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We study two-body correlations in a spin-balanced ultracold harmonically trapped Fermi gas of 6Li atoms in
the crossover from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-Condensate (BEC) regime.
For this, we precisely measure Tan’s contact using a novel method based on photoexcitation of atomic pairs,
which was recently proposed by Wang et al. [Photoexcitation measurement of Tan’s contact for a strongly
interactingFermi gas, Phys.Rev.A104, 063309 (2021).].Wemapout the contact in the entire phase diagramof
the BCS-BEC crossover for various temperatures and interaction strengths, probing regions in phase space that
have not been investigated yet. Our measurements reach an uncertainty of ≈2% at the lowest temperatures
and thus represent a precise quantitative benchmark. By comparison to our data, we localize the regions in
phase space where theoretical predictions and interpolations give valid results. In regions where the contact is
already well known we find excellent agreement with our measurements. Thus, our results demonstrate that
photoinduced loss is a precise probe to measure quantum correlations in a strongly interacting Fermi gas.
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A Fermi gas of ultracold atoms with tunable interactions
is an excellent platform for studying pair correlations and
superfluidity. The interactions can be controlled, e.g., via a
magnetically tunable Feshbach resonance where the scat-
tering state of two atoms is coupled to a weakly bound
molecular state of a closed channel at close range. This
allows for investigating the crossover from the BCS to the
BEC regime, where the system fundamentally changes its
physical character. In the weakly interacting BCS regime,
weakly bound Cooper pairs form on the surface of the
atomic Fermi sea with its strong interparticle correlations,
while in the BEC regime fermionic atoms combine to form
tightly bound bosonic molecules with small correlations
between them. Tan’s contact, first introduced by Tan
in 2008 [1–3], is a measure for short-range two-body
correlations and quantifies the likelihood of finding two
interacting fermions at very small distance. From a ther-
modynamical point of view the total contact I is an
extensive quantity, linearly scaling with the system size.
It appears in a number of important thermodynamic
relations for a strongly interacting Fermi gas.
The contact and several of its thermodynamic relations

have been investigated experimentally invarious approaches,
including radio-frequency (rf) spectroscopy [4–6], mapping
of the momentum distribution [4,7], Bragg spectroscopy [8],
and collisional decay [9,10]. In recent years, contact mea-
surements reached uncertainties as low as 2% [6–8]. So far,
however, contact investigations were only carried out in
particular areas of phase space, i.e., close to unitarity and at
the lowest temperatures. A precise and comprehensive study
across the entire phase diagram of the BCS-BEC crossover,
providing a full picture of the contact, has been missing.

Tan’s contact is expected to change smoothly from the BCS
to the BEC limit, but precise calculations of the contact
are still challenging especially in the regime of strong, near
resonant interactions between the particles. Therefore,
precise measurements in this area will result in an important
step forward towards a complete understanding of the
crossover physics.
Here, we provide a high precision measurement of

Tan’s contact across the full phase diagram of the
BCS-BEC crossover for temperatures up to two times
the Fermi temperature TF. Because of a careful calibra-
tion the data reach a combined statistical and systematic
uncertainty of ≈2% for the lowest temperatures (T ≈ 0),
and up to 10% for T=TF ≈ 1.5. Therefore, they represent a
quantitative benchmark to test theoretical model predic-
tions. For the contact measurements, we demonstrate yet
another method, which is based on laser-induced loss in
the atomic gas, as outlined in [11]. Atom pairs at close
range are photoexcited to a short-lived excited molecular
bound state, producing an atom loss rate which is
proportional to Tan’s contact. In our specific system,
photoexcitation occurs via a coherent admixture of a
closed-channel molecular bound state to the pair wave
function. This closed-channel bound state is also respon-
sible for the Feshbach resonance. Measurements of the
closed-channel fraction have been previously measured
in the group of Hulet [12] and in the group of
Pan [13] and they are closely related to the method
reported here. The measured closed-channel fraction
in [13] indicated a deviation by a factor of 3 from the
well-understood theoretical predictions on the BCS side.
This deviation does not occur in our measurements.
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Photoinduced two-body loss.—As pointed out in [14,15]
there is a very general and fundamental link between
the total contact I and the two-body loss rate of a two-
component Fermi gas

−
dN
dt

¼ −ℏIm½a�
2πmjaj2 I ; ð1Þ

where N is the total atom number, m is the atomic mass,
and a is the scattering length. If a has a finite imaginary
part, loss due to a two-body process is present. Thus, the
total contact of the spin-balanced Fermi gas can be simply
deduced from the induced two-body loss rate. This is quite
intuitive as two-body loss goes naturally along with two
atoms being at close range. Equation (1) holds for colli-
sional losses in s-wave collisions. For losses in p-wave
collisions, a similar relation was recently found [10,16].
We now consider the special situation where an atomic

s-wave collision takes place in the vicinity of a single,
magnetically tunable, intrinsically lossless Feshbach reso-
nance. Furthermore, two-body loss is induced via resonant
photoexcitation of an atom pair at close range to an
electronically excited, short-lived molecular state with a
lifetime 1=γ. For photoexcitation, the bare, closed-channel
bound state of the Feshbach resonance is coupled to the
excited molecular state with Rabi frequency Ω. For this
system, Ref. [11] has calculated the complex scattering
length a and Eq. (1) becomes

−
dN
dt

¼ ℏI
2πmabg

Ω2=ð2γWÞ
½1 − abg=as�−2 þ ½Ω2=ð2γWÞ�2 : ð2Þ

Here, as denotes the real-valued scattering length without
the photoexcitation coupling, abg is the corresponding
background scattering length and W the width of the
Feshbach resonance. For all practical purposes, the term
½Ω2=ð2γWÞ�2 in the denominator can be neglected in our
experiments.
Experiment.—For our measurements we use an ultracold

Fermi gas of 6Li atoms in the two lowest hyperfine states
jF ¼ 1=2; mF ¼ 1=2i and jF ¼ 1=2; mF ¼ −1=2i with
N=2 atoms per spin state. The atoms are trapped in a
3D harmonic trap which consists of a combination of an
optical dipole trap and a magnetic trap. The atom cloud is
cigar shaped, corresponding to the trapping frequencies
ωax ¼ 2π × 21 Hz in axial and ωr ¼ 2π × 150–2000 Hz
in radial direction, respectively. Using forced evaporative
cooling at a magnetic field of around 790 G we set a
precise atomic temperature in the range of 0.04–2 TF for
clouds with atom numbers between 5 × 105 and 2 × 106.
For a harmonically trapped gas, the Fermi temperature is
given by TF ¼ EF=kB ¼ ℏðωaxω

2
r3NÞ1=3=kB, where EF is

the Fermi energy and kB is the Boltzmann constant. By
tuning the magnetic field B, we control the particle
interaction with the help of the broad s-wave Feshbach

resonance at 832.18(8) G [17], which allows for entering
both the BCS (as < 0) and BEC regimes (as > 0) of the
crossover. For this resonance the width is W¼−2μB×
262.3ð3ÞG¼−2πℏ×734ð1ÞMHz, and abg¼−1582ð1Þa0
[17] where a0 is the Bohr radius.
To optically induce two-body loss, we excite atom pairs,

bound or unbound, to a deeply bound molecular level with
vibrational quantum number v0 ¼ 68 in the electronically
excited state A1Σþ

u with a linewidth of γ¼2π×12ð1ÞMHz,
as measured in our experiment [18]. For this, we make use
of the fact that the initial atom pair wave function has an
admixture from the (bare) molecular state X1Σþ

g ðv ¼ 38Þ,
from which the state A1Σþ

u ðv0 ¼ 68Þ can be reached via an
electric dipole transition [12]. The photoexcitation
scheme is shown in Fig. 5 of [22]. To drive the transition
we employ a 673 nm laser beam with an intensity of a few
μW=cm2 (where Ω≲ 2π × 1 MHz). At each magnetic
field, the laser is tuned to be resonant on the photo-
excitation transition. The photoexcitation leads to a
decay of the total atom number N within a few hundred
milliseconds. This slow decay ensures that the system
stays in thermal equilibrium during the exposure. This is
in contrast to previous experiments of ours where we
used fast loss to measure the pair fraction in the Fermi
gas, see [23].
We use high-field absorption imaging to measure the

number of the remaining atoms, bound or unbound, as
described in [23,24]. Pairs that had been previously photo-
excited to the molecular bound state are not detected
because they quickly decay to states that do not respond
to our absorption imaging scheme.
In Fig. 1 we show on a logarithmic scale the remaining

atoms as a function of time. The three datasets are recorded
at 753, 832, and 1078 G with initial interaction parameters
ðkFasÞ−1 ¼ 1.5; 0 and −1.65, corresponding to the BEC,
unitarity and BCS regimes, respectively. Here kF ¼
ð2mEF=ℏ2Þ1=2 is the Fermi momentum [25]. For better
comparison, the data were normalized to the initial atomic
numbers Nðt ¼ 0Þ. The laser power was adjusted so that
the initial relative loss rates are the same. Further details
of the measurement parameters can be found in the
Supplemental Material [26]. While on the BEC side at
ðkFasÞ−1 ¼ 1.5 the loss is well described by an exponen-
tial, it is clearly nonexponential on resonance and in the
BCS regime. This behavior was predicted theoretically [27]
and also studied recently in [13]. The exponential decay is
typical for a pure, weakly interacting, molecular ensemble
which is present in the BEC limit at zero temperature.
At unitarity and on the BCS side the nonexponential
decays reflect the internal changes of the degenerate
Fermi gas for different densities. These decays and changes
go hand-in-hand with a drop of the chemical potential of
the gas, see also [26].
Using Eq. (2) and the respective density-dependence of

the contact in the BCS, unitarity and BEC limit one can
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show [22,27] that the decays at zero temperature can be
described by

NðtÞ ¼ N0=ð1þ Γ0t=bÞb ð3Þ

with the initial decay rate Γ0 and b ¼ 2 in the BCS limit,
b ¼ 6 at unitarity and b → ∞ in the BEC limit. Our fits to
the data in Fig. 1 yield b ¼ 1.6� 0.2 at ðkFasÞ−1 ¼ −1.65
and b ¼ 3.9� 0.9 at ðkFasÞ−1 ¼ 0. For the decay curve at
ðkFasÞ−1 ¼ 1.5 we find that a pure exponential (or any
b≳ 20) fits well. Despite the quantitative deviations, this
shows that we already have a qualitative understanding of
the decay. The deviations might be explained by a slight
increase of the atom gas temperature for long photo-
excitation laser pulse durations (for further discussion
see [22]). We note, however, that it is the initial loss rate
Γ0, rather than b, which is relevant for the determination of
the contact I in our experiments. The decay rate at t ¼ 0,
according to Eq. (3), is simply Ṅ ¼ −N0Γ0. At t ¼ 0, the
atom number is the highest and therefore uncertainties are
the smallest. This has advantages compared to other
methods that rely on measuring the tails of rf spectra or
momentum distributions, where atomic signals are gener-
ally low. In order to get precise results we accurately
determine the atom numbers, the (effective) trapping
frequencies, the magnetic fields and the corresponding
scattering lengths, as explained in [22] where also effects
due to slight trap anharmonicities are discussed. In the
following we investigate the contact in the entire BCS-BEC
crossover, first for T ≈ 0 and afterwards also for T up to
2 TF.
Contact in the zero temperature limit.—For T ≈ 0 there

exist already some experimental data and calculations of

the contact from other groups which we can use for
comparison with our results. In our measurements we
typically achieve temperatures of T < 0.04TF ≲ TC, where
TC is the critical temperature for superfluidity. According
to Eq. (2) we need to measure dN=dt and Ω in order to
determine the contact I . We extract the initial decay rate
dN=dt from decay curves which are similar to those shown
in Fig. 1. Ω is given by Ω2 ¼ kI, where I is the photo-
excitation laser intensity and k is a constant which is
independent of the magnetic field B and therefore of as. We
can conveniently determine k by measuring dN=dt for a
given I at an interaction regime where the contact I is
known. [We note that when using this k, the constants γ,W
and m effectively drop out of Eq. (2), see [22].] Concretely,
we chose ðkFasÞ−1 ≳ 1 where the contact approaches the
analytical result I=NkF ¼ 4π=kFas [27]. With this cali-
bration we can then determine I from measurements of
dN=dt at any ðkFasÞ−1 throughout the crossover.
Our results are shown in Fig. 2 along with theoretical

calculations based on ground state energy expansions in
the BCS and BEC regimes (see [22,27]). The statistical
uncertainties of our data for I=NkF are below 2% and the
systematic errors due to anharmonic effects are below
0.3%. The solid red and dashed red lines are based on
expansions up to second order (fermionic Lee-Huang-Yang
correction) and up to the fourth order [28], respectively.
The results apparently converge for ðkFasÞ−1 < −1.5.

FIG. 2. Normalized contact I=NkF of a harmonically trapped
Fermi gas in the crossover from the BCS to the BEC regime at
T ≈ 0. Our data (blue circles) are shown together with a guide to
the eye (blue line). Uncertainties are smaller or comparable to the
size of the markers. Also shown are trap-integrated calculations
of the contact based on different approaches (see text) as well as
an interpolation [27] (purple). The inset shows our data point
(blue circle) at unitarity and data from other groups (diamonds),
namely, the EOS measurement [30] (gray), Bragg spectroscopy
measurements by [31] (yellow) and [8] (cyan), a quantum
Monte Carlo calculation [32] (green), an inelastic decay meas-
urement [9] (red), and rf spectroscopy measurements [6] (purple)
and a momentum distribution measurement [7] (orange).

FIG. 1. Remaining atom fraction as a function of the photo-
excitation laser pulse duration. The measurements were carried
out at magnetic fields of 753, 832, and 1078 G with the initial
ðkFasÞ−1 ¼ 1.5; 0;−1.65 corresponding to the BEC, unitarity
and BCS regimes of the crossover. The initial temperatures were
T=TF ¼ 0.07, 0.05, and 0.04, respectively. The continuous red
and green lines are fits according to Eq. (3), while the blue line is
an exponential (i.e. b ¼ ∞).
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The solid green and dashed dark green lines are based on
the expansions to second order (bosonic Lee-Huang-Yang
correction) in the BEC regime. While for the green
solid line the binding energy of a dimer is calculated via
EB ¼ −ℏ2=ma2s , a more accurate binding energy formula is
employed for the dashed dark green line [29]. This leads to
a 0.6% (1.3%) larger total contact at ðkFasÞ−1 ¼ 1ð2Þ.
In the inset we show a comparison to other measure-

ments and calculations at unitarity where we also find
excellent agreement. In order to compare results for
homogeneous systems at unitarity with values for the
contact for harmonically trapped ensembles, we divided
the homogeneous results by the factor ðC=nkhomF Þ=
ðI=NkFÞ¼ð105π=256Þξ1=4¼1.003 [27], using ξ¼0.367
for the Bertsch Parameter [33,34]. Here, C is the homo-
geneous contact density, n is the atom density and khomF is
the homogeneous Fermi momentum (see also [22]).
We further compare our data to calculations based on
the equation of state (EOS) measurements [30] (see [22])
and an interpolation from [27]. Here, we find small
deviations in the region −1 < ðkFasÞ−1 < −0.2, where
we obtain slightly higher values for the contact.
The contact is closely related to the closed-channel

fraction in the scattering state of two particles. In [22]
we discuss this relation and compare various experimental
and theoretical studies of the closed-channel fraction. The
results partially differ substantially from each other.
Finite temperature contact.—We now perform measure-

ments at various temperatures and couplings to map out
the contact in the entire phase diagram of the BCS-BEC
crossover. For this, we vary the temperature of our atom
cloud between 0.04 and 2 TF by changing the depth of our
dipole potential for forced evaporative cooling. As a result
we end up with around 5 × 104 (2 × 106) atoms at our
coldest (hottest) temperatures. To tune the interaction we
set the magnetic field to values between 703 G and 1080 G
leading to couplings in the range −1.5 < ðkFasÞ−1 < 2.5.
Our measurement results are shown as colored circles

in Fig. 3(a). Since the contact changes by 3 orders of
magnitude within the investigated range of temperatures
and couplings we plot the results logarithmically. By
interpolating the data, we obtain a continuous map of
the contact.
Close inspection shows that this map consists of slanted,

parallel stripes of color. This indicates that the description
of the map might be simplified within the given range.
Indeed, as shown in the Supplemental Material [26], to a
first approximation one can effectively replace the 2D map
by a 1D function. Although this observation is interesting,
at this point we cannot offer a simple physical explanation
for this.
To compare our measurements to theoretical predictions

we calculated the contact within the quantum virial
expansion [37] as done in [38] at unitarity. These calcu-
lations are shown in Fig. 3(b) and described in detail

in [22]. As the quantum virial expansion is a series
expansion in the fugacity z ¼ expðμ=kBTÞ, it is valid at
high temperatures and low chemical potentials μ. A table
of chemical potentials throughout the phase-space is
provided in [26].
The calculations show that for a harmonically trapped

system the virial expansion should give valid results for the
contact for temperatures as low as T ¼ 0.5TF, since in this
regime the fugacity is small. Below this temperature the
contact values calculated with the second and third order
expansion start to deviate from each other, as already
discussed in [38].
Figure 3(c) is the relative difference between experi-

mental data and the second order virial calculation. It shows
that our measurements are in good agreement with the

(a) (b)

(c) (d)

FIG. 3. Map of the contact in the BCS-BEC crossover. (a) Col-
ored circles are measurements for the contact I=NkF, where the
values are indicated by the color bar. The typical statistical
uncertainties are ≈2% (4%, 6%, 9%) for T=TF ¼ 0 (0.5, 1, 1.5)
and the systematic deviations due to the trap anharmonicity
are smaller than 0.3% (1.3%, 3.0%, 3.2%) for the same temper-
atures, see also [35]. The colored background area is an inter-
and extrapolation of the measured data. The continuous black
line marks the critical temperature for superfluidity TC, taken
from [36]. (b) The contact IQV;2=NkF calculated from the second-
order quantum virial expansion. The shaded area below
T ¼ 0.5TF marks the region where the virial expansion is expected
to lose its validity. (c) Relative difference ðIQV;2 − IÞ=I of our
measurements and the second order quantum virial calculation.
(d) Contact I normalized by the corresponding measured zero-
temperature contact as a function of temperature for three different
couplings ðkFasÞ−1. The data points are interpolations from the
measured data in (a). The continuous lines are guides to the eye.
The dashed lines are quantum virial calculations taken from (b).
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calculations in the given range of validity at temperatures
above 0.5 TF throughout the entire crossover. On the BEC
side our results agree well even down to the lowest
measured temperatures of 0.04 TF. This can be expected
since the major contribution to the contact arises from the
binding energy of the dimers, which is included in the
second order virial expansion. At unitarity and on the BCS
side for low temperatures, the Fermi gas is a system with
genuine many-body correlations. Since the second-order
virial expansion effectively only considers interactions
between two bodies, it fails to describe these regimes
quantitatively. Furthermore, on the BCS side the effective
chemical potential approaches the Fermi energy at low
temperatures. Therefore, the fugacity is not small anymore,
violating the validity of the virial expansion. Therefore,
in the low-T regime stretching from unitarity towards the
BCS limit our measurements are particularly important and
can serve as a benchmark for theoretical models.
The different regimes in the BCS-BEC crossover also

show up very clearly in Fig. 3(d), where we plot the contact
as a function of temperature for ðkFasÞ−1 ¼ −0.5, 0, and
1.5. On the BEC side at ðkFasÞ−1 ¼ 1.5 the dimers
dominate the contribution to the contact. For low enough
temperatures, when all atoms are bound in dimers,
the contact is a constant (as a function of temperature).
When T × kB becomes comparable to the binding energy,
the dimers become thermally unstable, break up and the
contact starts decreasing [see Fig. 3(d) blue curves]. On the
BCS side and at unitarity where ðkFasÞ−1 ≤ 0, no weakly
bound Feshbach molecular state exists. There, the decrease
of the contact with increasing temperature is mainly due to
overall decreasing atom density and to a breakdown of
short-range pair correlations. Here, at low temperatures, our
measurements for the contact strongly deviate from the
results of the second-order quantum virial expansion [see
Fig. 3(d) red and black curves].
Conclusion.—In conclusion, we have precisely mea-

sured Tan’s contact in the full phase diagram of the
BCS-BEC crossover using photoexcitation of fermion
pairs. Our results bridge the gap between the well-
understood BCS and BEC regimes and are in line with
recent measurements and calculations at unitarity. They
extend previous measurements of Tan’s contact to the finite
temperature regime and are consistent with the quantum
virial expansion for temperatures above 0.5TF.
For the future, we plan to extend our contact measure-

ments to homogeneous Fermi gases. It has been predicted
(and measured at unitarity [6]) [11,39] that a sudden change
in Tan’s contact should appear at the critical temperature TC
of superfluidity. Therefore, one could use such measure-
ments to precisely map out TC within the BCS-BEC
crossover. In the harmonically trapped system this sudden
change is washed out due to the inhomogeneous density
distribution in the trap. In addition, we also aim for
studying the contact for systems of lower dimensionality

or that feature spin imbalance. Here, probing pair correla-
tions by measuring the contact might uncover the presence
of the Fulde-Ferrell-Larkin-Ovchinnikov phase [40].
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