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Altermagnetism represents a type of collinear magnetism, that is in some aspects distinct from
ferromagnetism and from conventional antiferromagnetism. In contrast to the latter, sublattices of opposite
spin are related by spatial rotations and not only by translations and inversions. As a result, altermagnets
have spin-split bands leading to unique experimental signatures. Here, we show theoretically how a d-wave
altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices. We propose an
altermagnetic Hubbard model with anisotropic next-nearest neighbor hopping and obtain the Hartree-Fock
phase diagram. The altermagnetic phase separates in a metallic and an insulating phase and is robust over a
large parameter regime. We show that one of the defining characteristics of altermagnetism, the anisotropic
spin transport, can be probed with trap-expansion experiments.
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Introduction.—Collinear quantum magnets are usually
assumed to have either ferromagnetic or antiferromagnetic
order [1,2]. Ferromagnets break time-reversal symmetry
leading to spin-split bands and a net polarization of the
magnetic moment. Conventional antiferromagnets exhibit
zero net magnetization and are symmetric under translation
and spin inversion, leading to spin-degenerate bands.
However, recent studies have suggested refinements of
this dichotomy and proposed a new class of collinear
magnetism, that possess momentum dependent spin-split
bands without net magnetization [3–14], as recently con-
firmed experimentally in material candidates [15–19].
These collinear states, dubbed altermagnets [9,12,13],
are characterized by a rotational symmetry of the opposite
spin sublattices. For example, in a d-wave altermagnet on
the square lattice, sublattices are related by a spin flip
followed by a π=2 real-space rotation about a point on the
dual lattice; see Fig. 1(a) for an illustration.
Over the recent years, exciting progress has been made in

studying quantum magnetism with quantum simulators of
ultracold atoms [20]. For the square lattice Hubbard model
antiferromagnetic correlations of an extended range have
been observed at the lowest experimentally accessible
temperatures [21–24] and the consequences of doping
the antiferromagnetic state have been investigated [25–28].
Investigating the phenomena of altermagnetism with ultra-
cold atoms remains an interesting open avenue.
In this work, we show how d-wave altermagnetism can

be realized and characterized with ultracold atoms in
optical lattices. We analyze a square lattice Hubbard model
with uniform nearest-neighbor and alternating diagonal
hoppings and show how this model can be realized by 45°

rotated optical lattices. Performing a Hartree-Fock analysis
we find that this model stabilizes an altermagnetic phase in
an extended parameter range and analyze the robustness of

(a)

(b)

FIG. 1. The altermagnetic Hubbard model. (a) A Néel state on
an alternating anisotropic square lattice is a d-wave altermagnetic
state. It is invariant under a global spin flip (exchanging red and
blue dots) followed by a π=2 real-space rotation around the dual
square lattice (gray dot). The nearest-neighbor hopping t and the
alternating diagonal hopping t� of the altermagnetic Hubbard
model are indicated as well. (b) Spin-resolved band structure of
the altermagnetic state at zero temperature for t0=t ¼ 0.3, δ ¼ 0.9,
U=t ¼ 3.5 evaluated along the path indicated in the inset. Inset:
Fermi surface and magnetic Brillouin zone (gray shaded area).
The band structure obeys the symmetry shown in (a) and is
therefore spin-split without net magnetization, which are the key
characteristics of an altermagnet.
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the state at finite temperatures. We demonstrate that the key
experimental characteristic of the altermagnetic state, i.e.,
the anisotropic spin transport, can be measured by trap-
expansion experiments.
The altermagnetic Hubbard model.—We consider two

species of fermionic atoms labeled by spin s in an optical
lattice described by the following altermagnetic Hubbard
model

Ĥ ¼ −
X
i;j;s

tijðc†iscjs þ H:cÞ þ U
X
i

ni↑ni↓; ð1Þ

where U is the on-site Hubbard interaction and tij the
hopping matrix element, which is uniform and of strength t
for nearest neighbors, sublattice-dependent for diagonal
neighbors, and zero otherwise. The diagonal hopping
alternates with t� ¼ t0ð1� δÞ as the following: in the
(1,1) direction the hopping element is t− (tþ) and in the
ð1;−1Þ direction it is tþ (t−) on the A (B) sublattice,
respectively; see Fig. 1(a).
We consider half-filling hnii ¼ hni↑ þ ni↓i ¼ 1.

However, our results remain qualitatively similar for
small doping where the Néel order is stable. We will
now show that this particular sublattice dependence of the
diagonal hopping leads to altermagnetism and discuss
later the optical lattice geometry required to realize
this model.
In order to study the magnetic instabilities of our system,

we perform a Hartree-Fock analysis that captures the
sublattice structure of the ðπ; πÞ magnetic instability. To
this end, we introduce the altermagnetic order parameter,
δm ¼ ð1=4NÞPr hnrA↑ − nrA↓ − nrB↑ þ nrB↓i, which is
proportional to the staggered magnetization. At filling n
we write the occupation

hnrλsi ¼ n=2þ δmð−1Þλþs; ð2Þ

where r denotes the index of a unit cell, λ the sublattice, and
s the spin. For the alternating sign of the order parameter
ð−1Þλþs we associate λ and s with 0 for A and ↑ and
with 1 for B and ↓, respectively. A nonzero order parameter
δm indicates a sublattice Néel ordering which in conjunc-
tion with the lattice symmetries gives rise to the alter-
magnetic state. Decoupling the interaction term and
expressing it in terms of the mean-field order parameter
leads after Fourier transformation to the effective inter-
actions −Uδm

P
kðnkA↑ − nkB↑ − nkA↓ þ nkB↓Þ, where the

wave vector k is in the magnetic Brillouin zone. The
magnetic Brillouin zone is defined via the real space
unit cell spanned by the primitive vectors a1 ¼ að1; 1Þ
and a2 ¼ að1;−1Þ with the lattice constant a of the square
lattice.
Expressing the mean-field Hamiltonian in the basis of

Ψ†
k ¼ ðc†kA↑; c†kB↑; c†kA↓; c†kB↓Þ, leads to

ĤHF ¼
X
k

Ψ†
k

�
H↑ðkÞ 0

0 H↓ðkÞ
�
Ψk: ð3Þ

The Hamiltonian is block diagonal in the spin

degree of freedom with HsðkÞ¼
h
hAA;s
hBA;s

hAB;s
hBB;s

i
, where

hAA;s ¼ −2t− cosðka1Þ − 2tþ cosðka2Þ − ð−1ÞsUδm,
hBB;s ¼ −2tþ cosðka1Þ − 2t− cosðka2Þ þ ð−1ÞsUδm,
hAB;s ¼ −2t cosðkxaÞ − 2t cosðkyaÞ, and hBA;s ¼ h�AB;s.
Because of the spin block-diagonal structure of the
Hamiltonian (3), bands are fully spin polarized. In addition,
each of the spin components exhibit a momentum-inversion
symmetry (k → −k) and sublattices are staggered.
We solve the mean-field equations at finite temperatures

T by self-consistently determining the order parameter
δm ¼ ð1=4NÞPkhnkA↑ − nkB↑ − nkA↓ þ nkB↓iHF as well
as the chemical potential μ, which is set by fixing the
particle number; see Supplemental Material for details [29].
We compute the spin-resolved band structure for t0=t ¼ 0.3,
δ ¼ 0.9, and U=t ¼ 3.5 at half-filling n ¼ 1; see Fig. 1(b).
Both the band structure and the Fermi surface possess the
altermagnetic symmetry of a π=2 rotation along with a spin
flip. Here, the reciprocal lattice vectors of the magnetic

(b)(a)

(c)

FIG. 2. Robustness of altermagnetism. We compute the alter-
magnetic order parameter δm as a function of interaction strength
U=t and diagonal hopping t0=t for staggering δ ¼ 0.2 and
temperatures (a) T ¼ 0 and (b) T ¼ 0.2t. The system is in a
normal metallic state when the order parameter vanishes, while a
finite order parameter indicates altermagnetic symmetry break-
ing. (c) Line cut along the dashed line in (a) shows the order
parameter at zero temperature for t0=t ¼ 0.3 and δ ¼ 0.2. Three
phases are distinguished: The normal metal at weak interactions,
the altermagnetic metal possessing a Fermi surface at intermedi-
ate interactions, and the gapped altermagnetic insulator at strong
interactions. Within the AMM the kink in the order parameter at
U=t ≈ 2.5 indicates a Lifshitz transition at which half of the
Fermi pockets vanish.
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Brillouin zone are ðπ=2a; π=2aÞ and ðπ=2a;−π=2aÞ; see
shaded area in the inset of Fig. 1(b).
Having established the altermagnetic state, we study its

robustness by tuning the system parameters and the
temperature. To this end, we compute the order parameter
δm as a function of U=t and t0=t for δ ¼ 0.2 and T ¼ 0 and
0.2t in Figs. 2(a) and 2(b). We will show below that the
hopping parameters can be controlled by the optical lattice.
Moreover, the interaction U is tunable by Feshbach
resonances in ultracold atomic systems [30]. The alter-
magnetic phase is stabilized for increasing diagonal hop-
ping t0, staggering δ, and interaction strength U. It can be
either metallic, characterized by the presence of small
Fermi surfaces, or a gapped insulator. A line cut though the
phase diagram unveils phase transitions from a normal
metal (NM) with vanishing δm over an altermagnetic metal
(AMM) to an altermagnetic insulator (AMI); see Fig. 2(c).
In addition, we find a kink in the order parameter δmwithin
the AMM at U=t ≈ 2.5. This is a Lifshitz transition at
which half of the Fermi pockets around ð�π=2a;�π=2aÞ
disappear. The second kink then indicates the transition
from AMM to AMI phase at which the Fermi surfaces
disappear. The altermagnetic phase occupies a large portion
of the phase diagram, because the underlying mechanism is
a consequence of the symmetry of the single-particle band
structure. The interactions are only required to establish
Néel order, which splits the bands appropriately. The spin
splitting is set by the anisotropy of the next-nearest
neighbor hopping t0δ. When decreasing t0δ to zero, the
spin-flip and C4-rotation symmetry of the altermagnet
regains the spin-flip and translation symmetry, and a
conventional antiferromagnet is realized.
Optical lattice for the altermagnetic band structure.—

The altermagnetic Hubbard model has uniform nearest-
neighbor and alternating diagonal hopping elements. Such
a single-particle band structure is realized when consider-
ing 45°-rotated counterpropagating and phase-locked lasers
of wave length λ and 2λ with different strengths, respec-
tively. Specifically, we consider the following lattice
potentials

V latt ¼ ErðVsq þ Vd;1 þ Vd;2Þ;
Vsq ¼ V0½sin2ðklxÞ þ sin2ðklyÞ�;

Vd;1 ¼ V1

�
Δþsin2½klðxþ yÞ� þ Δ−sin2

�
kl
2
ðxþ yÞ

��
;

Vd;2 ¼ V1

�
Δþsin2½klðx − yÞ� þ Δ−cos2

�
kl
2
ðx − yÞ

��
; ð4Þ

where kl ¼ 2π=λ is the lattice wave vector, Er ¼
ðℏ2k2l =2mÞ is the recoil energy, m is the mass of the atoms,
and Δ� ¼ ð1� ΔÞ the potential staggering of strength Δ.
The potential consists of deep minima on a square lattice
and shallow minima on the dual lattice that are tuned by V0,
V1, and Δ; see inset of Fig. 3. For such an optical lattice

both the nearest neighbor and the diagonal tunneling are
sizeable.
The unit cell of the lattice is

ffiffiffi
2

p
a ×

ffiffiffi
2

p
a, where a is the

lattice constant of the square lattice, with primitive lattice
vectors a1 and a2; see inset of Fig. 3. We numerically solve
the Schrödinger equation of a single particle in this optical
lattice potential by standard techniques (see, e.g., Ref. [31])
and show the lowest two bands in Fig. 3. We then fit the
lowest bands to the tight-binding Hamiltonian of the
altermagnetic Hubbard model and obtain the uniform
nearest-neighbor hopping t and the staggered diagonal
hoppings t� ¼ t0ð1� δÞ. The diagonal hopping elements
are sizable for this lattice because of the potential minima at
the dual lattice sites. The tight-binding band structure
reproduces well the lowest two bands; Fig. 3. The
tight-binding parameters are tunable by V0, V1, and Δ
which characterize the optical lattice; see Supplemental
Material [29]. Here, we have considered deep optical
lattices, leading to comparatively low absolute scales of
the hopping. Shallower lattices provide larger absolute
hopping scales, while at the same time giving rise to longer-
ranged hoppings. As a consequence, more complex tight-
binding models are needed for quantitative agreement.
However, we find that the band structure of shallower
lattice potentials still posses the same symmetries and the
same anisotropic behavior as the deep lattice; see
Supplemental Material [29]. Larger effective energy scales
will be advantageous in experiments to access the required
temperatures and obtain homogeneous parameters through-
out the system.
Experimental signatures.—The altermagnetic state man-

ifests itself in a vanishing net magnetization but has a

FIG. 3. Effective band structure of the optical lattice. Lowest
two bands, solid lines, obtained from solving the Schrödinger
equation of a particle in an optical lattice potential with
V0 ¼ 4Er, V1=V0 ¼ 2.2, and Δ ¼ 0.6; see Eq. (4). Bands
obtained from a tight-binding model with uniform nearest-
neighbor hopping t and the alternating diagonal hopping ampli-
tudes t� ¼ t0ð1� δÞ, dashed line, agree well with the full band
structure. The effective parameters of the tight-binding model are
t ¼ 2.2 × 10−3Er, t0=t ¼ 0.16, δ ¼ 0.83 and the energy offset is
E0 ¼ 13.81Er. Inset: Illustration of the optical lattice potential.
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pronounced spin-polarized Fermi surface, which can be
probed by spin-resolved transport [6,32]. One way to probe
such anomalous transport with ultracold atoms is to release
the trapping potential and to subsequently measure the
spin-resolved densities while the atomic cloud expands;
see, e.g., Refs. [33–37]. To characterize such an expansion
experiment, we first determine the conductivity tensor and
then use Einstein’s relation for the diffusion constant to
obtain an effective hydrodynamic description of the expan-
sion dynamics.
The conductivity tensor for both spin-up and spin-down

atoms are 2 × 2 matrices with elements σsαβ, where
α; β∈ fx̃; ỹg indicate the spatial direction along the primi-
tive lattice vectors fa1; a2g of the two-site unit cell and
s∈ f↑;↓g is the spin state. Since the bands are fully spin
polarized, the conductivity is diagonal in spin basis, see
Eq. (3). The transverse Hall contribution to the conductivity
vanishes, σsαβ ¼ 0 for α ≠ β, due to the momentum-
inversion symmetry of Eq. (3). From the spin-flip and
π=2 rotation symmetry in real space, we further deduce that
the conductivity tensor of spin-up and spin-down are
related by σ↑αα ¼ σ↓ᾱ;ᾱ, where ᾱ is the direction orthogonal
to α. We use the Kubo formula to evaluate the diagonal dc
conductivity tensor [38–40], see also Supplemental
Material [29]

σsαα ¼ −
ℏ
πV

Z
∞

−∞
dϵ

df
dϵ

X
m;n;k

jhψmðkÞjvsαjψnðkÞij2

×
Γ

ðϵ − ϵnÞ2 þ Γ2

Γ
ðϵ − ϵmÞ2 þ Γ2

; ð5Þ

where vsα ¼ ð1=ℏÞ∇kαHsðkÞ is the spin dependent velocity,
f is the Fermi-Dirac distribution function, ϵn and jψnðkÞi
are the eigenenergies and eigenstates of Eq. (3), respec-
tively, Γ is an positive infinitesimal that we use for the
numerical evaluation of the integral.
In order to compute the relaxation dynamics, we relate

the conductivity matrix with the diffusion matrix by the
Einstein relation [38],

σsαβ ¼
nsDs

αβ

T
; ð6Þ

where ns is the particle density of spin s atoms and T is the
temperature. Our model conserves the densities of both
spin species separately, leading to the continuity equation
ð∂ns=∂τÞ þ∇Js ¼ 0, where τ denotes real time. Taking the
hydrodynamic assumption, we perform a gradient expan-
sion of the currents. Because of the symmetries of the
conductivity tensor, only diagonal contributions arise and
the currents are related to the density gradients as
Jsα ¼ −Dαα∂αns, where α∈ fx̃; ỹg. We thus obtain the
diffusion equation

∂ns

∂τ
¼ ðDs

x̃ x̃∂
2
x̃ þDs

ỹ ỹ∂
2
ỹÞns: ð7Þ

As the diffusion constants are anisotropic in space, the
transport of spin will be anisotropic as well. This is a key
signature of the altermagnetic state. In order to demonstrate
this behavior, we initialize our system at temperature
T ¼ 0.2t in the optical potential characterized by
V0 ¼ 4Er, V1=V0 ¼ 2.2Er, Δ ¼ 0.6, and λ ¼ 1064 nm
at half-filling inside the square-shaped region; for the tem-
perature dependence of the conductivity see Supplemental
Material [29]. Subsequently, we let the particles expand by
removing the trapping potential at time τ ¼ 0 and compute
the time evolution of the spin-resolved densities by numeri-
cally solving the diffusion equation (7); Fig. 4(a).
We observe that the spin-up and spin-down atoms

predominantly relax in different directions, related by a
π=2 real-space rotation. The spin-up atoms have a larger
contribution to σ↑ỹ ỹ than σ↑x̃ x̃ as can be also seen from the
Fermi surface in the inset of Fig. 1(b). Thus diffusion is
stronger in the a2 direction than in a1 direction and vice
versa for spin-down atoms. To quantify the anisotropy, we
define a geometric squeezing parameter

sqsðτÞ ¼
R
d2r̃x̃2nsðr̃; τÞR
d2r̃ỹ2nsðr̃; τÞ ; ð8Þ

which measures the relative spread in x̃ direction compared
to the ỹ direction. The relative squeezing of spin-down and

(a)

(b)

FIG. 4. Anisotropic spin diffusion. (a) Trap-release dynamics of
an altermagnetic state at finite temperature T ¼ 0.2t, trapped in a
box potential in an optical lattice characterized by V0 ¼ 4Er,
V1=V0 ¼ 2.2, Δ ¼ 0.6. The spin-resolved density propagates
anisotropically in real space along the a1 and a2 directions.
(b) We characterize the anisotropic expansion by the ratio of the
geometric squeezing parameter sqsðτÞ of spin-down and spin-up
atoms for two different values of the interaction U and two
different temperatures T ¼ 0.15t (solid lines) and T ¼ 0.2t
(dashed lines). The gray line represents the isotropic expansion
of a normal metallic state for which sqsðτÞ is always one.
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spin-up sq↓ðτÞ=sq↑ðτÞ initially increases strongly and then
approaches one asymptotically because the steady state is
uniform in space; Fig. 4(b).
When increasing the interaction strength U the alter-

magnetic order parameter increases and by consequence
also the spin-splitting energy, which leads to a larger
squeezing parameter. For higher temperatures the
anisotropy in the conductivity tensor is reduced as the
spin splitting decreases. However, the initial growth of
sq↓ðτÞ=sq↑ðτÞ can be larger as overall the diffusion
constant increases with temperature according to the
Einstein relation. Although we assume the experiment to
be performed in a box potential, one could also release a
harmonic confinement potential [37]. The central idea is to
observe the anisotropic spin diffusion which is a character-
istic of the altermagnetic phase.
Conclusions and outlook.—Altermagnetism represents a

type of collinear magnetism, that is characterized by
rotational symmetries between opposite spin sublattices.
We have shown how such an altermagnetic state can be
realized with fermionic ultracold atoms. As the underlying
mechanism derives from the single-particle band structure,
the state is robust and arises over a large parameter range.
We discuss that the unconventional symmetry of the state
can be detected experimentally in trap expansion experi-
ments which exhibit anisotropic expansion for the different
spin species.
Signatures of the altermagnetic state can also be obtained

with quantum gas microscopes [41,42]. The order param-
eter, i.e., the staggered magnetization, can be measured
directly as a real space Néel pattern [24]. In addition,
anisotropic local current distributions need to be estab-
lished for altermagnetism. The rung current can be mea-
sured in quantum gas microscopes, by freezing the states
into double wells and subsequently performing a π=4
tunneling event in each double well. This maps the rung
current to the occupation basis [43] from which the
altermagnetic symmetries can be deduced.
Our work demonstrates the potential for ultracold atoms

to provide a controllable platform for realizing and probing
this new form of magnetism and for understanding the
structure of fluctuations around the ordered states. For future
work it would be interesting to characterize the anisotropic
spin susceptibilities of the altermagnetic state, which can be
measured, for example, by Ramsey interferometry [44] or
modulation spectroscopy [45]. Furthermore, the real-time
dynamics of spin-wave excitations in the altermagnetic
insulating state could unveil the unconventional symmetry
of the state as well. An exciting direction is to explore the
interplay of doped altermagnets and competing supercon-
ducting instabilities, which may offer a route to realize
finite-momentum pairing or topological superconductivity.

Numerical data and simulation codes are available on
Zenodo [46].
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