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The energy partition in high Mach number collisionless shock waves is central to a wide range of high-
energy astrophysical environments. We present a new theoretical model for electron heating that accounts
for the energy exchange between electrons and ions at the shock. The fundamental mechanism relies on the
difference in inertia between electrons and ions, resulting in differential scattering of the particles off a
decelerating magnetically dominated microturbulence across the shock transition. We show that the self-
consistent interplay between the resulting ambipolar-type electric field and diffusive transport of electrons
leads to efficient heating in the magnetic field produced by the Weibel instability in the high Mach number
regime and is consistent with fully kinetic simulations.
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High Mach number collisionless shocks shape the
electromagnetic signatures of many astrophysical environ-
ments. From parsec-scale young supernova remnants to
megaparsec-scale virial rings of galaxy clusters, the emis-
sion relies on the efficient acceleration of electrons and ions
to highly relativistic speeds at the interface between a
supersonic flow and a weakly magnetized plasma. The
injection of electrons into acceleration processes [1–6] and
the interpretation of observations [7–9] directly depend on
the electron heating efficiency and properties. The mech-
anisms that underpin the energy transfer and the temper-
ature ratio between electrons and ions thus constitute one of
the most fundamental open questions in our understanding
of these blast waves.
Left as a free parameter from the Rankine-Hugoniot jump

conditions, the electron-to-ion temperature ratio is inferred
via various observational probes [10,11], from radio and
x-ray synchrotron emissions within young supernova rem-
nant shocks (MA ≳ 102) [12] to in situ measurements at
Earth’s bow shock (MA ≲ 10) [13]. The latter allowed for
direct characterization of the shock dynamics with essential
results on the structure gleaned from the Magnetospheric
Multiscale (MMS) spacecraft [14], but the direct charac-
terization of the temperature ratio for MA ≳ 102 remains
elusive. In parallel, rapid developments in high-power
lasers, such as at OMEGA and the National Ignition
Facility, are opening valuable opportunities to investigate
high Mach number collisionless shocks in controlled labo-
ratory experiments for direct measurement of particle
energization processes [15–18].

These observational and experimental studies are sup-
ported by significant joint numerical efforts to self-consis-
tently model the shock dynamics through multidimensional
kinetic simulations, providing a detailed characterization of
the plasma processes at play over limited timescales. These
simulations cover various regimes of magnetosonic Mach
numbers [19–29]. Despite all these substantial efforts,
identifying and modeling the dominant source of electron
heating in highmagnetosonicMach number shocks remains
a critical challenge.
In this Letter, we present a model for electron transport

and heating in self-generated microturbulence that can
accurately capture the electron-ion temperature ratio
observed in fully kinetic simulations of high Mach number
shocks. The generality of the approach presented here opens
new avenues for modeling energy partition in systems
governed by magnetically dominated turbulence.
We start by analyzing the typical structure of high Mach

number collisionless shocks from the results of large-
scale fully kinetic plasma simulations, which can self-
consistently capture the dynamics of shock formation and
particle heating. We have performed a series of 2D particle-
in-cell (PIC) simulations with the relativistic electromag-
netic code TRISTAN-MP [30]. We initialize an electron-ion
plasma at rest and set the left reflecting and conducting wall
of our simulation box in motion along þx̂. The interaction
between the reflected beam and the stationary plasma
results in the formation of a shock. Our simulations are
performed in the upstream frame. All quantities are
then transformed and presented in the shock-front frame.
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Amoving injector gradually recedes from the left wall at the
speed of light. Space and time coordinates are normalized to
the ion plasma skin depth c=ωpi and frequency ωpi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn∞e2=mi

p
, with n∞ the proper upstream density. We

adopt a resolution of 10 cells per electron skin depth, Δx ¼
Δy ¼ 0.1c=ωpe, and the time step is cΔt ¼ 0.45Δx. We use
32 particles per cell (ppc) and filter the current 32 times per
time step [30] in each direction. We tested convergence
varying ppc ¼ ½32; 128�, ðωpe=cÞΔx ¼ ½0.05; 0.1�, and
ju∞j ¼ ½0.075; 0.2�c, where u∞ is the far upstream velocity
in the shock-front frame (see Supplemental Material [31]).
As a reference for the following discussion, we

consider a nonrelativistic shock in the limit of very high
Alfvén Mach number, i.e., initially unmagnetized, with
u∞ ¼ −0.075c, mi=me ¼ 49, and upstream ion temper-
ature kBTi;∞ ¼ 1.91 × 10−6mic2. The results of the simu-
lation are illustrated in Fig. 1, where we look closely at the
shock structure and precursor region. We observe that the
interaction between the shock-reflected hot beam of ions
propagating at positive velocity and the incoming upstream

plasma drives a microturbulence via the Weibel, or current-
filamentation, instability [34,35] [Fig. 1(a)] and leads to
efficient electron heating [Figs. 1(f) and 1(g)] to an electron-
to-ion temperature ratio of Te=T i ∼ 0.3. Qualitatively, our
model captures the deceleration of the turbulence across the
shock and the associated charge separation between species
of different inertia. Electrons accelerate in the coherent
electrostatic field that ensues and isotropize over their short
scattering timescale through fast decoherence of the betatron
motion. This diffusive process leads to efficient energy
channeling between electrons and ions.
The microturbulence is magnetically dominated, so the

scalar E2 − B2 < 0 everywhere in the shock precursor and
downstream. This means one can always find a frame Rw
in which the electric field component vanishes locally. This
frame drifts at a velocity uw in the shock-front frame. For
statistically homogeneous turbulence transverse to the
shock normal, the instantaneous velocity of this frame
uw is a function of the longitudinal x coordinate only. The
scattering center frame Rw extracted from the fully hydro-
dynamic limit [36] shows good agreement of the average
proper motion of nonlinear structures, close to the electron
drift velocity [Fig. 1(g)]. Ions from the backstreaming beam
can be differentiated from the background—i.e., incoming
upstream flow—via a threshold set at ju − u∞j2 ≲ u2thr ≃
1
2
u2∞ [Fig. 1(c)]. Across the shock transition, Rw does not

coincide with the drift velocity of the background ions
[Fig. 1(g)] and is, therefore, nonideal. Motivated by these
observations, we explore a theoretical description of
electron transport and heating in high Mach number shocks
to model the fraction of incoming energy density 1

2
n∞miu2∞

imparted to the electron distribution.
The equation of motion for a single charged particle in a

noninertial frame reads ṗ ¼ p · δΩ̂t þ qE −mu̇w, where
the first term accounts for pitch-angle variation in Rw, the
second term accounts for acceleration by the longitudinal
electric field E, and the last term for the noninertial nature
of Rw. This approach offers a natural way to disentangle
the contribution of the motional and electrostatic electric
fields. If one defines p · δΩ̂t as a random force with the
stochastic variables encoded in the form of the rotation
matrix δΩ̂t and keeps a self-consistent E-field contribution,
the above equation of motion reduces to a semidynamical
model of transport in a Langevin equation [37].
At this stage, the electric field contribution and origin

are still unclear. Following the same arguments as in
[36,38,39], we assume that the variation timescale of the
turbulent structures is much larger than the typical scatter-
ing time of the electrons off these quasimagnetostatic
structures. Therefore, we neglect the contribution of the
inductive electric field from the linear growth of plasma
instabilities. We constrain the electric field to be electro-
static and build a reduced description for electron heating
along those lines. The broadband longitudinal and

FIG. 1. The characteristic structure of an unmagnetized elec-
tron-ion collisionless shock wave with u∞ ¼ −0.075, kBT∞ ¼
6.8 × 10−4 × 1

2
miu2∞ (M ≃ 40), and mass ratio mi=me ¼ 49, at

time ωpit ≈ 6.1 × 103. The turbulent magnetic field is shown in
(a), the x − ux phase-space profile is shown in (b) for the ions and
in (d) for the electrons. Insets (c) and (e) show the respective
momentum distribution corresponding to the shaded area of
panels (b) and (d). The circle in (c) differentiates the back-
streaming beam and background ions. The temperature profile,
shown in (f), shows the characteristic heating of the background
ions (solid blue line) and electrons (solid red line) up to the
downstream (shaded). For comparison, the total ion temperature
corresponds to the dot-dashed line. The velocity profile for each
species is shown in (g). The black line corresponds to the
numerical estimate of the turbulence frame.
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transverse spectra of Weibel modes excited in the shock
precursor, coupled with the nontrivial contributions of other
channels such as the definition of Rw and E, make the
statistical description of δΩ̂t challenging to compare with
fully kinetic simulations. The simplest nontrivial approxi-
mation assumes an isotropic Gaussian white noise process
where δΩ̂t is a linear combination of the generators of the
rotation group corresponding to pitch-angle scattering in
the turbulent magnetic field [40]. Based on these assump-
tions, we now aim at deriving a self-consistent relation for
the electrostatic coupling between electrons and ions.
In this limit, the stochastic differential equation of

motion is equivalent to a transport equation for the particle
distribution fs for the species s. In the shock-front frame,
where the system is assumed stationary, the transport
equation reads:

ðmuw þ pxÞ∂xfs −m∂xuwðmuw þ pxÞ∂pxfs

þmqEx∂pxfs ¼
m
2
∂μ½νsð1 − μ2Þ�∂μfs; ð1Þ

where the right-hand side is the operator for elastic
scattering in Rw in 3D with μ ¼ cos θ the pitch-angle
cosine and νs is the scattering frequency [41]. For a two-
dimensional distribution, the operator reduces to ∂θν∂θfs.
In the nonrelativistic regime, the Larmor radius of electrons
remains small compared to the size of the scattering
centers. The scattering center frame Rw and the electron
bulk velocity are, therefore, drifting at similar speeds
[Fig. 1(g)]. In this diffusive limit, the distribution function
can be expanded in Legendre polynomials fsðp; μÞ ¼
fð0Þs ðpÞ þ μfð1Þs ðpÞ. Averaging Eq. (1) over the first two
Legendre polynomials and assuming a dominant contribu-
tion from the electric field, we obtain a kinetic closure

fð1Þe ≃−ð1=νeÞ½qeEx∂pfð0Þþðp=meÞ∂xfð0Þ� for the Fokker-
Planck equation accounting for momentum diffusion in the
electrostatic fields [31]:

uw∂xfð0Þ −
p
3
∂xuw∂pfð0Þ ¼

1

3p2
∂pp2

e2E2
x

νe
∂pfð0Þ: ð2Þ

The right-hand side only accounts for the dominant term
responsible for the bulk heating of the electrons. This term
predicts heating proportional to the diffusion coefficient
Dpp ∼ 1

3
e2E2

x=νe [42].
Based on this picture, the development of a coherent

electric field across the shock transition leads to electron
stochastic heating. However, the origin of this electric field
is not explicit. With a rate proportional to the square of the
field amplitude, the heating mechanism we describe is
similar to Joule heating from ambipolar diffusion. The
decelerating scattering centers effectively act as a neutral
species on which electrons and ions elastically scatter at
different rates. An ambipolar electric field ensues from the

larger effective frictional drag of the decelerating micro-
turbulence on the electrons relative to the ions, leading to
efficient diffusive heating of the electrons in a Joule
process.
To capture the ambipolar nature of electron heating and

the self-consistent coupling between electrons and ions, we
combine a Monte Carlo (MC) method with a Poisson
(MC-P) solver to achieve a complete solution of the trans-
port equation [44]. We use a resolution Δx ¼ 0.1c=ωpe,
cΔt ¼ 0.99Δx, second-order spline interpolation between
particles and Ex field, with isotropic white noise statistics
for pitch-angle scattering. Electrons and ions are injected
from the right-hand side of the domain with an initial bulk
velocity u∞ ¼ −0.075c and a temperature matching the
initial conditions of PIC simulations. For a fair comparison
with PIC simulation, we used a 2D scattering operator.
Comparison between 2D and generalized 3D scattering
operators showed no significant differences up to realistic
mass ratios. Using our solver, we recover the Rankine-
Hugoniot jump conditions in the corresponding dimension.
In the MC-P solutions, the scattering frequency is assumed
constant, with values consistent with the analytical esti-
mates discussed below. While the scattering frequency
would have a spatial dependence due to the evolution of the
microturbulence, the heating is dominated by regions of
strong deceleration of Rw over the shock transition of
size Lsh.
We naturally expect two different scattering regimes to

emerge for electrons and ions dependingon themagnetization
of the respective species. For the typical observed magnetic
field strength, jeBj ∼ 0.06ðmi=meÞ1=2meωpeju∞=cj, and
scale k⊥ ∼ ðmi=meÞ−1=2ωpe=c, produced by the Weibel
instability [Fig. 1(a)], electrons moving at u∞ have a
gyroradius much smaller than the size of the magnetic
structures and are thus trapped. An estimate of their scattering
frequency derives from the coherence time of the bounce
frequency ωβ in the filaments of radius r⊥ ¼ 2π=k⊥ and
length rk ¼ 2π=kk [45]. Explicitly, νe ∼ Δα2e=Δte depends
on the angle of deflection squared, Δα2e ¼ ω2

β;er
2⊥=u2th;e,

where uth;e is the thermal velocity, ωβ;e ∼ uth;e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⊥=rg;e

p
is

the bounce frequency of an electron [46], and on the
coherence time Δte ¼ 2π=ðkkuth;eÞ. On the other hand,
scattering of the high-rigidity ions propagating in the turbu-
lence can be well approximated as a nonresonant process
associated with small pitch-angle scattering with the usual
estimate Δα2i ∼ r2⊥=r2g;i, with rg;i the ion Larmor radius, and
the shortest scattering time in the Weibel turbulence Δti ¼
2π=fmax½kk; k⊥�ju∞jg [31]. The interaction between the
beam and incoming ions drives the turbulence, but the
slowdown of the incoming ions defines the relevant scattering
length. Close to the shock, the velocity ui ∼ u∞, and thus
rg;i ∼miju∞=eBj. The analytical estimates for the scattering
frequencies are then
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νe ≃ 2π
kk
k⊥

mi

me

ju∞j
rg;i

; ð3Þ

νi ≃
r⊥ju∞j
r2g;i

max

�
kk
k⊥

; 1

�
: ð4Þ

In Fig. 2, we show the x − px phase-space distributions
for νe ≃ νimi=me obtained either from the full MC-P or MC
solutions. Essentially, the second case reduces to the
contribution of the purely motional electric field. In this
case, electrons heat up almost adiabatically, trapped and
compressed by the turbulence, ending with a negligible
downstream temperature: Te=Ti ≲me=mi. When the full
solution is considered, we observe that electrons are
predominantly heated by the longitudinal electrostatic field,
giving rise to a downstream temperature ratio Te=Ti ∼ 0.5,
consistent with the full PIC simulations. We note that the
transport equation assumes small pitch-angle scattering for
particles in microturbulence, which is valid for ions but not
necessarily for electrons due to their smaller Larmor radius.
We have checked that accounting for correlated scattering

for electron transport does not significantly affect the
dynamics [31].
The transport equation (1) captures the essential electron

dynamics. With the general goal of building a reduced
model for the shock profile and electron heating, we now
derive the set of fluid equations for the electron distribution.
We note that the following equations and the previously
introduced Fokker-Planck description are not supposed to
be valid for ion species for which the diffusive approxi-
mation would fail across the shock transition. However, a
closed form of the fluid equation for the electrons can be
derived in the diffusive approximation from the first
moments of the distribution. We decompose the total
stress-energy tensor Txx

ð0Þ ¼ τxxð0Þ þmuwjxð0Þ in terms of
thermal pressure τxxð0Þ and number current jxð0Þ components.

In the thermal part of the distribution, we assume that the
scattering frequency is independent of the particle momen-
tum [47]. A more complex polynomial dependence of
νeðpÞ would be relevant to electron injection and
acceleration, which is left for future work. Neglecting
anomalous heat transport ð1=νmÞ∂2xτxx0 , relevant to the
high-energy component of the distribution, we obtain a
solution for the conserved current across the shock
transition jxð0Þ=j

x
∞ ¼ 1=½1 − ðeEx=νemeuwÞ�. Moments of

Eq. (1) then give

1

mi
∂xτ

xx
eð0Þ ≃

u∞
uw

jxeð0Þ
2

ϕ∞

e2E2
x

νemeuw
; ð5Þ

where ϕ∞ ¼ mij∞u∞ is the ram pressure at þ∞. With an
explicit form for the dominant nonadiabatic heating rate of
the electrons in terms of the amplitude of the coherent
electrostatic field, we now derive a closed form for the
electron-ion coupling.
The dynamics of electrons, trapped in the turbulence, is

well characterized by the diffusive approximation. We
distinguish two extreme regimes for the ions: diffusive
(νi ≫ ∂xuw) and unscattered regimes (νi ∼ 0). Unscattered
ions are only subject to the electric field deceleration and
fully isotropize in the downstream. As verified in PIC
simulations, quasineutrality between the reflected beam
charge density ρb and background contribution is observed
in the full shock precursor. Given a charge density profile
ρb for the reflected beam and background ion velocity ui,
we obtain eEx ≃ νemefuw − ui½1=ð1þ ρbui=ðej∞ÞÞ�g [31].
The electric field then only results from the relative drift
between electrons and ions if ρb ≪ en∞.
Assuming a weak deceleration of ions across the shock

transition size Lsh and neglecting the beam contribution, the
system is fully parametrized by a single parameter ξ ¼
Lshmeνe=miju∞j that represents the number of electron
scattering events across the shock transition times the
electron-to-ion mass ratio. In the absence of another
relevant scale, ξ should be solely determined by the

FIG. 2. MC-P solution to the transport equation with νi ¼
3.5 × 10−4ωpi and νe ¼ 8.5 × 10−3ωpi constant along the shock
transition. The upstream four-velocity u∞ ¼ −0.075. The initial
temperature matches the PIC simulation. The top two panels
correspond to the full MC-P solution for the ions (a.1) and
electrons (a.2). Panels (b.1) and (b.2) show, respectively, the
equivalent MC solution in the absence of longitudinal electro-
static field. For reference and comparison to insets (d) and (e) of
Fig. 1, the insets (c) and (d) on the right show the corresponding
phase space distribution in the shaded area. The black circle
marks the boundary between the definition of the beam and the
background plasma.
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structure of the turbulent field. In such conditions, the
scattering frequency of the ions determines the typical
shock transition size Lsh ∼ ju∞j=νi. Therefore, ξ corre-
sponds to the typical ratio between the electron and ion
scattering frequencies, i.e., ξ ∼meνe=ðmiνiÞ.
For a linear deceleration profile of Rw in x∈ ½−Lsh; 0�,

we obtain eEx=ðmeνeu∞Þ ≃ ð3=4ξÞðeξx=Lsh − 1Þ [31]. One
can then derive the heating rate to the leading order in ξ:

j∂x=Lsh
τxxeð0Þj ≃ ϕ∞

� 3
16
ξ if ξ≲ 1

3
4
ξ−1 if ξ ≫ 1;

ð6Þ

giving a fair estimate of the average heating across the
shock transition when compared with the full integration.
Provided that ξ≲ 1, the downstream electron pressure is
therefore of the order of τxxeð0Þ ∼ 0.2ξϕ∞. The full solution

for a linear deceleration, depicted in Fig. 3, confirms that
ξ ∼ 1 is necessary to recover downstream temperatures on
the order of a fraction of unity.
Interestingly, the scaling ξ ∼meνe=miνi is also observed

in the fully diffusive regime for electrons and ions, sug-
gesting generality of this scaling law. Equations (3) and (4)
provide direct estimates of the electron and ion scattering
frequencies for the Weibel instability. The ambipolar
heating parameter then becomes ξ ∼ k⊥rg;i min½ðkk=k⊥Þ; 1�.
Using the values for filament scale in the shock transition,
k⊥ ∼ kk ∼ ωpi=c [19,46,48], and the field amplitude set
by trapping, ωβ;i ∼ ju∞j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⊥=rg;i

p
∼ ju∞=cjωpi [49], we

obtain ξ ∼ 1, precisely in the range of parameters maxi-
mizing the downstream electron temperature in Fig. 3.
We note that the model developed here is general in
that it could also be applied to other nonlinear processes
changing the properties of the magnetic turbulence
upstream of the shock, such as nonresonant current-driven
instabilities [50], merging [51–53], cavitation [54], recon-
nection [55,56], or kink modes [46]. This would impact

Te=Ti primarily through the scale of the turbulent mag-
netic field—i.e., kk and k⊥. For example, if the field
saturates at the scale of the dominant Larmor radius of the
beam krg;b ∼ 1, untrapped ions result in ξ ∼ ðrg;i=rg;bÞ, and
the temperature ratio decreases with rg;b. However, if these
late nonlinear modes ultimately lead to efficient ion
trapping, then we naturally recover ξ ∼ 1, such that the
temperature ratio becomes weakly sensitive to subsequent
nonlinearities.
In summary, we have developed a self-consistent model

for the energy partition in high Mach number collisionless
blast waves. The heating results from the ambipolar electric
field that accelerates electrons, which are thermalized by
rapid scattering in the Weibel-mediated turbulence. We find
that the downstream temperature ratio can be expressed in
terms of a single dimensionless parameter determined by
the nature of the dominant instability. The heating rate and
temperature ratio between electrons and ions exhibit good
agreement with ab initio fully kinetic simulations, semi-
analytical MC-P solutions, and reduced analytical models.
Energy partition peaks around Te=T i ∼ 0.3 with a weak
dependence on higher-order effects in the statistics of
electron transport and nonlinear dynamics of the instability.
Our model gives a natural interpretation for the thermal
partition in shocks particularly relevant to weakly magnet-
ized astrophysical systems and to ongoing laboratory
experimental studies. More generally, these findings also
open promising avenues for studying electron transport in
magnetically dominated systems, for which Lsh is set by the
coherent Larmor gyroradius, and potential electron injec-
tion and acceleration in turbulent shocks.
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