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Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show
localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points,
respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on
electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave
packet expansion in the Hermitian case. We then discover a new regime, where increasing the non-
Hermiticity leads to delocalization, demonstrating that the behavior in non-Hermitian quasicrystals is richer
than previously thought.
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Quasicrystals are characterized by long-range order
without translational symmetry [1]. In mathematics, they
correspond to infinite nonperiodic tilings. They can possess
rotational symmetries incompatible with the translational
one, such as the famous pentagonal symmetry of the
Penrose tiling [2]. Another interesting and important case
is the dodecagonal symmetry [3–5], which can be obtained
from a superposition of two honeycomb lattices [6–9]
rotated by 30°. This configuration is particularly timely
because of the extreme popularity of moiré honeycomb
lattices such as magic-angle twisted bilayer graphene [10],
obtained for angles of rotation smaller than 30°. Moiré
lattices and quasicrystals share many common properties,
such as the presence of flat bands [11–13] in their spectrum.
Dodecagonal quasicrystals are studied in many fields:
chemistry [14–17], material science [4,18,19], electronics
[8], topological physics [20–22], and photonics [7,23–31].
For 1D quasicrystals or quasiperiodic lattices, many

important analytical results were obtained using the
Aubry-André model [32]: instead of considering a structure
without translational symmetry in the positions of individ-
ual sites, one considers a periodic lattice with an incom-
mensurate on-site potential of a variable strength [33–36].
It is now theoretically established and experimentally
demonstrated that the dispersion of such a 1D quasicrystal
contains an infinite number of gaps that obey the gap
labeling theorem [37–40]. Each single band is infinitely
narrow (flat), and the mobility of the particles filling the

bands is strongly suppressed [33,41]. This model allows
studying the transition toward the fractal energy spectrum
and the associated localization [42], driven by the variable
strength of the on-site potential.
Two-dimensional quasicrystals have also been studied

theoretically using the Aubry-André approach [13], namely
considering a superposition of two lattices: one lattice is
fixed, while the strength of the second lattice is varied,
allowing to observe the modification of the transport.
Another theoretical approach was to start directly with a
quasicrystal potential and vary its strength relative to the
recoil energy [43–46], allowing to see the localization of
some of the eigenstates described by their inverse partici-
pation ratio. The bands tend to a Cantor set analog [47], as
in 1D [48]. In experiments with Hermitian 2D quasicrys-
tals, phononic [49] and photonic [50] band gaps were
explicitly observed, in particular in dodecagonal structures
[25]. Localization in photonic quasicrystals of different
symmetries has been demonstrated very recently [51], and
also the enhancement of the transport by disorder [52].
The potential can also be imaginary, making possible

non-Hermitian phenomena analogous to the PT-symmetry-
breaking transition, well-known in modern photonics [53].
Such transition has recently been predicted [36] and
observed experimentally [54] in a 1D quasicrystal: increas-
ing the non-Hermiticity induces a phase transition, which
ultimately suppresses the mobility edge. All states become
localized, and the mechanism is not due anymore to the
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quasicrystal flat bands, but to the emergence of diffusive
non-Hermitian bands (Fermi arcs limited by exceptional
points). The Aubry-André approach has often been used for
non-Hermitian systems [55–57]. Theoretical analyses of
2D systems have also been performed, based on a specific
complex potential case [58], as the one considered in the
1980s [59], with results similar to 1D.
In this Letter, we take advantage of a reconfigurable

photonic platform, atomic vapors under electromagneti-
cally induced transparency (EIT) [60] in a three-level
atomic configuration [61–63], to perform an experimental
study of a 2D Hermitian and non-Hermitian dodecagonal
quasicrystals with a tunable ratio of intensities between the
two honeycomb lattices forming the quasicrystal and a
separately controllable non-Hermiticity. We demonstrate
the localization transition with the increase of the intensity
ratio of two lattices in the Hermitian case. On the contrary,
in the non-Hermitian case the initial localization is followed
by a delocalization. The latter is caused by the wave packet
redistribution due to the lifetime difference, occurring
without crossing exceptional points.
The experimental scheme is shown in Fig. 1(a). Two

honeycomb photonic lattices are optically induced inside a
Rb vapor cell by two hexagonal coupling beams Ec1
(frequency ωc1) and Ec2 (ωc2) with the same period of
200 μm, injected into the vapor cell along the z direction
[Fig. 1(a) is just a sketch, the experimental lattices are much
larger]. There exists a rotation angle (in the x–y plane) of
30° between the two hexagonal patterns. A weak Gaussian
probe beam Ep (ωp) from a continuous-wave tunable laser
copropagates with the coupling beams to excite a three-
level atomic configuration (Fig. S1 in Supplemental
Material [64]), where the well-known EIT effect can occur
at appropriate detunings satisfying the two-photon reso-
nance [60] δp − δc1ðδc2Þ ¼ 0. The frequency detunings δi
(i ¼ p, c1, and c2) are defined as the difference between
the frequency of laser field Ei and the levels it connects
(see Ref. [64]). Under the EIT condition, the susceptibility
χ experienced by Ep is inversely related to the intensity of
the coupling beams [65,66]. The superposition intensity of
two coupling beams is shown in Fig. 1(b). Each coupling
beam forms a single honeycomb photonic lattice (dark sites
of the hexagonal pattern). The propagation of a probe beam
through the vapor cell with an EIT-induced susceptibility
distribution is described by the paraxial equation

i
∂E
∂z

¼ −
1

2k0
ΔE −

k0χ
2

E; ð1Þ

where k0 is the probe wave vector. This is equivalent to a
2D time-dependent Schrödinger equation with z ∼ t (time),
k0 ∼m (particle mass), and χ ∼ −U (external potential).
Susceptibility maxima [dark sites in Fig. 1(b)] thus corre-
spond to potential minima.

The transmitted probe beam is received by a charge-
coupled device camera (placed behind the output plane of
the cell) through an imaging lens. During the experiment,
the detuning of the probe beam is set as δp ¼ −260 MHz,
while δc1 and δc2 are manipulated [around positive two-
photon detuning δp − δc1ðδc2Þ] to control the degree of
non-Hermiticity of the induced photonic lattice (detunings
are in [64]). The twelvefold symmetry of the resulting
lattice is underlined in Fig. 1(b) by the white dodecagon.
Figure 1(c) shows the reciprocal-space image also exhibit-
ing a twelvefold pattern with the first three diffraction
orders clearly visible, which confirms the formation of a
quasicrystal [8].
We study the evolution of the probe beam in the

quasicrystal potential created by the coupling beams (under
the limitations of the experimental method, see section I.C
in [64]). The probe beam represents a narrow wave packet
(comparable to a single lattice site), its approximate
injection point is shown by a yellow arrow in Fig. 1(a).
The duration of the time evolution in the 2D Schrödinger
equation is fixed by the length of the vapor cell in the z
direction. It is sufficient for the wave packet to expand over
several unit cells in a honeycomb lattice (its maximum is
not necessarily at the injection point), whereas in the
quasicrystal configuration the expansion is expected to
be suppressed.
Figure 2 presents the results obtained in the fully

Hermitian case. We keep one honeycomb lattice turned
on with a constant intensity I1, while varying the intensity
I2 of the second lattice. The top panels Figs. 2(a)–2(c) show

(a)

(b) (c)

FIG. 1. (a) Experimental scheme. (b) The experimentally
generated dodecagonal quasicrystal lattice formed by two hex-
agonal patterns rotated by 30°. (c) Reciprocal-space image of the
experimental quasicrystal lattice exhibiting a twelvefold sym-
metry in 3 orders of diffraction.
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the spatial distribution of the output probe patterns for three
ratios of I2=I1 (0, 0.4, 1, respectively). The cells of the two
lattices are indicated in Figs. 2(a) and 2(b) with white and
green dashed hexagons. Magenta dashed ellipses indicate
the wave packet width defined as the standard deviation,
which is a square root of the second moment of the
distribution (the variance). A clear narrowing of the output
wave packet can be observed. We note that it is perfectly
normal that the standard deviation of a multimodal dis-
tribution with different peak heights is smaller than the
distance between these peaks [64,67]. We have systemati-
cally studied the width of the output wave packet as a
function of the ratio I2=I1. The results are shown in
Fig. 2(d) with black dots with error bars corresponding
to the uncertainty of the extraction. For a full set of images
see Ref. [64] or an online movie [68].
The output width of the wave packet exhibits a con-

tinuous decrease (apart from a special localization point
[69]) until it drops to its minimal size, approximately
corresponding to the size of a single lattice site ws that we

take as a reference for this plot. To explain this behavior
and to determine the transition point, we have performed
numerical simulations based on Eq. (1) (see Ref. [64] for
details). An example of the dispersion of a single honey-
comb lattice is shown in Fig. 2(e). It is plotted along the
ΓKMK0Γ high-symmetry points. As expected [47,48],
the increase of I2=I1 up to 1 opens a set of gaps in the
dispersion, making the band similar to a Cantor set. An
example of the dispersion for I2=I1 ¼ 1 is shown in
Fig. 2(f). It exhibits a lot of gaps separating narrowing
bands. The density of states (DOS) allows us to detect and
analyze full gaps. Figure 2(g) shows the DOS for the two
cases shown in panels (e) and (f): honeycomb lattice and
dodecagonal quasicrystal. The Dirac point is visible for the
honeycomb lattice (black) as a zero-DOS point with linear
behavior in its vicinity. In the quasicrystal case (red),
multiple large gaps accompanied by narrower secondary
gaps are visible. The edges of each gap demonstrate Van
Hove singularities (DOS peaks).
The wave packet expansion is determined by the group

velocity of its components. If the wave packet is narrow in
real space, it covers the whole Brillouin zone and thus
allows probing the maximal group velocity available. Our
simulations show that the first (and largest) gap is opened
precisely at the point of highest group velocity, because
here the wave function is the most sensitive to the
perturbing potential. It corresponds to the ΓK direction,
where the dispersion of a single honeycomb lattice is given
by EðkÞ ¼ �Jð1þ 2 cos ka=2Þ in the tight-binding limit,
and the group velocity is vgðkÞ ¼ �ℏ−1Ja sin ka=2, with
the maximal vg point kmax ¼ π=a. The gap size Δ is
linearly proportional to the strength of the incommensurate
potential λ ¼ I2=I1 for small perturbations: Δ ∼ λ. This
allows estimating the wave packet expansion via the group
velocity [64] as a function of the perturbation strength λ,

wðI2=I1Þ
ws

¼ 1þ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B

�
I2
I1

�
2

s
; ð2Þ

where A links the group velocity and the wave packet width
(including the effective propagation time), while B links the
gap sizeΔ and the perturbation λ. The red curve in Fig. 2(d)
fits the experimental data with Eq. (2), giving the fitting
parameters A ≈ 1.35� 0.09 and B ≈ 2.81� 0.12. The
value of A is directly determined by the wave packet size
at I2 ¼ 0 in Fig. 2(d). The value of B allows determining
the localization transition point ðI2=I1Þloc ¼

ffiffiffiffiffiffiffiffi
1=B

p
≈

0.597� 0.013, of the same order of magnitude as in other
quasicrystals [13]. We conclude that we have observed a
localization transition for a Hermitian 2D dodecagonal
quasicrystal and found its approximate position. The
transition point depends on the particular periodic potential.
We now turn to the non-Hermitian case by changing the

probe detuning. Indeed, the EIT configuration allows
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FIG. 2. Wave packet expansion and the localization transition
with the increase of the second lattice strength. (a)–(c) Spatial
images of the wave packet after its evolution in the Hermitian
lattice (lattice intensity ratio I2=I1 ¼ 0; 0.4; 1, respectively),
magenta line marks the wave packet size. (d) Wave packet width
w normalized by the lattice site width ws. Red arrows mark the
correspondence with panels (a)–(c). (e) The dispersion of a single
honeycomb lattice through ΓKMK0Γ0 points. (f) The dispersion
of a quasicrystal showing multiple gaps. (g) The comparison of
the DOS for a periodic honeycomb lattice and a quasicrystal. The
gaps appear as zeroes of the DOS.

PHYSICAL REVIEW LETTERS 132, 263801 (2024)

263801-3



varying both real and imaginary parts of the effective
potential via the complex susceptibility, potentially provid-
ing an important non-Hermiticity to the potential. It
ultimately allows observing a transition similar to the
PT-symmetry-breaking one [63], but we remain below this
transition, defined by ðχ00=χ0Þcrit ≈ 0.4. Here, ðχ00=χ0Þ ≈ 0.2.
We fix the intensity I1 of the first honeycomb lattice and
vary the other intensity I2, with both lattices being non-
Hermitian. We note that the real part of the potential is
different from that of Figs. 2(a)–2(d).
Figures 3(a)–3(c) shows the spatial images of the output

beam for three values of I2=I1 (0.1, 0.4, and 1, respectively).
Interestingly, after the onset of localization, the wave packet
expansion is recovered almost completely, and the sym-
metry of the final wave packet changes. Figure 3(d) shows
the wave packet size w (black dots) normalized by the size
w0 observed for a single honeycomb lattice I2=I1 ¼ 0 (for a
full set of images see Ref. [64] or an online movie). The

measurements demonstrate first a rapid decrease and then an
increase of the width, with a minimum around I2=I1 ≈ 0.4.
To understand this behavior, we use the weak potential

approximation and work with an effective Hamiltonian (see
Ref. [64]). This allows us to obtain the asymptote shown in
Fig. 3(d) with a black dash-dotted line. It describes the
wave packet broadening due to the non-Hermitian mecha-
nism described by the following Hamiltonian:

H ¼ αðk − k0Þσz þU0σx þ iU00σx: ð3Þ

This Hamiltonian exhibits exceptional points ifU0 ¼ 0, that
is, if the potential is purely imaginary. The position of
exceptional points is determined by ðk� − k0Þ ¼ �U00=α. In
our case, they are not accessible, since U0 ≠ 0. Neverthe-
less, the non-Hermitian nature of the Hamiltonian leads to
important consequences: the decay rate of the states starts
to depend on their wave vector. The eigenvalues are given
by Eðk− k0Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U02ð1− iλÞ2 þ α2ðk− k0Þ2

p
. Figure 3(e)

shows the corresponding correction to the overall decay
rate. The resulting decay rate profile leads to the concen-
tration of the wave packet at longest-living states in the
reciprocal space at the edge of the largest gap. Because of
this, the wave packet width in real space grows as a function
of the ratio of the two lattices for fixed evolution time t,
according to the following law [64]:

Δr ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −DðI2I1Þ

2
q : ð4Þ

Figure 3(d) shows a fitting with C ≈ 0.46� 0.02 (consis-
tent with Fig. 2, the wave packet expansion gives a factor
C−1 ≈ 2 with respect to a single site) and D ≈ 0.79� 0.02
(meaning that the characteristic decay length due to the
non-Hermiticity is shorter than the vapor cell length [64], in
agreement with the experiment). The theoretical curve
presents a good agreement with the experimental data.
We therefore conclude that while in periodic systems
the non-Hermiticity can lead to localization via the
PT-symmetry-breaking transition, in our quasicrystal we
observe that the non-Hermiticity leads to delocalization in
wave packet expansion. We note that delocalization has
been observed in pentagonal quasicrystals [52], but there it
was induced by disorder and not by non-Hermiticity.
Contrary to the Hermitian case, where the wave packet

localization width is comparable to the size of a single
lattice site ws, the non-Hermitian case, thanks to the
suppression of the localization, allows observing the wave
packet distribution over several neighboring sites for
I2=I1 ¼ 1 (exact quasicrystal limit). We analyze the angu-
lar distribution of this wave packet (the probability density
averaged over the radial coordinate r) by performing its
Fourier transform [Fig. 3(f)]. A clear maximum corre-
sponding to the dodecagonal (C12) symmetry is observed.
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FIG. 3. Localization-delocalization transition in a 2D non-
Hermitian quasicrystal. (a)–(c) Spatial images of the wave packet
after its evolution in the non-Hermitian lattice (lattice intensity
ratio I2=I1 ¼ 0.1; 0.4; 1, respectively). Magenta line marks the
wave packet size. (d) Wave packet width w normalized by the
reference width w0 (corresponding to I2=I1 ¼ 0). Points with
error bars (instrumental uncertainty)—experiment, dash-dotted
line—theory. (e) Real (black) and imaginary (red) parts of the
eigenenergies of the weak complex potential model. (f) Fourier
transform of the angular pattern of the panel (c) (I2=I1 ¼ 1)
exhibiting a maximum corresponding to dodecagonal symmetry
C12. (g) Intensity of the C12 maximum of the Fourier transform as
a function of I2=I1: the symmetry of the wave packet inherits that
of the lattice.
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The corresponding dodecagon is marked in Fig. 3(c) with
white dashed lines. This confirms that the wave packet
inherits the symmetry of the quasicrystal lattice. We also
study the behavior of the C12 maximum of the angular
Fourier transform with the intensity of the second lattice
I2=I1 in Fig. 3(g) (normalized to its “background” value at
I2=I1 ¼ 0) and observe a strong growth of this component
above I2=I1 ≈ 0.6, when the wave packet delocalization
takes place. This confirms that for small intensity of the
second lattice its effect can be seen as an incommensurate
(effectively random) on-site potential for the initial (honey-
comb) lattice, whereas for large intensities the super-
position of two lattices must be indeed considered as a
dodecagonal quasicrystal with associated properties.
To conclude, we have studied the beam evolution in a

reconfigurable photonic platform, allowing us to continu-
ously analyze the transition between a crystal and a
quasicrystal both in Hermitian and non-Hermitian cases.
We have observed an efficient localization of the beam in
Hermitian quasicrystals. We have also shown that the
combination of two localizing contributions (incommen-
surate potential and non-Hermiticity) can actually lead to
delocalization, allowing us to recover almost the same
transport properties as for a single periodic honeycomb
Hermitian lattice, but with the wave packet symmetry
becoming dodecagonal. A similar non-Hermitian delocal-
ization effect could also take place in moiré lattices. Our
results can find direct applications for on-demand beam
tailoring [70–72]. Generally speaking, the applications of
quasicrystals in photonics go beyond the localization [50],
waveguiding [73], and beam focusing [74]: in particular,
they were also shown to exhibit negative refraction [26].
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