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We report a theoretical description of novel spin-orbit torque components emerging in two-dimensional
Dirac materials with broken inversion symmetry. In contrast to usual metallic interfaces where fieldlike and
dampinglike torque components are competing, we find that an intrinsic dampinglike torque which derives
from all Fermi-sea electrons can be simultaneously enhanced along with the fieldlike component.
Additionally, hitherto overlooked torque components unique to Dirac materials emerge from the coupling
between spin and pseudospin angular momenta, leading to spin-pseudospin entanglement. These torques
are found to be resilient to disorder and could enhance the magnetic switching performance of nearby
magnets.
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Spin-orbit torque (SOT) nonvolatile magnetic memories
represent an emerging technology that leverages the intrin-
sic spin-orbit coupling (SOC) within metals to convert
charge current into a spin source, denoted as S, further
harnessed to manipulate a magnetic state [1,2]. When
oriented along unit vector m̂, this magnetic state is sub-
jected to a torque T proportional to m̂ × S driving its
magnetization dynamics and eventually achieving mag-
netization reversal [3]. This mechanism offers new pos-
sibilities regarding energy efficiency and miniaturization of
devices, surpassing traditional multiferromagnet setups [4].
SOT is typically decomposed into two main contribu-

tions: the fieldlike (FL) and dampinglike (DL) torques,
which respectively cause the magnetization to precess and
align along an effective SOC field [3,5,6]. Disentangling
these contributions and discerning their respective physical
origin has proven to be a long-standing challenge in the
field. In conventional metal-magnet interfaces they typi-
cally show competing origin, where the FL torque stems
from the Rashba-Edelstein effect enabled by the reduced
symmetries at the interface, while the DL torque arises from
the injection of angular momentum towards the ferromag-
net via the spin Hall effect [7,8]. This understanding was
called into question by the evidence of strong DL torques in
van der Waals heterostructures [9–13] and single-layer
devices [14–16], where the spin Hall contribution is sup-
pressed. Intrinsic Berry curvature effects were proposed to

originate said torque [14], while skew-scattering mecha-
nisms [17,18] were also proposed as an extrinsic source of
DL torque; however, the lack of microscopic information
concerning the interface quality does not facilitate a
convincing explanation.
The advent of low-dimensional quantum materials opens

new avenues for SOT physics. Proximity effects allow for
custom charge-to-spin conversion and torque responses
[19,20]. Optimal conditions for the Rashba-Edelstein effect
were demonstrated for Dirac materials, such as topological
surface states [21] and graphene-transition metal dichalco-
genide (TMD) bilayers [19,20,22], which can be exploited
for SOT applications by proximity effects [18,23–25].
Furthermore, precise control over the system’s symmetries
enables novel torque responses [26–29] leading to the long-
sought-after field-free magnetization switching [30–33].
In this Letter, we develop a general theory for SOT

mechanisms in 2D materials, elucidating their microscopic
origin rooted in semiclassical or quantum phenomena. To
this purpose we combine symmetry analysis, semiclassical
modeling, and quantum simulations in realistic electronic
models. We first employ group theory to determine the
minimal set of torques common to all 2D systems. We then
use Boltzmann transport theory to describe the microscopic
origin of the emerging torques, and quantify the SOT
response using Kubo simulations. We reveal that a DL
torque in 2D systems originates from the acceleration of the
carriers under spin-momentum locking, and manifests
throughout the entire Fermi sea. Furthermore, we find that
Dirac materials present hitherto overlooked torque contri-
butions enabled by quantum correlations between spin and
pseudospin, which can induce nontrivial magnetization
dynamics.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 132, 266301 (2024)

0031-9007=24=132(26)=266301(7) 266301-1 Published by the American Physical Society

https://orcid.org/0000-0002-9292-8505
https://orcid.org/0000-0002-5752-4759
https://orcid.org/0000-0003-0323-4665
https://ror.org/00k1qja49
https://ror.org/052g8jq94
https://ror.org/0371hy230
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.266301&domain=pdf&date_stamp=2024-06-25
https://doi.org/10.1103/PhysRevLett.132.266301
https://doi.org/10.1103/PhysRevLett.132.266301
https://doi.org/10.1103/PhysRevLett.132.266301
https://doi.org/10.1103/PhysRevLett.132.266301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Beyond fieldlike torque in 2D.—We begin by identifying
which torque components are allowed by symmetries,
beyond the standard FL contribution. We examine non-
magnetic point group C∞v, which represents the highest
symmetry group that supports Rashba SOC, exhibiting in-
plane axial symmetry and an infinite set of mirror planes
perpendicular to the 2D plane, while lacking mirror
symmetry parallel to it. Notably, C∞v encompasses the
minimal set of potential torques in 2D systems, as any
additional torque can only be enabled by reducing the
symmetry group. To determine the minimal set of torques,
the nonequilibrium spin density is expressed as a function
of the magnetization direction m̂ characterized by a polar
angle θ, and an azimuthal angle φ relative to the applied
electric field E [see Fig. 1(a), inset]. We retain only the
components compatible with the system’s symmetries and
expand them up to second order in terms of their angular
dependence [3,34]. This procedure enables us to separate
the nonequilibrium spin density in two contributions,
S ¼ SI þ SII, with

SI ¼ χFLð1 − ξFLsin2θÞHSOC − χDLm̂ ×HSOC; ð1Þ

corresponding to the standard FL and DL terms, causing
the magnetization to precess and align along the effective
SOC field HSOC ≡ ẑ × E. The adimensional parameter ξFL
represents a second order term that modulates the mag-
netization precession as it approaches the plane. The
second contribution reads

SII ¼ −Eðχk cosφþ χ⊥ cos θ sinφÞ sin θẑ; ð2Þ

where χk generates an anisotropic damping of the in-plane
magnetization with respect to the out-of-plane component,
while χ⊥ competes with the aforementioned stabilization
along HSOC, favoring an alignment parallel or antiparallel

to the current depending on the direction of mz. These
torques could be ascertained by observing nontrivial
angular dependence in magnetoresistive experiments.
Note that this procedure does not constitute a perturba-

tive expansion. Therefore, these torques, as well as those of
higher order, can contribute on equal footing, and their
existence and strength will depend on the underlying
symmetries and competing fields. To discern their rel-
evance we develop a dual approach. Using the Kubo
quantum transport framework, we first determine the
nonequilibrium spin density at Fermi level εF using the
Kubo-Bastin formula [35,36],

SðεFÞ ¼ −2ℏ
Z

dεfðεÞImTr½δðε − ĤÞŝ∂εGþðĵ · EÞ�; ð3Þ

where Ĥ, ŝ, and ĵ are the Hamiltonian, spin, and current
density operators, respectively, f is the Fermi-Dirac dis-
tribution, and Gþ ¼ limη→0½Ĥ − εþ iη�−1 is the retarded
Green’s function. Moreover, we distinguish Fermi-sea and
Fermi-surface contributions adopting the decomposition
proposed in Ref. [37]. We numerically compute Eq. (3)
employing a kernel polynomial method (KPM) expansion
which includes the choice of a finite energy broadening η
[38]. We simulate disordered systems via real-space linear
scaling numerical methods, reaching a precision of η ∼
15meV in a system with > 106 orbitals [39–41]. For
pristine systems, we develop a k-space KPM calculation
of Eq. (3), reaching η ∼ 2 meV precision in systems as
large as > 109 orbitals [41]. To compute S as a function of
the magnetization, we select an optimal set of magnetiza-
tion configurations, each requiring a separate Kubo calcu-
lation, resulting in 14 magnetization configurations for
each system [41].
Simultaneously, we develop a semiclassical approach

based on Boltzmann transport theory to understand the
underlying microscopic mechanisms of these torques [43].
Within this theory, the nonequilibrium spin density is

SðεFÞ ¼
X
μ

Z
d2k
ð2πÞ2 ½δfμ;ksμ;k þ fðEμ;kÞδsμ;k�; ð4Þ

with Eμ;k and jEμ;ki the eigenvalue and eigenstate, respec-
tively, of an electron with crystal momentum k and band
index μ, and sμ;k ≡ hEμ;kjŝjEμ;ki the mean value of the spin
operator ŝ, commonly referred to as the spin texture. The
first term in Eq. (4) represents the standard Boltzmann
transport contribution stemming from the current-induced
variation of the carrier occupation δfμ;k. The origin of the
FL torque has been extensively studied and arises from the
current-induced drift of the Fermi surface, which combined
with the helical spin texture of Rashba systems produces an
in-plane spin density perpendicular to the current [44,45],
as illustrated in Fig. 1(b).

(a)
(b)

(c)

FIG. 1. Physical origin of the FL and DL torques. (a) Spin
texture of a 2DEG with Rashba SOC and out-of-plane magneti-
zation (θ ¼ 0). Inset: scheme of the magnetization orientation.
When applying an electric field E: (b) the Fermi surface drifts
overpopulating states with k · E > 0, generating a nonequilibrium
spin density along HSOC ¼ ẑ × E. (c) The acceleration of the
carriers generates a forcing ∼ðd=dtÞBk (gray). Interaction be-
tween the equilibrium spins (blue) and the forcing originates a
current-induced spin texture (red), responsible for the DL torque.
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The second term in Eq. (4) remains less understood. It
originates from the adiabatic transport of Bloch states under
an electric field and serves as a quantum mechanical
correction to the semiclassical result [46]. We here develop
an intuitive interpretation of this aspect: as the carriers
accelerate in the momentum-dependent Rashba field, a
dynamic magnetic field emerges within their rest frame.
This field acts as a driving force that nudges the spin away
from its equilibrium, producing a current-induced spin
texture throughout the entire Fermi sea, as depicted in
Fig. 1(c).
To illustrate this point, let us consider a Bloch

Hamiltonian that incorporates a spinless component
H0;k, together with an effective magnetic field Bk, which
encapsulates both the exchange and SOC fields. The
Hamiltonian reads Ĥk ¼ H0;k − 1

2
Bk · ŝ (we take the gyro-

magnetic ratio equal to unity). In equilibrium, the spin
states align along Bk. When applying an electric field E, the
electrons accelerate according to ℏðdk=dtÞ ¼ −eE, with e
the elementary charge. The spin dynamics emerging from
this nonequilibrium state is described by the Ehrenfest
theorem, yielding ðd=dtÞsμ;k þ ℏ−1Bk × sμ;k ¼ 0. We de-
compose the spin texture into a component aligned with the
instantaneous effective field and a perturbation induced by
the current: sμ;k ¼ μB̂k þ δsμ;k, with μ ¼ � indicating the
spin majority or minority band respectively. Within the
linear response regime, the nonequilibrium spin texture
reads

δsμ;k ¼ −μ
eℏ
B3
k

Bk × ðE ·∇kÞBk: ð5Þ

This result reveals a crucial point: the interplay between the
equilibrium and dynamic magnetic fields results in a
current-induced shift of the spin texture. Notably, this
nonequilibrium spin texture component is the main con-
tributor to the DL torque observed in 2D magnetic Rashba
systems, revealing its semiclassical nature.
Semiclassical torque mechanisms in a 2D electron

gas.—To highlight our theory’s capabilities, we begin by
demonstrating the existence of a DL torque in an s-wave
2D electron gas (2DEG) with C∞v symmetry, generated by
the proposed semiclassical mechanism. The magnetization
is characterized by an exchange splitting Jex along the
magnetization direction m̂, while the Rashba SOC field is
helical with an isotropic amplitude ΛR;k. The Hamiltonian
is Ĥk ¼ H0;k − 1

2
ΛR;kφ̂ · ŝ − 1

2
Jexm̂ · ŝ, withH0;k the kinetic

term, and φ̂ ¼ ẑ × k̂. We determine the nonequilibrium spin
density employing Boltzmann transport assuming an iso-
tropic momentum relaxation time τ in the weak disorder
regime. A perturbative expansion in terms of the magneti-
zation direction is appropriate only if the effective magnetic
field is dominated either by the exchange or Rashba term.
We begin by defining the leading order effective magnetic

field, B0;k ¼ ðJ2ex þ Λ2
R;kÞ1=2, isotropic in momentum space.

For a dominant exchange splitting, which is usually the
experimental condition,B0 ≈ Jex is momentum independent,
while for a dominant Rashba splitting B0;k ≈ ΛR;k.
The conventional torques, represented in SI, show a

similar behavior in both regimes. The FL torque is essen-
tially determined by the spin helicity, sμ;k · φ̂ ≈ μΛR;k=B0;k.
It derives from the Fermi-surface contribution to Eq. (4), and
is proportional to the density of states and the electron
mobility following

χFL;μ ¼ μ
eτkμ
4πℏ

ΛR;kμ

B0;kμ

; ð6Þ

where χFL;μ is the FL torque response for bandμ, with μ ¼ �.
The electron mobility is contained within τ, and kμ is the
isotropic part of the Fermi momentum, which encodes the
density of states, defined such that εF ¼ H0;kμ − ðμ=2ÞB0;kμ .
The DL torque on the other hand, is determined by the

Fermi-sea integral of the current-induced spin texture δsμ;k.
δsμ;k emerges from the interaction between the equilibrium
spin texture, and the variation of the effective magnetic
field in the accelerating electron rest frame via spin-
momentum locking, as given by Eq. (5). Only the
Rashba field ΛR;kφ̂ contributes to the latter, yieldingR
dφðE ·∇kÞBk ¼ ðπ=kÞ∂kðkΛR;kÞHSOC, whose interaction

with the spin texture component parallel to the magneti-
zation m̂ generates the DL torque

χDL;μ ¼ μ
eJex
4π

Z
kμ

0

dk
∂kðkΛR;kÞ

B3
0;k

; ð7Þ

with χDL;μ the DL torque response for band μ. This
expression reveals that the DL torque is generated by
the interplay between spin-momentum locking and
exchange splitting throughout the entire Fermi sea. In
the particular case of a dominant exchange splitting the
effective field is momentum independent, and the DL
torque becomes χDL ¼ ðℏ=τJexÞχFL, thus offering a way
to determine the momentum relaxation time via the
χFL=χDL ratio. Additionally, the interaction between the
dynamic magnetic field and the equilibrium Rashba field
produces an out-of-plane current-induced spin density
inducing an unconventional torque χk, which is only
nonzero in the Rashba dominated regime [41].
We find that the second order torques vanish in parabolic

systems, χ⊥ ¼ ξFL ¼ 0. In the exchange dominated regime,
the spin texture presents a dominant component aligned
with m̂, while Rashba SOC introduces a helical component
as well as an anisotropic modulation to the dominating one.
Hence, the drift of the Fermi surface, in addition to the FL
torque, also yields a nonequilibrium spin density parallel to
the magnetization, which stems from the spin texture
component parallel to m̂ and cannot exert any torque,
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but could be relevant in multiferromagnet configurations,
as emerging in the anomalous spin Hall effect
[41,47–51]. Finally, we demonstrate that our theory fully
matches quantum simulations for the description of DL
torque in an s-wave 2DEG [41].
Unconventional torques in Dirac matter.—We now use

our theory to reveal unconventional torques in Dirac
systems enabled by quantum correlations between the spin
and the additional angular momentum degree of freedom
providedby thepseudospin.Weconsider aDiracHamiltonian
of non-magnetic point group symmetry C∞v doted
with exchange splitting, given by Ĥk ¼ ℏvk · σ̂ þ Δσz−
1
2
λRðŝ × σ̂Þ · ẑ − 1

2
Jexm̂ · ŝ, with v the velocity of massless

Dirac electrons, Δ their effective mass, and λR the Rashba
SOC parameter, while the pseudospin is represented by Pauli
vector σ̂. Such a system may be realized by an insulating
ferromagnet-graphene-TMD trilayer [18], where proximity
effects induce SOC and exchange splitting [52–54]. Rashba
splitting in graphene-TMD interfaces is typically of order
∼1 meV [55–58], while proximity with a ferromagnet can
reach exchange splittings as large as ∼100 meV [59,60]. We
thus focus on the regime with a dominant exchange splitting.
Spin-momentum locking in Dirac electrons is mediated

by the pseudospin. The 2DEG paradigm may be recovered
in absence of spin-pseudospin correlations, i.e., hσisji ¼
hσiihsji, allowing us to define an effective Rashba field for
each pseudospin polarized set of bands. This is the case far
from band crossings, where Rashba SOC perturbatively
imprints a helical component to the spin texture. Drastically
different is the situation near band crossings, where Rashba
SOC acts nonperturbatively by hybridizing bands of oppo-
site pseudospin polarizations, while also inducing non-
negligible spin-pseudospin correlations. These two regimes
must be analyzed separately.

In the former regime, the pair of bands with opposite
pseudospin polarization, or equivalently, opposite veloc-
ities, are decoupled. We thus recover the 2DEG paradigm
by adequately adjusting for the corresponding kinetic
Hamiltonian and Rashba field, allowing us to understand
the FL and DL torques from simple band structure proper-
ties, shown in Fig. 2(a): At energies larger than the
magnetic splitting the spectrum presents two Fermi con-
tours with positive velocity which compete due to their
opposite helicities. Such competition is energy independent
due to the linear dispersion. For energies lower than the
magnetic splitting, the two Fermi contours present the same
helicity, but with opposite velocity. The inner Fermi
contour vanishes when approaching the spin-split Dirac
point, where Δ opens a semigap. Within the semigapped
energy window a single spin-helical band remains, repre-
senting an optimal condition for maximizing the SOT
efficiency. The semiclassical results are in very good
agreement with Kubo calculations, as shown in Fig. 2(b).
Additionally, we recover the previously obtained relation
for the momentum relaxation time and the torque
ratio, τ ¼ ðℏ=JexÞχFL=χDL.
Near the band inversion at charge neutrality the hybridi-

zation between bands of opposite velocity breaks the 2DEG
paradigm. To elucidate the torques in this regime, the full
quantum response provided by the Kubo-Bastin formula is
required. The results are shown in the left inset of Fig. 2(b),
where strong unconventional torques are seen near the
Rashba gap, vanishing in the 2DEG case. The origin of
these torques is twofold. Despite the dominant exchange
splitting, Rashba SOC acts nonperturbatively and induces
strong anisotropies in the dispersion. Furthermore, non-
negligible spin-pseudospin correlations quench the spin

(a) (b)

FIG. 2. SOT in Dirac matter. (a) Band structure of Dirac system with Rashba SOC and exchange splitting [θ ¼ 0]. (b) The
conventional SOTs, χFL and χDL, are driven by semiclassical effects, evinced by the agreement between semiclassical (dotted curves)
and Kubo-Bastin (solid curves) frameworks. The insets show torque responses, computed by the Kubo framework, which are not
captured by semiclassical effects. Left inset: all unconventional torques show a strong enhancement near the band inversion at charge
neutrality. Right inset: χDL and χk shift from semiclassical to quantum-driven mechanisms at the Dirac point, as the semigap is
dominated by the effective mass (Δ ≠ 0, solid curves) or Rashba SOC (Δ ¼ 0, dashed curves), respectively. (v ∼ 106 m=s, λR ¼ 8 meV,
Jex ¼ 60 meV, Δ ¼ 8 meV, η ¼ 2 meV at the band center and τ ¼ ℏ=η, except if indicated otherwise.).
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texture [61–63] and modify the coupled spin-pseudospin
dynamics [41]. These two features are only possible due to
the additional pseudospin degree of freedom.
At the Dirac point, the SOT physics may shift from

semiclassical to quantum driven effects. While the effective
mass Δ acts separately on each spin-split Dirac cone,
Rashba SOC couples them favoring spin-pseudospin entan-
glement [61,62]. At the spin-split Dirac point the spectrum
is semigapped, thus transport should be dominated by the
band of the opposite cone, whose physics is mainly
determined by the kinetic term of the Hamiltonian, insen-
sitive to Δ. This is indeed the case for massive Dirac
electrons, as shown in Fig. 2(b), right inset (solid curves),
where jχDLj increases across the semigap while χk remains
negligible. However, the torques change dramatically for
massless electrons, as jχDLj is minimal and jχkj peaks
within the semigap, shown in Fig. 2(b), right inset (dashed
curves). This qualitative change is generated due to spin-
pseudospin entanglement dominating the gap, indicating a
large torque originated from a vanishing Fermi contour.
Finally, we compute the Kubo-Bastin response consid-

ering real-space Anderson disorder of strength W [39–41].
Real-space simulations heavily increase the computational
cost, which results in a coarser energy broadening with
respect to previous calculations. The results are shown in
Fig. 3, focusing on the FL and DL torques. ForW as high as
2.7 eV, the χFL and χDL peaks are only reduced to 68% and
79% of their respective pristine values. Dictated by a Fermi-
sea contribution, χDL shows a better resilience than χFL.
In conclusion, we developed a general theory for SOT in

2D materials, elucidating the nature of the subjacent
physical mechanisms. Novel torque components were
found to emerge and superimpose, where quantum spin-
pseudospin correlations in Dirac electrons yield nontrivial
SOT phenomena. This conclusion is expected to be general
to systems where spin-momentum locking is mediated by
additional degrees of freedom, as can also occur with
orbital angular momentum [64]. Our findings provide
guidelines for enhancing the torque capability of low-
dimensional systems, allowing further exploration of
energy-efficient memory technologies.
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