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We carefully revisit the electron-boson scattering problem, going beyond weak-coupling expansions and
popular semiclassical treatments. By providing numerically exact results valid at finite temperatures,
we demonstrate the existence of a broad regime of electron-boson scattering where quantum localization
processes become relevant despite the absence of extrinsic disorder. Localization in the Anderson sense is
caused by the dynamical randomness resulting from a large thermal boson population, being, however,
effective only at transient times before diffusion can set in. Compelling evidence of this transient
localization phenomenon is provided by the observation of a distinctive displaced Drude peak in the optical
absorption and the ensuing suppression of conductivity. Our findings identify a general route for anomalous
metallic behavior that can broadly apply in interacting quantum matter.
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Introduction.—Unusual charge transport properties are
both a defining feature and an open challenge in quantum
materials. Bad metals exhibit anomalously large resistivities,
defying the very assumptions of textbook, Bloch-
Boltzmann, transport theory. Posing even more fundamental
challenges, the celebrated Fermi-liquid theory of metals
breaks down altogether in strange metals. Several theoretical
routes are being explored, and novel concepts have been put
forward to explain these anomalies. In one class of scenarios,
the anomalies are ascribed to the unusual properties of the
scatterers involved, that are able to overcome and replace the
traditional electron-electron and electron-phonon scattering
channels. Notable examples in this category include various
types of critical, soft bosons appearing at quantum phase
transitions or in extended critical phases [1–3], eventually
leading to bad metal behavior, strange metal behavior, or
both. In a second group of scenarios, it is the very existence
of electronic quasiparticles that is questioned: The observed
anomalies would then originate from the strange nature of
the current carriers, that cannot be described as individual
quasiparticles in the usual sense. Examples of these scenar-
ios include the reported destruction of quasiparticles by
strong electron-electron interactions in correlated metals at
high temperatures [4–7], shifting the focus on the conse-
quences of interaction-induced randomness [8], or more
radical model descriptions where the quasiparticle concept
is abandoned from the outset [9,10]. While we find this
distinction useful, in principle, it should be stressed that in
actual materials these two phenomena often occur together,
with the emergent soft bosons also leading to the destruction
of quasiparticles [11].
In this Letter, we explore a third route, where neither the

scatterers nor the carriers are anomalous; what is anoma-
lous instead is the nature of the scattering process itself, that

will eventually lead to unusual charge transport. What we
propose here is that, whenever there is dynamical random-
ness in the problem, it might become relevant to consider
the effects of such randomness in full, including the
quantum localization phenomena that are traditionally
associated with disordered systems.
The idea that quantum localization processes can lead

to anomalous charge transport at room temperature was
initiated in recent years in order to explain the puzzling
properties of crystalline organic semiconductors [12–14].
There, just like in bad metals, the apparent time separating
two subsequent collision events is too short to be compat-
ible with semiclassical charge transport. The origin of the
anomaly and the solution to the puzzle are now understood
as follows: In molecular crystals, the intermolecular vibra-
tions are extremely soft for structural reasons, and they are,
therefore, easily thermally populated; when these incoher-
ent vibrations couple to the electronic motion, they result
in strong randomness that is able to localize the electrons
à la Anderson, albeit only on relatively short timescales.
Electronic transport is then characterized by subsequent
localization and delocalization processes [15–17] that
eventually lead to reduced diffusion, i.e., bad conduction.
This phenomenon comes with an associated fingerprint:
The electronic optical response exhibits a distinctive
displaced Drude peak, providing direct evidence for
localization.
Given the amount of existing knowledge on electron-

phonon interactions, it came as a surprise that a previously
unreported regime of electron-boson scattering could be
uncovered. Even more puzzling, the latter has been
shown to appear already for weak interactions, yet it had
eluded even the most refined semiclassical treatments
available [18], revealing the need to fully account for
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the quantum nature of the electronic carriers and the
interference processes associated with it.
The phenomenon described above, now known as

transient localization, was originally found through direct
time-dependent solution methods that treated the dynamic
disorder classically [12]. The nature of the observed
localization was then understood analytically, through a
relaxation time approximation [13,14,19] building on the
observation that slow dynamic scatterers should behave
increasingly close to static disorder as their characteristic
frequency scale approaches zero. More refined quantum-
classical approaches have successfully been applied since,
providing detailed, material-oriented predictions [20–24].
Yet, all these methods have major drawbacks stemming
from the classical treatment of the bosons, and they could
not provide a conclusive solution to the problem. Whether
and how this phenomenon can be sustained when the
quantum nature of the bosons is restored has, therefore,
remained an open question: According to the common
wisdom, quantum bosons should either bind to the charge
carriers or scatter them inelastically [25], not localize them.
Hinting at the existence of transient localization beyond

the classical boson limit, signatures compatible with it have
been found in fully quantum numerical studies [22,26–30].
It is the purpose of the present work to demonstrate this
phenomenon in an unbiased and systematic way—here, by
solving exactly a paradigmatic one-dimensional model—
showing how localization processes develop from electron-
boson interactions through the emergence of a displaced
Drude peak and a consequent suppression of the carrier
diffusion.
Model and method.—We consider the Holstein model:

H ¼ −t
X

hiji
c†i cj þ ω0

X

i

�
a†i ai þ

1

2

�
þ g

X

i

c†i ci
�
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describing the local interaction of tight-binding electrons,
ci and c†i at site i, with quantum bosons, ai and a†i , of
characteristic frequency ω0. We define the dimensionless
coupling strength λ ¼ g2=ð2tω0Þ and set ℏ ¼ 1. In the
original electron-phonon problem, the latter represent local
atomic or molecular vibrations; more generally, Eq. (1) can
effectively describe the interaction with collective or critical
modes emerging from electron-electron interactions.
Because we aim at providing an unbiased proof of principle
on the existence of localization by quantum bosons, we opt
for an exact numerical solution of the model. This choice
brings stringent limitations on the attainable system sizes,
due to the known exponential growth of the Hilbert space
(see below); for this reason, we restrict our study to one
space dimension, where the attainable linear sizes are
maximal and localization effects are quantitatively strong-
est. Beyond this practical choice, our conclusions regarding

the transient localization phenomenon per se will be
unaffected in higher dimensions. For similar reasons, since
the localization mechanism of interest here is active already
at the single-electron level, we study the scattering problem
defined by Eq. (1) for an individual electron, setting aside
the explicit many-body renormalization (softening) of the
bosons by the electronic polarization, that has been studied
elsewhere [19,31], as well as the associated damping.
We solve the model Eq. (1) using the finite-temperature

Lanczos method (FTLM) [32,33] on finite-size chains
of length Ns, truncating the infinite Hilbert space of the
bosons to a total maximum number Nbos of quanta on the
chain (details in Supplemental Material [34]). This method
provides a formally exact high-temperature expansion for
both the thermodynamic quantities and dynamic correlation
functions down to temperatures of the order of a fraction of
t. Working at nonzero temperatures drastically reduces
finite-size effects as compared with T ¼ 0 exact diagonal-
ization [33]. These are further minimized by averaging
over Nϕ twisted boundary conditions (TBCs) [35,36],
increasing the effective number of allowed momenta from
the nominal value Ns to Ns × Nϕ. TBC sampling permits
us to obtain reliable results down to the weak-coupling
regime, where the discrete nature of the noninteracting
spectrum on small clusters is most critical. We use Ns ¼ 4,
5, 6 and Nϕ ¼ 40, sufficient for convergence in the
temperature range of interest.
Dynamical disorder and displaced Drude peak.—

Figure 1(a) shows the regular (ω > 0) part of the optical
conductivity per particle calculated at different temper-
atures in the slow-boson (adiabatic) regime, ω0=t ¼ 0.3, for
a moderate coupling strength λ¼0.3 (see Supplemental
Material [34] for details). At low temperature, T ¼
0.15t < ω0, the optical absorption recovers the expected
weak-coupling picture [37]: The spectrum is constituted of a
main absorption peak at ω ¼ ω0 corresponding to single-
boson emission, followed by weaker shakeoff replicas at
multiples of ω0. Upon increasing the temperature, however,
the finite-frequency absorption peak is not washed out
as predicted by semiclassical approaches [37]. Quite on
the contrary, the peak at ω0 shifts to higher frequencies,
progressively evolving into a broader shape (see also
Ref. [27]). As we show next, this indicates that the nature
of the electron-boson scattering smoothly evolves from
independent, one-boson emission events to a fundamentally
different regime where dynamical disorder from abundant
thermally excited bosons creates the conditions for locali-
zation in the Anderson sense. This should not be confused
with the usual absorption peak resulting from polaron
formation in the strong electron-boson coupling regime,
where charge transport is instead dominated by boson-
assisted hopping [25] (see Supplemental Material [34]).
To verify this hypothesis, we rewrite the harmonic

Hamiltonian in first quantization as ω0ða†i ai þ 1=2Þ ¼
P2
i =2M þMω2

0X
2
i =2 and explicitly neglect the dynamic
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part, formally taking the static boson limitM → ∞,ω0 → 0

with Mω2
0 ¼ const [19]. The interaction part then becomesP

iðg0XiÞc†i ci, resulting in a one-body problem with dis-
ordered site energies ϵi ¼ g0Xi [the latter obey a Gaussian
distribution of variance Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λω0= tanh ðω0=2TÞ
p

, which
follows directly from the properties of the harmonic
oscillator]. The corresponding optical conductivity is
reported as a gray dashed line in Fig. 1(a) for T=t ¼ 2:
It shows a disorder-induced localization peak at a frequency
ωL ≃ 2t=L2 [13,14,19], corresponding to the typical level
spacing in a localization well of size L.
A more stringent comparison with the static boson result

is provided in Figs. 1(b) and 1(c) for moderate (λ ¼ 0.3)
and strong (λ ¼ 1.0) electron-boson interactions. In both
cases, the shape and position of the finite-frequency peak
obtained in the fully quantum FTLM treatment coincide
with the result of the static disorder problem at all
frequencies ω≳ ω0, i.e., whenever the electrons are driven

at a frequency that is faster than the bosons. The compelling
agreement observed on the localization-induced peak
demonstrates that thermally populated bosons are able to
localize the electronic wave function even though there is
no explicit random term in Eq. (1). The fact that the
conductivity is instead not completely suppressed when
ω < ω0 indicates that the quantum interference processes at
play here are only transient, being eventually destroyed at
times longer than ω−1

0 . A detailed discussion of the dc limit
ω → 0 is provided in the second part of this Letter.
Conditions for transient localization and one-parameter

scaling.—Localization originates from quantum interfer-
ence effects not contained in semiclassical descriptions of
electron transport. Remarkably, the failure in capturing this
phenomenon does not spare even modern sophisticated
treatments such as dynamical mean field theory (DMFT)
or other large-N-based approaches [8] that rely on self-
averaging assumptions and, therefore, disregard nonlocal
interferences by construction; in diagrammatic terms,
current vertex corrections are ignored [5]. This is illustrated
in Figs. 1(b) and 1(c), where alongside the FTLM and static
boson results we report the optical spectra calculated within
single-site DMFT [18], showing no sign of a displaced
Drude peak (DDP) as expected.
To analyze the phenomenon further, we report in

Fig. 2(a) the evolution of the peak frequency with

(a) (b)

(c) (d)

FIG. 2. Peak position (a) as a function of T and (b) as a function
of dynamical disorder Δ, for ω0 ¼ 0.3 and different values of λ.
Dotted lines indicate multiples of ω0. The dashed line is the result
from the static boson limit for λ ¼ 0.3. (c) Spectra at λ ¼ 0.3,
T=t ¼ 0.5, and different ω0, with δ ¼ 0.15ω0. The low-frequency
part becomes inaccessible at large ω0; see Supplemental Material
[34]. (d) Peak position vs ω0 at different T; the dashed line is
ωpeak ¼ ω0. The inset shows the temperature range of existence
of the DDP as extracted from the data in the main panel.

(a)

(b) (c)

FIG. 1. (a) Regular part of the optical conductivity per particle
for λ ¼ 0.3, ω0=t ¼ 0.3 calculated at different temperatures,
expressed in units of e2a2=ℏ, with a the lattice spacing (values
σ=n < 2 imply apparent scattering times shorter than the hopping
time t−1 [14]). The cluster parameters are Ns ¼ 4,Nbos ¼ 70, and
Nϕ ¼ 40. The dashed line is the result from the static boson
approximation at T=t ¼ 2 (a Gaussian filter of width δ ¼ 0.045t
has been applied to all curves). The observed range of peak
frequencies ωL=t ¼ 0.4–2 corresponds to localization lengths
L ¼ 1–2.2, consistently smaller than the system size. (b) Enlarge-
ment of the FTLM data at T=t ¼ 1.0 compared with the DMFT
result and the static boson approximation. (c) Similar to (b), at
λ ¼ 1.0. In (b) and (c), the filter is δ ¼ 0.08t.
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temperature at different values of the electron-boson
coupling strength. In all cases, the peak frequency
increases monotonically with T, and it also shows an
overall increase with λ at fixed T. This behavior can be
collapsed onto a single curve when expressed as a function
of the variance Δ of the dynamical bosonic disorder,
which is illustrated in Fig. 2(b). The superimposed steps
observed at multiples of ω0 originate from the multiboson
fine structure seen in Fig. 1(a).
Implicit in the arguments given in the preceding para-

graphs, two conditions must be met for the emergence
of a localization-induced DDP. (i) The bosons must be
largely—and incoherently—populated, which requires that
T is larger than the Debye temperature of the bosons. For
weak interactions, this translates into kBT ≳ ℏω0, but the
DDP can, in principle, be sustained down to lower temper-
atures if the boson frequency is itself renormalized by
interactions, which is known to happen when interactions
are strong [19]. (ii) The dynamics of boson-induced
disorder, governed by the timescale ω−1

0 , must be slower
than the characteristic time of localization, ω−1

L , i.e.,
ωL > ω0: Only in this case can the localization processes
build up in the disordered environment created by the
bosons, that the electrons will see as quasistatic.
To illustrate these conditions, Fig. 2(c) shows the

evolution of the optical absorption upon varying ω0 at a
fixed temperature T ¼ 0.5t. For ω0 < T, the spectrum
displays a disorder-induced DDP, here located at
ωL ≃ 0.8t (the same data as in Fig. 1). Upon increasing
ω0 (reducing T=ω0), the DDP initially softens as boson
coherence builds up, effectively reducing the amount of
thermal disorder. As soon as ωL hits ω0, the peak bounces
back and hardens again, following ωpeak ¼ ω0: The dis-
order-induced DDP has disappeared in favor of a more
conventional single-boson peak. The same evolution is
actually observed at all temperatures, starting from different
initial values of ωL in the limit ω0 → 0 [Fig. 2(d)].
Suppression of the conductivity and validation of the

transient localization formula.—We finally come to the key
point concerning charge transport: The suppression of
low-frequency spectral weight that accompanies the for-
mation of the displaced Drude peak extends down to
ω ¼ 0, causing a suppression of the electrical conductivity
(an increase in resistivity) as compared to semiclassical
estimates. This is illustrated in Fig. 3, showing the
temperature dependence of the resistivity at ω0=t ¼ 0.3
for λ ¼ 0.3 (a) and λ ¼ 1.0 (b). Each data point has been
obtained by extrapolating to the Nbos → ∞ limit for fixed
cluster size and then checking that the result is indepen-
dent on Ns (cf. Supplemental Material [34]), being,
therefore, representative of the thermodynamic limit.
The calculated resistivity is systematically larger than
the DMFT result, due to quantum localization corrections.
Figure 3(a) reveals an approximately T-linear resistivity

in the moderate electron-boson coupling regime (dashed

line). The log-scale plots in Figs. 3(c) and 3(d) provide
more precise estimates of the power-law dependence of the
conductivity. Comparison with DMFT shows that locali-
zation corrections amount to a mostly T-independent
suppression factor, only weakly affecting the power-law
exponent.
We now show how the reduction of the conductivity

depends on the bosonic scale ω0. Charge diffusion is
completely suppressed when ω0 ¼ 0 (full Anderson locali-
zation), while in the opposite limit localization effects are
destroyed when ω0 > ðT;ωLÞ, as discussed already. The
conductivity in the available range of ω0, reported in
Figs. 3(e) and 3(f), is compatible with interpolating
between full localization and the semiclassical DMFT
result. The suppression factor introduced by localization

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a),(b) Temperature dependence of the resistivity per
particle, calculated by extrapolating the FTLM data to Nbos ¼ ∞
at Ns ¼ 4 for ω0=t ¼ 0.3, λ ¼ 0.3 (a), and λ ¼ 1.0
(b) (δ ¼ 0.08t). The shaded area represents the increase in
resistivity caused by quantum localization processes. (c),(d)
Conductivity per particle, plotted in log scale to highlight the
power-law dependence at high T (labels). (e),(f) Dependence of
the conductivity on the bosonic scale ω0 at T ¼ 2 (e) for λ ¼ 0.3
and (f) for λ ¼ 1.0. The dashed line is the prediction of the
transient localization formula based on the observed DDP
position (see the text).
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is not only T independent, as shown in the preceding
paragraph, but also λ independent, being, therefore, pri-
marily governed by the ratio ω0=t.
Finally, the numerical data presented here quantitatively

validate the relaxation time approximation that was
originally introduced to describe charge transport in the
transient localization regime [13]. Following early ideas
by Gogolin and Thouless [15–17], it was argued that in
this regime the mobility μ ¼ σ=ne should follow μTL ¼
ðe=kBTÞL2=2τ0, with τ0 the typical timescale of the
bosonic fluctuations, instead of the usual Drude expression
μ ¼ eτ=m. By extracting the localization length L ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2t=ωL

p
from the position of the DDP, we find that the

TL formula is in excellent agreement with the numerical
results if we set τ−10 ¼ αω0 with α ¼ 1=2.2 as in Ref. [38].
Concluding remarks.—We conclude by highlighting two

concepts that could be of relevance in quantum materials
and that follow directly from the results presented in this
work. First, our findings unequivocally demonstrate that
localization effects can arise as a general consequence of
dynamical disorder. This was illustrated here in a para-
digmatic model for electron-boson interactions, yet the
potential implications of the phenomenon are broader:
Collective excitations resulting from many-body inter-
actions and critical modes near quantum phase transitions
are two examples of bosonic degrees of freedom that are
commonly found in quantum matter, that are intrinsically
soft and could, therefore, cause quantum localization
analogous to that described here. We advocate that any
emergent randomness in interacting electron systems [8]
should be taken at face value, especially in low dimensions,
without disregarding the quantum processes generally
associated with Anderson localization. The latter would
instead be entirely missed by self-averaging theories such
as dynamical mean field theory [5,18,37] and other large-N
treatments [8].
Second, it is often assumed that quantum localization

corrections are relevant only at very low temperatures,
while they can be ignored otherwise. Our results demon-
strate that the opposite is true whenever the randomness
causing localization originates from dynamical bosonic
fluctuations: In this case, the equipartition principle dictates
that random fluctuations will grow with temperature,
overcoming the dephasing effects driven by the temperature
itself. Theory shows that localization processes can develop
from electron-boson interactions rather than being washed
out by them. From an experimental standpoint, we hope
that our findings will stimulate a critical reassessment of the
widely observed displaced Drude peaks in a variety of
quantum materials [39–45].
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