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Polar dielectrics with low crystal symmetry and sharp phonon resonances can support hyperbolic shear
polaritons, which are highly confined surface modes with frequency-dependent optical axes and
asymmetric dissipation features. So far, these modes have been observed only in bulk natural materials
at midinfrared frequencies, with properties limited by available crystal geometries and phonon resonance
strength. Here, we introduce hyperbolic shear metasurfaces, which are ultrathin engineered surfaces
supporting hyperbolic surface modes with symmetry-tailored axial dispersion and loss redistribution that
can maximally enhance light-matter interactions. By engineering effective shear phenomena in these
engineered surfaces, we demonstrate geometry-controlled, ultraconfined, low-loss hyperbolic surface
waves with broadband Purcell enhancements applicable across a broad range of the electromagnetic
spectrum.
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Hyperbolic waves emerge in materials featuring extreme
optical anisotropy, with opposite signs of the real part of
permittivity for orthogonal orientations of the electric field.
These waves offer a powerful platform for nanophotonics,
thanks to the open topology of their dispersion contours,
which asymptotically stretch in momentum space, enabling
subdiffractional light confinement combined with direc-
tional, raylike propagation [1–7]. In turn, these features
enhance the spontaneous emission rate of localized optical
sources over broad bandwidths. While hyperbolic wave
propagation has been originally explored in the context of
metamaterials [3,7,8], it can also be found in natural
materials, in particular in polar Van der Waals dielectrics
[9–12] and other low-symmetry polar crystals [13–17],
which naturally exhibit extreme optical anisotropy asso-
ciated with directional phonon resonances, leading to
hyperbolic phonon polaritons. These hybrid light-matter
quasiparticles arise within the Reststrahlen frequency band,
within which one component of the permittivity tensor is
negative, while the orthogonal one remains positive. While
appealing because of their broad availability and lack of
nanofabrication requirements, natural hyperbolic materials
are restricted to specific frequency ranges in the midin-
frared regime [12,14,16].
Whether natural or engineered, bulk hyperbolic waves

suffer from dissipation, and their light-matter interactions
are hindered by material loss or metamaterial granularity
[18]. By contrast, hyperbolic metasurfaces [19–21], char-
acterized by highly directional in-plane resonances com-
bined with subwavelength thickness, support effective
Reststrahlen bands for surface waves, leading to a reduced
impact of material loss and easier access to the fields, since

these modes live at the interface with air. These meta-
surfaces have been implemented across a wide range of
frequencies, with exciting prospects for enhanced surface-
wave manipulation and broadband interactions with local-
ized emitters close to the surface [11,19,22–25].
Recently, a new family of bulk and surface hyperbolic

phonon polaritons was unveiled in monoclinic polar
crystals, known as hyperbolic shear phonon polaritons
[14,15,17]. The nonorthorhombic lattice is associated with
directional detuned resonances that are not orthogonal.
Within the Reststrahlen band, hyperbolic modes can
emerge also in this skewed lattice, but in contrast with
conventional hyperbolic polaritons, these modes feature a
peculiar rotation of their optical axis with frequency (axial
dispersion) and an asymmetric distribution of losses in the
different branches of the hyperbolic isofrequency contours
(IFCs), driven by microscopic shear phenomena. These
features endow hyperbolic shear polaritons with even
stronger directionality and field confinement than conven-
tional hyperbolic waves. In turn, shear phonon polaritons
are only available in a limited set of natural materials with
low crystal symmetry. Consequently, their observation has
so far been limited to a nonoptimal subset of possible lattice
symmetries and phonon responses.
Here, we introduce and explore hyperbolic shear meta-

surfaces, which are structured surfaces engineered to
support hyperbolic surface modes experiencing effective
shear phenomena. By optimally breaking the in-plane
symmetry of the metasurface, we induce strong axial
dispersion and loss redistribution. In turn, this enables
directional wave propagation stemming from the intrinsic
broken symmetry of the modal dispersion rather than being
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induced by the excitation [7,26] or by slanted boundaries
[27,28]. We show that the shear response can be tuned and
optimized by rotating the relative angle between detuned
directional in-plane resonances, leading to enhanced light-
matter interactions and exotic propagation features compared
to hyperbolicmetasurfaces composed of the sameunderlying
elements but in a higher-symmetry configuration.
Consider a metasurface formed by a subwavelength

array of detuned dipolar resonators [Fig. 1], placed in free
space on the z ¼ 0 plane. In the long-wavelength limit, the
optical response can be described by the 2 × 2 homog-
enized sheet conductivity tensor

σ̂ ¼
�

σ1 þ σ2 cos2ðθÞ −σ2 sinðθÞ cosðθÞ
−σ2 sinðθÞ cosðθÞ σ2 sin2ðθÞ

�
; ð1Þ

where σ1 and σ2 are the effective complex conductivities
associated with the two sets of dipolar resonators R1

and R2, which in Eq. (1) are assumed to be respectively
oriented along the x axis and at an angle θ from it, such that
σ̂ ¼ σ1x̂ ⊗ x̂þ σ2R̂ðθÞðx̂ ⊗ x̂ÞðθÞR̂−1, where R̂ is a rota-
tion matrix. The scalar response of each resonator is

described by a Lorentzian dispersion σjðωÞ ¼ iσ0Njω
2=

ðω2 −Ω2
j þ iωΓjÞ, where j ¼ 1, 2, consistent with the

dispersion of polaritonic crystals [16]. Without loss of
generality, we assume that the two resonators feature equal
loss rates Γ2 ¼ Γ1, detuned resonance frequencies Ω1 and
Ω2 ¼ 2Ω1, and oscillator strengths N1 and N2 ¼ N1=2.
The propagation of surface waves over such an impedance
sheet obeys the dispersion relation [29]

k2xσ1 þ ðkx cos θ − ky sin θÞ2σ2 − k20ðσ1 þ σ2Þ

¼ 2k0kz

�
1þ 1

4
σ1σ2sin2θ

�
: ð2Þ

For orthogonal resonators, θ ¼ 90° [Fig. 1(a)], the metasur-
face is uniaxial, described by a diagonal conductivity
tensor diagðσ1; σ2Þ. Hyperbolic surface waves are sup-
ported when ℑ½σ1� > 0 and ℑ½σ2� < 0 [19], within the
effective Reststrahlen band of the homogenized surface
Ω1 < ω < Ω2. In this regime, the metasurface features
tightly confined, highly directional hybrid transverse mag-
netic modes with hyperbolic IFCs. The aperture angle of
the hyperbolas varies with frequency, while the optical
axes are aligned with the orthogonal resonators [Fig. 1(b)].
The IFCs are highly symmetric, and even in the case
of asymmetric damping rates in the two resonators
(ℜ½σ1� ≠ 0 ≠ ℜ½σ2�) the four hyperbolic branches feature
the same absorption features [19,22,25].
Effective shear phenomena are introduced by rotating R2

with respect to R1 [Fig. 1(c)]. In this scenario, σ̂ acquires
nonzero off-diagonal components, coupling the two polari-
zation responses. Remarkably, this metasurface still supports
hyperbolic surface waves in its Reststrahlen band, defined as
the frequency range for which the two eigenvalues of the
Hermitian part of σ̂ have opposite signs. The symmetry axes
of the hyperbolic IFCs are aligned with the reference system
that diagonalizes this tensor at any given frequency. Given
the nonorthogonality and detuning of the underlying reso-
nators, the hyperbolas rotate with frequency, leading to axial
dispersion, i.e., a frequency-dependent rotation of the IFCs
by the angle γðω; θÞ [Fig. 1(d)].Herewe chooseω1 ¼ 1.2Ω1,
ω2 ¼ 1.6Ω1 and ω3 ¼ 1.8Ω1. This rotation is quantified by
the angle subtended by the kx axis and the symmetry axis of
the hyperbolic IFCs [14,29],

γðω; θÞ ¼ − 1

2
tan−1

�
ℑ½σ2� sin 2θ

ℑ½σ1� − ℑ½σ2� cosð2θÞ
�
: ð3Þ

Moreover, in contrast to the orthogonal scenario, the loss is
distributed asymmetrically across the optical axes. This is to
be expected since loss is associated with the resonator
polarization directions, and in this nonorthogonal scenario
the electric field polarizations more aligned with the reso-
nators (on two of the four hyperbolic branches) experience
larger losses than the other two, which support electric fields

FIG. 1. Axial dispersion and loss redistribution in hyperbolic
shear metasurfaces. (a) A metasurface composed of orthogonal
detuned resonators supporting (b) hybrid transverse magnetic
surface modes with hyperbolic IFCs, featuring nondispersive
optical axes (dash-dotted line) and symmetric damping
(color map). (c) By rotating the resonators, (d) the optical axis
(dot-dashed lines) becomes frequency dispersive, featuring a
rotation by an angle γðω; θÞ (green) relative to the kx axis, and
the loss becomes asymmetric between the arms of the hyperbolic
IFCs (calculated for θ ¼ 60° and the angular frequencies
Ω1 < ωi < Ω2, i ¼ 1, 2, 3).
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less parallel to the resonators and hence less impacted by
dissipation. In Fig. 1(d), we quantify the damping factor η ¼
qi=qr for each point on the IFCs (color map), where qr (qi) is
the real (imaginary) component of the in-plane wave vector
q ¼ qr þ qi of the surface mode.
Figure 2(a) shows the dispersion of γðω; θÞ, which

grows monotonically with frequency within the effective
Reststrahlen band, going from being aligned to R1 (γ ¼ 0 at
Ω1) to a larger value at Ω2. Its evolution corresponds to a
counterclockwise rotation of the contours in momentum
space. As the resonators become less and less orthogonal,
the axial dispersion in Fig. 2(a) steepens, most sharply
in the proximity of the critical frequency ω�, for which
ℑ½σ1� ¼ −ℑ½σ2�, i.e., the two resonators support a com-
bined resonance as they exhibit equal and opposite react-
ance, yielding extreme axial dispersion in the presence of
effective shear. Figure 2(b) explicitly plots γðω; θÞ at the
critical frequency, demonstrating how the angle between R1

and R2 may be used to dramatically tailor the orientation of
the hyperbolic axes. For frequencies closer to the two
resonances, the rotation is dominated by one of the

resonators. For ω < ω�, this manifests in the appearance
of a frequency-dependent and controllable turning point
beyond which the rotation angle γðω; θÞ reverts to zero,
bringing the symmetry axis of the IFC parallel to R1 [29].
Interestingly, at the critical frequency [dashed orange line
in Fig. 2(b)] γðω; θÞ varies linearly with the rotation angle,
ranging between 0 and π=4. Finally, for ω > ω�, R2

dominates, and γðω; θÞ decreases monotonically from
π=2 to 0 following the rotation of R2 [orange to yellow
lines in Fig. 2(b)].
The effective shear phenomena driving axial dispersion

are also responsible for loss redistribution between the
hyperbolic branches [Fig. 1(d)], increasing the absorption
in two of them while enhancing propagation for the other
two. This feature produces two surprising effects: given
two resonator lattices R1 and R2, rotation-induced shear
boosts light confinement and propagation length by low-
ering the impact of loss for two hyperbolic branches, and it
enhances the overall directionality of hyperbolic wave
propagation. These effects arise throughout the entire
Reststrahlen band. To quantitatively explore shear-driven
loss redistribution, in Fig. 2(c) we plot the damping factor
η ¼ qi=qr as a function of the normalized in-plane momen-
tum qr=qv, where qvðω�; θÞ is the vertex of the hyperbolic
IFC [see inset in Fig. 4(a)] at the critical frequency ω�.
Dashed and solid lines respectively denote the high- and
low-loss branches of the same hyperbolic IFC. For orthogo-
nal resonators (purple line), the hyperbolas are symmetric,
and the loss in the two resonators equally impacts states that
are related to each other by inversion with respect to one of
the optical axes. As θ decreases and the resonators become
more parallel (light blue to yellow lines), the fixed amount of
loss in the resonators is heavily redistributed, making two of
the branches increasingly lossier, while freeing the other two
as the modes depart from the hyperbola vertex at qr ¼ qv.
Losses are associated with the non-Hermitian (real)

part of σ̂, whose nondiagonal entries are generally nonzero
even after rotating the reference frame by the angle γðω; θÞ
that diagonalizes the Hermitian part. These off-diagonal
non-Hermitian components of σ̂ quantify the effective
shear in the metasurface, whose macroscopic effect is
loss redistribution. As a consequence, we can define

Sσðω; θÞ ¼ ℜ½σ̂0xy�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜ½σ̂0xx�2 þℜ½σ̂0yy�2

q
as a measure of

the metasurface shear [29,32]: for Sσ ¼ 0 we expect
perfectly symmetric hyperbolas, corresponding to orthogo-
nal resonators, while at the other extreme Sσ ¼ 1 supports
maximum loss asymmetry. Figure 2(d) shows Sσðω; θÞ as a
function of frequency and rotation angle, with increasing
shear as the angle between resonators is reduced and as we
approach the critical frequency.
The definition of Sσðω; θÞ does not refer to the specific

wave propagation problem at hand, since it does not
involve the boundary conditions, and it is therefore agnostic
to the specific dispersion relation of the eigenmodes of
interest. Its expression measures the general degree of

FIG. 2. Axial dispersion and loss redistribution. (a) Dispersion
of the optical axis angle γðω; θÞ. Small twist angles θ (color map)
narrow most of the dispersion around the critical frequency ω�, at
which ℑ½σ1� ¼ −ℑ½σ2�. The inset shows the dispersion of the
reactive conductivity of R1 and R2 within the Reststrahlen band.
(b) If ω < ω� (color map), R1 dominates, and γðω; θÞ reaches a
maximum before turning back to zero as θ increases. For ω > ω�,
R2 is dominant, and the rotation angle varies monotonically with
θ. (c) Loss redistribution between the hyperbolic arms as the
rotation angle θ ¼ ð90°; 60°; 10°; 6°Þ is varied. The damping
factor η increases in the lossier branches (dashed lines) and
decreases in the longer-lived branches (solid lines) as the
resonators become less orthogonal, stemming from the IFC
vertices located at qr ¼ qv. Both figures of merit for the degree
of loss asymmetry (d) Sσ and (e) Sη peak at the critical
frequency ω�.
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“electromagnetic asymmetry” of the metasurface and
provides an indication of the choice of parameters that
maximize it. We can also introduce a quantitative measure
of the modal asymmetry Sηðω; θÞ ¼ ðηþ − η−Þ=ðηþ þ η−Þ,
shown in Fig. 2(e), which explicitly quantifies the loss
redistribution by measuring the degree of loss asymmetry
in the surface eigenmodes. We evaluate the damping factors
ηþ and η− for mirror-symmetric in-plane momenta located
on the bright and dark branches of the IFCs in the limit of
large qr, for which qi=qr saturates [29]. Both metrics show
a similar dependence on frequency and twist angle, and
peak at the critical frequency for small twist angles, i.e.,
nearly parallel resonators.
Figures 3(a)–3(h) show the spatial distribution of Ez and

the associated Fourier spectrum jF½Ez�j for surface waves
launched by a z-oriented electric point dipole emitter placed
above the metasurface at distance λ�=217 as we vary θ,
where λ� ¼ 2πc0=ω�. We show the results for the critical
frequency ω�, at which the impact of effective shear is
strongest. In the case of orthogonal resonators [Figs. 3(a)
and 3(e)], the waves propagate symmetrically with respect
to the optical axes, aligned with the resonators. As the
orthogonality is broken [Figs. 3(b) and 3(c)] the hyperbolic
wavefronts rotate and the loss is redistributed, dampening
two of the four raylike beams. The lower loss branches
experience further field confinement, as they access larger
momenta [Fig. 3(c)]. By comparing Fig. 3(e) with Figs. 3(f)
and 3(g), the extreme propagation asymmetry and enhanced
directionality become apparent. We stress that in the
different scenarios we are preserving the same underlying
microstructure of the metasurface, i.e., the same features for
R1 and R2, and the dramatic change in dispersion is only
associated with the rotation between them.

Figure 4(a) shows the minimum momentum qv ¼ jq⃗vj of
the hyperbolic IFCs, found at the IFC vertex (purple arrow
in the inset), as we vary frequency and rotation angle θ. As
the frequency approaches Ω2 and θ decreases, deeply
subdiffractional propagation is achieved as a byproduct
of effective shear (see Ref. [29] for further details). As a
result of the lower loss and stronger field confinement,
light-matter interactions are expected to be largely
enhanced. Figure 4(b) shows the enhancement of the
Purcell factor [25,33,34] for a z-oriented electric point
dipole placed at a distance de ¼ λ�=217 above the metasur-
face (inset). Compared to the orthogonal scenario (purple
line), the broken symmetry produces a strong broadband
enhancement of the emission rate (blue to yellow lines).
This effect is consistent with the enhancement of Ez in

FIG. 3. Near-field excitation of hyperbolic shear surface waves by a localized emitter. Surface waves excited by a z-oriented electric
point dipole placed at a distance de ¼ λ�=217 from the metasurface. (a) For θ ¼ 90 °, normal electric field (Ez) and (e) its Fourier
spectrum jF½Ez�j for excitation from a localized emitter. As the rotation angle between the same resonators varies [panels (b),(c)], axial
dispersion and asymmetric spectra emerge [panels (f),(g)] showing the impact of shear. Remarkably, in (d),(h) highly confined modes
are observed for small rotation angles, exhibiting extraordinarily long-lived propagation enhanced by up to 2 orders of magnitude
compared to orthogonal case, despite their tight confinement. Here, Ω1 ¼ Ω2=2 ¼ 5 GHz, γ1 ¼ γ2 ¼ 0.02 Ω1, N1 ¼ 2N2 ¼ 1, and
ω ¼ ω� ¼ 1.733 Ω1. These parameters match those experimentally used in recent metasurface experiments [21,24].

FIG. 4. Induced confinement and spontaneous emission rate
enhancement for multiple angles between resonators. (a) Mini-
mum wave number supported by the metasurface qv at the
hyperbola vertex (purple arrow in the inset). (b) Mode confine-
ment and increased lifetime produce a rotation-induced broad-
band spontaneous emission rate enhancement for a z-oriented
electric dipole emitter placed at distance de ¼ λ�=217 from the
metasurface.
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Figs. 3(a)–3(d) as θ decreases. For small angles θ between
the two resonators, the Purcell factor shows a broad
enhancement across the entire Reststrahlen band, with a
maximum at ω ≈ ω�.
In thisLetter,we introducedhyperbolic shearmetasurfaces

that support effective shear phenomena for hyperbolic sur-
face waves, induced by tailoring the angle between detuned
directional resonances. Through these effects, we can tailor
the directionality and boost the lifetime and Purcell factor of
hyperbolic surfacewavesover tunable bandwidths, achieving
extreme control over their propagation and dissipation
features. Our work establishes a paradigm that leverages
broken symmetries to realize low-loss, ultraconfined, and
highly directional surfacewave propagation. The phenomena
demonstrated may be applied to a wide range of frequencies.
These metasurfaces may be realized at radio frequency using
a twisted bilayer of detuned resonators [24,35] or in optics
using asymmetric V-shaped resonator metaunits [36]. The
rational control achieved through the rotational degree of
freedom implies that, through tailored optical pumps and
nonlinearities, it may be possible to dynamically tune the
effective shear in hyperbolic metasurfaces, thus enabling
large tunability in real time. These tools may lead to time-
dependent axial dispersion and loss redistribution, as well as
opportunities for pulse shaping and multiplexing.
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