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We demonstrate that astrophysical constraints on the dense-matter equation of state place an upper
bound on the color-superconducting gap in dense matter above the transition from nuclear matter to quark
matter. Pairing effects in the color-flavor locked quark matter phase increase the pressure at high density,
and if this effect is sufficiently large then the requirements of causality and mechanical stability make it
impossible to reach such a pressure in a way that is consistent with what is known at lower densities. The
intermediate-density equation of state is inferred by considering extensions of chiral effective field theory
to neutron star densities, and conditioning these using current astrophysical observations of neutron star
radius, maximummass, and tidal deformability (PSR J0348þ 0432, PSR J1624-2230, PSR J0740þ 6620,
GW170817). At baryon number chemical potential μ ¼ 2.6 GeV we find a 95% upper limit on the color-
flavor locked pairing gap Δ of 457 MeV using overly conservative assumptions and 216 MeV with more
reasonable assumptions. This constraint may be strengthened by future astrophysical measurements as well
as by future advances in high-density QCD calculations.
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Introduction.—Observations of pulsars [1–9] and neu-
tron star mergers [10–14] place constraints on the thermo-
dynamic properties of neutron star matter, allowing the
inference of the equation of state (EOS) at neutron star densi-
ties [11,15–32]. Densities inside neutron stars (n≲ð5−8Þns,
with ns ≈ 0.16 fm−3 being the density of ordinary nuclear
matter) are not high enough to be described in a controlled
fashion by the rigorous calculations of perturbative quantum
chromodynamics (pQCD). It has nevertheless been demon-
strated that knowledge of the pQCD EOS at higher densities
[n ∼ ð20− 40Þns], where the calculation is under analytic
control, places an additional set of nontrivial constraints
(arising from the requirements of mechanical stability,
causality, and thermodynamic consistency) on the EOS
at neutron star densities as well as on integrals of the
EOS between neutron star densities and the high pQCD
densities [31,33,34]. This interdependence between the
neutron star EOS and the high-density EOS also allows us
to ask the converse question: can astrophysical observations
of neutron stars be used to obtain empirical access to high-
density QCD effects?
Here we shall examine color superconductivity as one

such candidate QCD effect. Above some density that is not
reliably known but is around the density of a neutron,
neutrons and other baryons cannot exist, and matter is
quark matter, with quarks of three colors and three flavors
filling states with momenta up to their respective Fermi
surfaces. At any density at which quark matter is found,
Cooper pairs form at low enough temperatures because of
the strong and attractive QCD interaction between pairs of

quarks that are antisymmetric in color, making dense
quark matter a color superconductor [35–39] with gaps
Δ at all or some Fermi surfaces. Pairing and the resulting
gaps arise from the attraction between quarks, which
is a leading-order feature of QCD, but the magnitude of
Δ is nonperturbative in the QCD coupling. In any color-
superconducting phase, the EOS receives nonperturbative
contributions that are of order Δ2μ2, with μ the baryon
number chemical potential.
At high enough densities, all nine quark Fermi momenta

approach the same value μ=3, and all nine quarks form
Cooper pairs and are gapped, with a color-flavor locking
(CFL) pairing pattern that is antisymmetric in flavor as well
as color and that breaks separate color and flavor sym-
metries while leaving symmetries that lock color and flavor
rotations unbroken [40].
This most symmetric CFL pairing pattern is only

possible if the Δ that results satisfies Δ≳m2
s=ð2μ=3Þ [39],

where ms is the mass of the strange quark and where
we are neglecting the up and down quark masses; this
condition is very likely satisfied at the chemical poten-
tials μ > 2 GeV of interest to us. The contribution to the
pressure coming from CFL color-superconducting pairing
is given by [39–41]

pCFL ¼ 1

3π2
Δ2μ2 ð1Þ

at zero temperature and, to a good approximation, at
temperatures that are ≪ Δ. The magnitude of Δ in the
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CFL phase has been calculated reliably only at the exceed-
ingly high densities where the QCD coupling gðμÞ is small.
There, Δ=μ ∝ g−5e−3π

2=
ffiffi
2

p
g [42], where the proportionality

constant is given by 845.7 [39,43–46]. The magnitude
of Δ at densities that are not asymptotically large has
been estimated in many models with estimates ranging
between 20 and 250 MeV, most typically around 50–
150MeV [37–40,47–52], with one recent model calculation
finding a value as large as 300 MeV [52]. This supports
our assumptions, which we shall rely upon throughout,
that T ≪ Δ in neutron stars and that Δ is comfortably
large enough for CFL pairing at the chemical potentials
μ > 2 GeV we shall consider. At lower densities, the
separation between the Fermi momenta for quarks with
differing flavors ∼m2

s=μ forces the system into some
less symmetric color-superconducting phase for which
pCSC=ðΔ2μ2Þ < 1=ð3π2Þ [39,53–63]. We do not need to
know anything about the pattern of pairing at these lower
densities in order to derive the constraints that we shall
describe. The impact on neutron star masses and radii of the
modification of the pressure by color-superconducting
pairing at densities achieved in neutron stars has been
investigated in model studies previously [41,64–66]; our
goal is different.We aim to usewhat is known about neutron
stars to obtain model-agnostic constraints on the color-
superconducting gap Δ at higher densities than are reached
in neutron stars where the pQCD calculations we shall
employ are well controlled and where quark matter is in the
CFL phase.
As noted in Ref. [67], in previous model-agnostic

Bayesian analyses seeking to use chiral effective field theory
(CEFT) and/or pQCD calculations and/or astrophysical
observations to constrain our knowledge of the dense-matter
EOS, the effects of color superconductivity on the EOS of
the quarkmatter found at high densities have been neglected,
because these effects are suppressed byOðΔ2=μ2Þ relative to
the dominant contributions to the pressure, which areOðμ4Þ.
[Specifically, pCFL ¼ p0ð6Δ=μÞ2, with p0 the pressure of
noninteracting quarks of three colors and flavors.] Here, we
remedy this neglect. The contributions to the pressure from
CFL pairing are small, as has long been understood, but we
shall demonstrate that pQCD calculations and astrophysical
measurements have now advanced to the point that we can
begin using them in concert to obtain interesting constraints
on the value ofΔ in high-density quark matter, and that will
becomeonlymore so in the near future.We shall see in Fig. 1
that addingpCFL to the pressure of high-density quarkmatter
would already be inconsistent with present-day astrophysi-
cal observations if thevalue ofΔwere to be at the high end of
the range of published estimates.
Analytic estimate of the constraint.—We start by deriv-

ing an analytic estimate for the maximal allowed value of
the superconducting gap Δ, employing knowledge about
the EOS at low and intermediate densities from CEFT and
neutron star observations and at high densities from pQCD.

This simple estimate is elevated to a full Bayesian analysis
in the next section, where the uncertainties of the neutron
star EOS inference as well as pQCD uncertainties are
treated systematically.
Let us suppose that we know the EOS at low densities,

μ ≤ μL, and at high densities, μ ≥ μH, and seek an EOS
interpolating between the lower-density thermodynamic
point ðμL;nL;pLÞ and the higher-density point ðμH;nH;pHÞ
that must (1) be mechanically stable, (2) be thermodynami-
cally consistent, and (3) satisfy causality [33]. Consider a
potential interpolating function for baryon number density
nðμÞ such that nðμLÞ ¼ nL and nðμHÞ ¼ nH. The require-
ment of stability ensures that the interpolation is a monotonic
single-valued function. Furthermore, the choice of nðμÞ
determines the pressure,

pðμÞ ¼ pL þ
Z

μ

μL

nðμÞdμ; ð2Þ

and this choice is thermodynamically consistent only if
pðμHÞ ¼ pH. Last, the choice is causal if and only if

c−2s ¼ ∂ log n
∂ log μ

≥ 1; ð3Þ

FIG. 1. Prior and posterior distributions for Δ at μH ¼ 2.6GeV;
see the section on Bayesian constraint on the gap for the Bayesian
analysis that yields these results. The purple posterior only uses
information about the EOS at densities n ≤ 1.1ns from CEFT
calculations, with no input from astrophysical observations. The
orange posterior uses the NS EOS inferred from astrophysical
observations only up to the μ at the center of a 2.1M⊙ star, and
requires only that c2s ≤ 1 at larger values of μ. These are both
overly conservative assumptions. The green posterior uses the
inferred NS EOS up to the μ at the center of the most massive
stable NS that could be supported by a given EOS, and requires
that c2s ≤ 1

2
at larger values of μ than that. These are reasonable

assumptions. The black dashed lines are at the 95% upper
credible limit for Δ for the three posterior distributions, with
those for the reasonable or conservative assumptions correspond-
ing to Δ ≤ 216 or 457 MeV, respectively.
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which imposes aminimumslope onnðμÞ. It is also possible to
impose a stronger constraint on the speed of sound,
c2s ≤ c2s;max, resulting in a larger minimum slope of nðμÞ.
Given a speed of sound constraint c2s ≤ c2s;max, we can

draw the curve nðμÞ between ðμL; nL; pLÞ and ðμH; nH; pHÞ
which will result in the maximal possible final pressure
pmax: this maximal-pressure curve will extend from
nðμHÞ ¼ nH down to μL with the minimum possible slope,
and then undergo a phase transition at which it drops
vertically to nL. Similarly, we can identify the minimal
possible final pressure pmin. The resulting extremal pres-
sure differences between baryon chemical potentials μL
and μH are

δpmax ¼
nHc2s;max

1þ c2s;max

�
μH − μL

�
μL
μH

�
1=c2s;max

�
; ð4Þ

δpmin ¼
nLc2s;max

1þ c2s;max

�
μH

�
μH
μL

�
1=c2s;max

− μL

�
: ð5Þ

If pH − pL > δpmax or pH − pL < δpmin, no viable EOS
can connect the end points of the low- and high-density
EOSs, ðμL; nL; pLÞ and ðμH; nH; pHÞ.
At high chemical potentials μ ≥ μH, the matter is

assumed to be in the CFL phase and the pressure and
baryon density can be expressed as sums

pHðμÞ ¼ ppQCDðμÞ þ pCFLðμÞ; ð6Þ

nHðμÞ ¼ npQCDðμÞ þ nCFLðμÞ; ð7Þ

where npQCD and ppQCD correspond to the perturbative
contributions and nCFL and pCFL are the contributions due
to the presence of a color-superconducting gap. [Note that
Eqs. (4) and (5) could serve to constrain any effect
modifying the pressure at high densities.] For the pertur-
bative contribution we take the current state-of-the-art next-
to-next-to-leading order perturbative QCD calculations at
zero temperature with two massless quarks and strange
quarks with (MS) mass msð2 GeVÞ ¼ 93.4 MeV [65,68].
At μ ¼ μH, the superconducting contribution is given by
Eq. (1) evaluated at μH and

nCFLðμHÞ ¼
2

3π2
μHΔðμHÞ2; ð8Þ

where here and throughout we have assumed that the gap is
a slowly varying function of μ.
When our goal is to constrain the gap, the maximum

pressure difference of Eq. (4) leads to a meaningful bound,
whereas δpmin is less relevant. Trusting the pQCD EOS
above μH and a low energy equation of state [either neutron
star (NS) EOS or CEFT] below μL, we can set the actual
pressure differencepH − pL equal to themaximumpressure
difference δpmax to extract the maximumpossible supercon-
ducting gap at μ ¼ μH, ΔðμHÞmax. Making the most

conservative choice for the speed of sound, c2s;max ¼ 1,
leads to the compact expression:

ΔmaxðμHÞ2 ¼
3π2

μ2L

�
npQCDðμHÞ

2μH
ðμ2H − μ2LÞ

−
�
ppQCDðμHÞ − pL

��
: ð9Þ

For the purposes of demonstration, for now we choose
μH ¼ 2.6 GeV, at which npQCDðμHÞ ≈ 40ns, a standard
high-density scale [72] where ppQCDðμHÞ≈3.6GeV=fm3,
and choose ðμL; nL; pLÞ to reflect CEFT calculations
at nL ¼ 1.1ns, which corresponds to choosing μL ¼
0.97 GeV [18] where pL ≈ ð2.2 − 3.5Þ MeV=fm3. With
these choices for ðμL; nL; pLÞ and ðμH; nH; pHÞ, we can use
Eq. (9) to estimate ΔmaxðμH ¼ 2.6 GeVÞ ≈ 880 MeV. If
instead we choose μL ¼ 1.45GeV and pL ¼ 160MeV=
fm3, which are reasonable estimates for the chemical
potential and pressure at the center of a 2.1M⊙ neutron
star, we estimate ΔmaxðμH ¼ 2.6 GeVÞ ≈ 440 MeV. In the
following section, we will make this constraint onΔ precise
by systematically treating the uncertainties in the astro-
physical observations and in the pQCD calculations in a
complete Bayesian analysis and additionally find stronger
constraints by imposing reasonable stricter limits on the
speed of sound at the highest densities.
Bayesian constraint on the gap.—We will now study the

posterior distribution of the gap Δ constrained by the
astrophysical observations, denoted as PðΔjdataÞ. The gap
is not directly constrained by neutron star observations, but
the observations constrain the EOS and therefore the values
of ðμL; nL; pLÞ we may employ in Eqs. (4) and (5). EOS
inference gives access to the posterior distribution for the
EOS at neutron star densities as constrained by astrophysi-
cal data PðEOSjdataÞ; here, we will use the posterior
distribution from Ref. [31] that infers the EOS incorpo-
rating the mass measurements of PSR J0348þ 0432 [2]
and PSR J1624-2230 [4], the simultaneous mass and radius
measurement of PSR J0740þ 6620 obtained using the
NICER telescope [9] as well as the tidal deformability
measurement of GW170817 achieved by the LIGO-Virgo
Collaboration [12]. In addition, the electromagnetic
counterpart of GW170807 is accounted for by assuming
that the final merger product is a black hole. This posterior
consists of a large sample of EOSs generated using a
Gaussian process prior conditioned with the CEFT up to
1.1ns [18] and the above-mentioned NS observational data.
The posterior distribution for Δ can then be obtained by

summing over all the members of the EOS sample so as to
marginalize over the inferred EOS,

PðΔjdataÞ ¼
Z
EOS

PðΔjEOSÞPðEOSjdataÞ: ð10Þ

PHYSICAL REVIEW LETTERS 132, 262701 (2024)

262701-3



The conditional probability for the gap given the EOS
PðΔjEOSÞ can be inferred using Bayes’s theorem,

PðΔjEOSÞ ¼ PðEOSjΔÞPðΔÞ
PðEOSÞ ; ð11Þ

for a given prior distribution for the gap PðΔÞ. The
likelihood function PðEOSjΔÞ describes the probability
of the low-density EOS given the model parameter Δ.
Following Ref. [33], the likelihood function is taken to be
unity if the condition δpmin < pH − pL < δpmax is satis-
fied, otherwise the function is taken to be zero.
For the high-density EOS at (and above) μ ¼ μH, we use

nHðμÞ and pHðμÞ as defined in Eqs. (6) and (7), that is, as a
sum of the perturbative result and the gap contribution. The
perturbative renormalization scale uncertainty is accounted
for by marginalizing over the renormalization scale param-
eter X∈ ½1=2; 2� in the scale-averaging prescription [73] as
in Ref. [31]. We must also choose the μ at which we
terminate our inferred EOS (taken from the posterior in
Ref. [31]): below this μ ¼ μL, we use the inferred EOS;
above μL, we employ the analytical argument of the
previous section with μL given by this μ.
The first thing we can try is to choose nL ¼ 1.1ns and

μL ¼ 0.97 GeV, below which the EOS is determined by
CEFT, and above this μL employ the argument of the
previous section while requiring only causality, c2s ≤ 1.
This means that we are not including anything we know
from astrophysical observations about the EOS at the
densities above 1.1ns found in neutron stars. Figure 1
displays the resulting posterior distribution for Δ at μH ¼
2.6 GeV obtained from this analysis (labeled as “CEFT”)
showing that the gap is consistent with zero, but the highest
values Δ are excluded. Quantifying the upper limit through
the 95th percentile of the distribution PðΔjdataÞ gives us an
upper limit of 799 MeV, which is in expected agreement
with the analytic estimate presented in the previous section.
The maximally conservative approach which uses

both CEFT and astrophysical observations is to set μL to
be the chemical potential reached at the center of a 2.1M⊙
NS [74], and above this μL to only require c2s ≤ 1 in the
argument of the previous section. In the following we will
call this the “conservative” scenario.
A reasonable approach to incorporating what we know is

to push μL somewhat higher, to its value at the center of the
most massive stable neutron star supported by a given EOS
taken from the posterior ensemble, leading to ðμL; nL; pLÞ ¼
ðμTOV; nTOV; pTOVÞ, where the subscript TOV refers to this
maximal density that could be realized in stable neutron stars.
Furthermore, while the most conservative speed of sound
constraint we can place on the EOS at chemical potentials
μ > μL is causality (c2s ≤ 1), if we take μL ¼ μTOV this
is high enough that a more reasonable constraint on c2s at
μ > μL should be somewhat lower. While the existence of
M ≳ 2M⊙ stars suggests that the sound speed may exceed

the conformal valueofc2s ¼ 1=3 at densities reached in stable
neutron stars [75], we know from pQCD calculations
that at higher densities, say for 2.2 < μ < 2.6 GeV ¼ μH,
c2s is close to 1=3 and certainly below 1=2 [31,32,34].
Furthermore, following an argument from Ref. [34] and
the previous section, if we require c2s ≤ 1 for μL < μ < μH,
then the maximal-pressure EOS that serves to set the
constraint on Δ will have c2s ¼ 1 over a wide range of μ
on the high side of this range, up to μH, in sharp disagreement
with what we know from pQCD. Furthermore, at the highest
densities the sound speed approaches the perturbative limit
(with gap Δ) from below. It is therefore unlikely that the
sound speed reaches values anywhere near unity in the
density rangenTOV < n < nH. In the following,we therefore
define a “reasonable” scenario in which we extend the prior
to the end of stability, setting μL ¼ μTOV, and require
c2s < 1=2 beyond.
As can be seen from Fig. 1, the values of the gap,

ΔðμH ¼ 2.6 GeVÞ, become more constrained upon includ-
ing astrophysical information, while the distributions for
both scenarios are still consistent with vanishing gap. For
the conservative scenario we find a 95% upper limit of
457 MeV, while for the reasonable scenario the upper limit
is 216 MeV. We see that the simpler analytic estimate of the
previous section yielded an upper limit on Δ in rough
agreement with what we can now conclude more reliably
from our conservative Bayesian analysis. The chemical
potential dependence of the conservative and reasonable
upper limits is displayed in Fig. 2, with the CEFT results at
nL ¼ 1.1ns discussed above shown also, for comparison.
The upper limit on ΔðμHÞ becomes tighter at lower
densities, with the caveat that the bound starts to become
less reliable given the poorer convergence of the pQCD
calculation at lower values of μH.
Although it is (at least to us) already impressive that

values of ΔðμHÞ above ∼200 MeV (meaning those on
the high side of prior theoretical expectations) are dis-
favored by what we know from astrophysical observa-
tions and pQCD calculations, the most important
implication of our work is that future observations and
future advances in pQCD calculations will further tighten
the constraints on ΔðμHÞ. We explore some possibilities
in the Appendix.
Looking ahead.—Although careful model studies have

been employed to investigate the impact of color super-
conductivity on the equation of state at neutron star
densities, see, e.g., Refs. [41,64–66], it has long been
assumed that the EOS is not sufficiently sensitive to
quark pairing for the physics of color superconductivity
to be probed by studying the EOS using model-agnostic
methods [39]. We have shown that the combination of what
we know about the EOS from neutron star observations
and from pQCD calculations already places a meaningful
model-independent 95% credible upper bound on the CFL

PHYSICAL REVIEW LETTERS 132, 262701 (2024)

262701-4



gap Δð2.6 GeVÞ < 216 MeV that challenges some of the
higher model predictions for this fundamental quantity.
Because the gap adds to the pressure, it makes it more

difficult to satisfy the integral condition pL > pH − δpmax.
The implication of this for using the QCD calculation in
EOS inference is that adding the gap makes the constraint
on the EOS stronger. Therefore, leaving it out (as has been
done prior to this work) is a conservative choice. That the
increase in pressure due to a moderate gap Δ can make the
QCD EOS inconsistent with present astrophysical obser-
vations is a demonstration of the power of the integral
constraints, in concert with today’s astrophysical data.
The strength of the upper limit is directly linked to the

pQCD calculation, providing a strong motivation to
enhance its accuracy. The next-to-next-to-leading order
results for the pQCD EOS have a substantial scale-variation
uncertainty [19,73], which is anticipated to decrease
significantly upon the completion of the next-to-next-to-
next-to-leading order (N3LO) calculation that is currently
in progress [70,71,76,77]. Depending on where the N3LO
result for the pressure lands, together with astrophysical
observations it could yield a more stringent upper bound on
Δ or, conceivably, could favor nonzero values of this
quantity. In the previous section, and in more detail in the

Appendix, we have provided examples of how hypothetical
future astrophysical measurements of neutron star masses,
radii, and tidal deformabilities could tighten the constraint
on Δ; these considerations only add to the already strong
motivation for making these measurements.
Finally, the determination of the gap has astrophysical

consequences that go beyond the EOS [39]. The magnitude
of the gap Δ, together with the pairing pattern (which
depends on μ and ms as well as on Δ), can have significant
effects on transport properties in quarkmatter andmay result
in observable consequences. These may include variations
in the cooling rates of neutron stars due to changes in their
heat capacity, emissivity, and thermal conductivity, as well
as effects on the ringdowns of mergers and damping of r
modes caused by changes in bulk and/or shear viscosity.
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Appendix: Possible consequences of future measure-
ments.—We anticipate that future astrophysical measure-
ments and future advances in pQCD calculations will
further tighten the constrains on ΔðμHÞ. To get a sense
of this, in Fig. 3 we show how the 5%–95% credible
interval for the radii of neutron stars with a given mass
obtained from our posterior distribution of EOSs in the
reasonable scenario varies depending on whether we
posit Δð2.6 GeVÞ ¼ 0, 200, or 250 MeV. This plot
indicates that future measurements that favor small
(large) radii will tend to disfavor (favor) larger values of
the color-superconducting gap. For example, we have

FIG. 2. The upper boundary of each colored region shows the
95% credible upper limit on the color-superconducting gap
ΔðμHÞ as a function of baryon number chemical potential μH
extracted in three different ways, all using a uniform prior forΔ in
the range 0 ≤ Δ ≤ 1 GeV. The dashed vertical line indicates
μH ¼ 2.6 GeV, the standard scale at which pQCD uncertainties
are well under control [72] at which we have plotted Fig. 1. The
boundary of the purple region indicates the constraint on Δ
obtained using only CEFT up to 1.1ns and the logic of the section
on analytic estimate of the constraint between there and μH . The
boundaries of the orange and green regions indicate the upper
limits on Δ found using the astrophysically inferred EOS
posterior either by extending the prior to the central density of
the heaviest possible stable NS and applying the logic of the
section on analytic estimate of the constraint with the assumption
that c2s < 1=2 at still higher densities (“reasonable”) or, more
conservatively, by using the posterior no further than the central
density of a 2.1M⊙ NS and requiring only causality
(“conservative”) at higher densities.

FIG. 3. 5%–95% boundaries of the posterior distributions for
the radii of NS with a given mass, assuming color-superconduct-
ing gaps of 0, 200, and 250 MeV at μH ¼ 2.6 GeV in the
“reasonable” scenario described in the text. Larger values of the
gap can be disfavored (favored) by the discovery of NS with
small (large) radii; they also imply a preference for slightly
smaller maximum stable NS masses.
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checked that a hypothetical measurement of a 1.4M⊙
NS with a radius of 11.6�0.1 km (13.1�0.1 km)
would tighten the upper bound on Δð2.6 GeVÞ from
the current 216 MeV to 203 MeV (loosen the upper
bound to 232 MeV) while tilting the histogram in
Fig. 1 toward smaller (larger) values of Δ. A hypothetical
future measurement of a 2.2M⊙ NS with a radius of
12� 0.1 km would yield a 95% credible upper limit
of Δð2.6 GeVÞ < 198 MeV.
We conclude this appendix with a look at how hypo-

thetical future astrophysical measurements could change
the posterior constraint on the CFL superconducting
gap ΔðμHÞ that we obtain from our Bayesian analysis
incorporating those measurements together with today’s

astrophysical observations, CEFT calculations, and pQCD
calculations. Figures 4 and 5 show how introducing various
hypothetical upper and lower bounds on NS radii, masses,
or tidal deformability into our Bayesian analysis of the
equation of state would each bring down the 95% credible
upper limit on the gap ΔðμHÞ. We observe in Fig. 4 that the
discovery of pulsars with masses reliably determined to be
at or above 2.2M⊙, or the discovery of an upper limit on the
radius of aM ¼ 1.4M⊙ neutron star R1.4⊙ < 12 km (or the
discovery of a corresponding limit on the tidal deform-
ability of Λ1.4⊙ ≲ 400), would tighten the upper bound on
ΔðμHÞ by about 10–20 MeV. Note that this strengthened
constraint may already be implied by the updated radius
measurement of PSR J0030þ 0451 reported recently by

FIG. 4. Impact of hypothetical future measurements of NS masses, radii, or tidal deformabilities on the constraint on the color-
superconducting gap obtained via our “reasonable” Bayesian analysis. In each panel, the light green shaded region corresponds to the
95% credible upper limit found using current astrophysical data and a bound of c2s ≤ 1

2
, as shown in green in Figs. 1 and 2. Each curve

shows the impact on the bound of adding one additional hypothetical astrophysical measurement. These curves are obtained by
considering only those EOSs in the posterior ensemble which satisfy the hypothetical measurement. In general, larger maximummasses,
smaller radii, and smaller tidal deformabilities result in a tighter upper limit on ΔðμH).

FIG. 5. Impact of a combination of two of the hypothetical future measurements from Fig. 4 on the upper limit on ΔðμHÞ. Each curve
shows the effect of a measurement showing the existence of a 2.2M⊙ NS together with a second measurement constraining either the
tidal deformability or radius of a 1.4M⊙ neutron star (left-hand panel) or a 2.0M⊙ neutron star (right-hand panel). The effect of the
observation of a 2.2M⊙ NS together with any one of the second hypothetical measurements makes the upper limit on ΔðμHÞ more
stringent than in the cases plotted in Fig. 4.
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NICER [78]. Similar tightening of the upper bound is
possible if a M ¼ 2.0M⊙ neutron star were observed to
have a radius in the range 11.5 < R2.0⊙ < 12 km (or if its
tidal deformability were observed to be in the correspond-
ing range 30Λ2.0⊙ ≲ 40). Figure 5 highlights that the
consequence of the discovery of pulsars with masses
≥ 2.2M⊙ together with one additional hypothetical
future measurement could yield an even more stringent
limit on ΔðμHÞ, tighter by about 20–40 MeV. At
μH ¼ 2.6 GeV, all of these conclusions are in accord with
what we were able to conclude more qualitatively from
Fig. 3. We have plotted Fig. 4 only for μH > 2.2 GeV and
Fig. 5 only for μH > 2.4 GeV because we find that the
statistical power of the ensemble that we are using to draw
inferences weakens at lower μH as we add each additional
hypothetical measurement.
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