem is circumvented
on the fundamental domain [60] since the total chirality is

χ ¼ þ2. In [45], we show that this circumvention is
possible because dðkÞ is discontinuous on K2 × S1, even
though the Hamiltonian itself is continuous. This disconti-
nuity is directly tied to the nonorientability of the under-
lying manifold, and renders the Nielsen–Ninomiya theorem
inapplicable. We also further explore the nature of this
circumvention in [45]: first, we show a direct physical
consequence of this circumvention—systems that exhibit a
nonzero total chirality on K2 × S1 necessarily host gapless
surface states where twisted boundary identifications are
made; and second, we prove that fine-tuning dðkÞ, such
that it is continuous on the fundamental domain, restores
the Nielsen–Ninomiya theorem.
Physically, the relative chiralities of Weyl points can also

be ascertained through the Fermi arcs: Weyl points of
the same chirality are connected via Fermi arcs that lie on
orientation-reversing paths [Fig. 2(b)]; whereas Weyl
points with opposite chirality are connected via Fermi arcs
that lie on orientation-preserving paths, i.e., those that
intersect the lines ky ¼ −π and ky ¼ 0 an even number of
times. In [45], we show that these features are general by
considering a different nonorientable manifold, the real
projective plane RP2.
We will now show that Weyl points on nonorientable

manifolds carry an additional Z2 topological charge, which
results in a different no-go theorem. To identify the Z2

charge, we consider topological invariants on two-
dimensional gapped subspaces of the three-dimensional
Brillouin zone. Explicitly, we consider fixed-kz subspaces
restricted to the fundamental domain, which form Klein
bottles, K2 [Figs. 1(b) and 1(c)]. We can then integrate the
Berry connection along the kx direction to obtain the Berry
phase γðkyÞ [Fig. 2(c)]. Since ky ¼ −π and ky ¼ 0 are
related by a kx-mirror operation, integrating the Berry
connection along these lines leads to a relative minus sign,
and therefore γðky ¼ −πÞ ¼ −γðky ¼ 0Þ ðmod 2πÞ. By
counting the number of crossings Wπ of the Berry phase
through the horizontal line γ ¼ π, it can be shown that
curves with a given Wπ parity can be deformed into one
another but cannot be deformed into those with a different
parity. This defines a Z2 invariant ν≡Wπ mod 2∈ f0; 1g
on K2 [39] [Fig. 2(d)]. Similar to the Chern number,
ν originates from the topological classification of line
bundles over their fundamental domains, which can be
expressed in terms of the second cohomology groups
H2ðT2;ZÞ ¼ Z and H2ðK2;ZÞ ¼ Z2. Therefore, the clas-
sification is stable under the addition of trivial bands.
Furthermore, this invariant leads to edge states when
interfaced with a trivial system [39,45].
We now compute the value of ν for various fixed-kz,

Klein-bottle cuts for the model in Eq. (3). Figure 2(a) shows
that the value of νðkzÞ changes by unity as kz passes
through an odd number of Weyl points. This suggests that
a nontrivial value of ν is associated with Weyl points of
odd chirality. We show in [45] that a local Berry phase

(a)

(c) (d)

(b)

FIG. 2. (a) The distribution of Weyl points (red spheres) at
E ¼ 0 in the fundamental domain, K2 × S1, for the model in
Eq. (3). All Weyl points have Chern number þ1. Highlighted kz
planes indicate that an odd number of Weyl points mediate the
transitions between different values of the Z2 invariant ν,
discussed below. (b) Fermi arcs obtained on truncating the
system along the z direction, connecting projections of Weyl
points (red circles) with charges of the same sign via an
orientation-reversing path. The associated fundamental surface
Brillouin zone forms a Klein bottle. (c) Berry phase γ calculated
on the Klein bottle K2. The Berry connection is integrated along
kx and plotted as a function of ky from −π to 0. (d) The invariant ν
gives a Z2 classification on K2, the transitions of which are
mediated by Weyl points as shown in (a).
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calculation for the Z2 invariant can be carried out by
enclosing the Weyl point within a two-sided Klein bottle
[47]. This shows that ν is indeed sourced by Weyl points
and, accordingly, we may associate a Z2 charge to each.
The same conclusion can be reached by relating ν to the
Chern number C of the Weyl point by noticing that the
Berry phase jumps by 2πC at the momentum of the Weyl
point [48,49]. This leads to the relation ν ¼ C mod 2 [45].
Having uncovered that Weyl points carry a Z2 charge,

we now show that this charge is subject to a no-go theorem
on K2 × S1. The argument proceeds as follows: since the kz
direction is periodic, νðkz ¼ −πÞ ¼ νðkz ¼ πÞ. This forbids
the presence of a net nonzero Z2 charge of the Weyl points
within K2 × S1. To show this, we consider the case
of a single Weyl point at the kz ¼ 0 plane. Because of
this Weyl point, the value of νðkz ¼ 0−Þ would differ from
νðkz ¼ 0þÞ by unity. If there are no other Weyl points,
it follows that the values νðkz ¼ −πÞ ¼ νðkz ¼ 0−Þ and
νðkz ¼ πÞ ¼ νðkz ¼ 0þÞ would not be equal, which is not
possible if the kz direction is periodic. Thus, a second Weyl
point is needed to ensure that the invariants at the two kz
planes match. Accordingly, the total Z2 charge of the Weyl
points on K2 × S1 must vanish; or, equivalently, the sum of
Chern numbers of theWeyl points must be even—but as we
have shown, not necessarily vanishing. This no-go theorem
implies that for systems obeying Eq. (1) the minimum
number of singly charged Weyl points is two on K2 × S1,
and four on the toroidal Brillouin zone, even under broken
time-reversal symmetry. In [45], we further discuss the

roles of inversion and time-reversal symmetries, and
provide a second argument for this no-go theorem based
on the configuration of Fermi arcs.
In this final section, we turn our attention to an

experimental demonstration of Weyl points on nonorient-
able manifolds, which we realize in a photonic system
endowed with synthetic momenta. The system considered
here consists of a family of optical multilayer structures,
i.e., one-dimensional photonic crystals (PhCs). Their unit
cells are composed of four dielectric layers alternating
between two materials, silicon ðεSi ¼ 12.5Þ and SiO2

ðεSiO2
¼ 2.25Þ, with a lattice constant a in the z direction

[Fig. 3(a)]. Light propagation in such PhCs is governed by
a Maxwell eigenvalue problem for the electromagnetic field
eigenmodes, and their corresponding frequency eigenval-
ues, analogous to electrons moving in a crystalline solid
[61,62]. When light propagation along the z direction is
considered, this is reduced to a one-dimensional problem
which is solved using Bloch’s theorem. The resulting field
solutions form discrete frequency bands as a function of the
quasimomentum kz, which may be separated by photonic
band gaps.
We introduce two periodic parameters, k1 and k2, to

modulate the thicknesses, L1, L2, L3, and L4, of each of the
four layers in the unit cell. The parameters k1, k2 serve
as synthetic momentum degrees of freedom which,
along with the quasimomentum kz, result in a three-
dimensional toroidal parameter space within which
Weyl points can exist [36,63,64]. We choose L1 to L4

(a) (c)

(b)
(d)

(e)

FIG. 3. (a) The unit cell of the PhCs that consist of four layers of thicknesses L1 to L4. The lattice constant in the z direction is a.
(b) The lowest two bands of the PhCs at kz ¼ π=a, as a function of k1 and k2. The two Weyl points, shown as red spheres, both carry a
Chern number ofþ1. These are “ideal”Weyl points that are frequency isolated from the other bands. (c) Fermi arcs on the top surface of
the finite-in-z system on the K2 surface Brillouin zone formed by the parameters k1 and k2. (d,e) Experimentally obtained and simulated
transmission spectra showing the Fermi-arc surface state dispersion along circular loops enclosing the Weyl points. The loops around the
projections of the Weyl points are parametrized by angular variables θ1 and θ2.

PHYSICAL REVIEW LETTERS 132, 266601 (2024)

266601-4



such that the nonsymmorphic symmetry given in Eq. (1)
is satisfied in ðk1; k2; kzÞ space. In particular, we
choose L1 ¼ 1

4
að1þ cos k1Þ, L2 ¼ 1

4
að1þ sin k1 cos k2Þ,

L3 ¼ 1
4
að1 − cos k1Þ, L4 ¼ 1

4
að1 − sin k1 cos k2Þ. Thus the

fundamental domain is K2 × S1 after making boundary
identifications at the k2 ¼ −π and 0 planes.
We find that the fundamental domain hosts two Weyl

points between the lowest two bands of this system
[Fig. 3(b)], each with a relative chirality of þ1. This
implies that they each carry a Z2 charge of ν ¼ 1, as we
explicitly show in [45]. The total chirality of the Weyl
points therefore does not vanish, similar to what was
observed in the tight-binding model in Eq. (3). However,
the total Z2 charge vanishes, consistent with the no-go
theorem for these charges. The higher bands can host
increasingly larger numbers of Weyl points, while always
maintaining a vanishing total Z2 charge. We discuss the
many-band case in more detail in [45].
On truncating the PhCs along the z direction, Fermi arcs

are expected to emerge from the projections of the Weyl
points in the surface Brillouin zone formed by ðk1; k2Þ.
Since the Fermi arcs are localized on the surfaces, they
possess an enormous linewidth generated by the strong
out-coupling to plane waves in the air above the PhCs.
To remedy this, we clad the PhCs with additional layers on
the top surface to better confine these states [45]. Doing so
allows for the observation of the Fermi arcs in the trans-
mission spectrum of the PhCs, a simulation of which is
shown in Fig. 3(c). When the dispersion of the Fermi arcs is
plotted along a loop that encloses the projection of a Weyl
point, these states fully cross the band gap, with the
direction of their spectral flow determined by the sign
of the chirality of the enclosed Weyl point. Since our
Weyl points have the same chirality, we expect the same
spectral flow pattern for both nodes as simulated in
Figs. 3(d) and 3(e).
For the experiment, we fabricate a series of PhCs that

correspond to values of k1 and k2 lying on the loops that
enclose the Weyl point projections, as shown in Fig. 3(c)
(further details on the simulations and experiment are given
in [45]). Figures 3(d) and 3(e) show the experimental
results along with corresponding simulations. We see that
the surface states cross the gap with identical spectral flow
for both Weyl points, indicating that they carry the same
chirality.
In summary, by implementing Weyl quasiparticles in

lattice models with nonsymmorphic momentum-space
symmetries, we have explored their fate on nonorientable
manifolds. On the associated fundamental domain, the
Hamiltonian, its eigenstates, and all physical observables
are continuous. However, we have shown that the chirality
of Weyl points need not sum to zero, circumventing the
Nielsen–Ninomiya theorem. The underlying nonorientable
domain endows the Weyl points with an additional Z2

charge, whose conservation enforces a new no-go theorem.

Finally, we have experimentally demonstrated the phenom-
enology of such Weyl points in a photonic platform
with synthetic momenta. Our work suggests several new
research directions. For example, one can consider other
nonorientable manifolds in dimensions two and higher that
might host their own unique topological invariants and new
gapless points [65–67]. It will also be interesting to explore
the properties of Landau levels originating from both real
and pseudomagnetic fields when the chirality does not
vanish [24,68–70]. More broadly, this opens up new avenues
to explore how other chiral objects, such as multifold
fermions [12,71] and exceptional points [37,72], fare in
nonorientable settings. We believe that the approaches
introduced here may help answer these fundamental
questions.
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