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The hexadecapole deformation (β4) of the 238U nucleus has not been determined because its effect is
overwhelmed by those from the nucleus’ large quadrupole deformation (β2) in nuclear electric transition
measurements. In this Letter, we identify the nonlinear response of the hexadecapole anisotropy to
ellipticity in relativistic Uþ U collisions that is solely sensitive to β4 and insensitive to β2. We demonstrate
this by state-of-the-art hydrodynamic calculations and discuss the prospects of discovering the β4 of 238U in
heavy-ion data at the Relativistic Heavy Ion Collider.

DOI: 10.1103/PhysRevLett.132.262301

Introduction.—The study of nuclear deformation—the
shape of nuclei deviating from a sphere—is of fundamental
interest [1]. This deformation reflects the interaction
between the shell structure and the residual valence
nucleons, crucial for nucleosynthesis, nuclear fission,
and neutrinoless double-beta decays [2–6]. Deformations
of nuclear distributions (ρ) have been traditionally char-
acterized by β�2l ¼ P

m β�2lm, β
�
lm ¼ ð4π=3AR�l

0 ÞQ̂lm with
multipole moments Q̂lm ¼ R

rlρðr; θ;ϕÞYlmðθ;ϕÞdr3
(Ylm are spherical harmonics) [7]. With some assumptions,
the β�l for even-even nuclei can be obtained from the
ground state electric transition rates BðElÞ by β�l ¼
½4π=ð2lþ 1ÞZeR�l

0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðElÞp

. Here R�
0 ¼ 1.2A1=3 fm, Z

and A are the nuclear charge and mass numbers, and e
is the electron charge. Among deformed nuclei across
the nuclide chart, the 238U nucleus is considered one of the
most deformed with a substantial ground state BðE2Þ ¼
12.09� 0.20 e2b2, corresponding to β�2;U ¼ 0.286� 0.002
[8]. While β�2 has been most studied and determined for
many nuclei, the higher-order β�4 is not precisely known
even for the majority of the stable nuclei [9,10].
Nuclear densities are often described by the Woods-

Saxon (WS) distribution [11],

ρðr; θ;ϕÞ ¼ ρ0
1þ expðr−Ra Þ ;

R ¼ R0ð1þ β2Y20 þ β3Y30 þ β4Y40 þ � � �Þ; ð1Þ

where ρ0 is the saturation density determined byR
ρdr3 ¼ A, a is the diffuseness parameter, R0 is the radius

parameter. The parameters βn quantify nuclear multipole
deformations (β2: quadrupole, β3: octuple, β4: hexadeca-
pole); βn and β�n are related but not identical. In the
liquid drop limit (a → 0), up to the second order in β2
and β4 [7,12],

β�2 ¼
�
R0

R�
0

�
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�
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Corrections from diffuseness can be found in Refs. [11,13].
In this work, we simply use the β�2 value as one of the β2
values in demonstrating our main idea, and we do not
distinguish between proton and neutron distributions.
Effects of β2 on final-state observables in heavy ion

collisions have been discussed for decades [14–21].
For example, the elliptic flow parameter v2 in describing
particle azimuthal (ϕ relative to the impact parameter
direction) distribution in Fourier series, dN=dϕ ∝
1þP∞

n¼1 2vn cos nϕ, is strongly influenced by β2. In
relativistic heavy ion collisions, the ultrastrong interactions
convert the initial spatial anisotropy efficiently into an
anisotropic distribution of final-state particles in momen-
tum space, well described by hydrodynamic calculations
with viscosity to entropy density ratio close to the quantum
lower limit [22–25]. Several observables, such as the flow
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harmonics vn, the mean transverse momentum fluctuations,
and the flow harmonic correlations, have been proposed
to study the shape of 238U in relativistic Uþ U collisions
[16–20]. Such studies have so far mostly focused on β2.
Studies of the higher-order β4 have been limited because
effects of β4 are typically overwhelmed by those from β2.
With the available deformation parameters, hydrody-

namic calculations [16,17] overpredict the v2 ratio between
central Uþ U and Auþ Au collisions at the Relativistic
Heavy Ion Collider (RHIC). From Eq. (2a), a positive β4;U
of 238U would require a reduced β2;U to describe the
measured β�2. Based on this, Ryssens et al. [12] proposed
a smaller β2;U value than the commonly accepted one to fix
the issue and thereby claimed evidence for finite hexadeca-
pole deformation of 238U. This is rather indirect because v2
is known to be insensitive to β4. A simpler alternative
would be a larger β2;Au for the 197Au nucleus [17] because
our knowledge of β2 for odd-Z nuclei, like 197Au, is poor.
The question is then whether there is unambiguous

observable directly probing the β4 of 238U in relativistic
Uþ U collisions that is not overwhelmed by the large β2.
The answer is yes, and in this Letter we present such an
observable that is solely sensitive to β4.
The idea.—In hydrodynamics, high-order flow harmon-

ics vn (n ≥ 4) calculated with the 2-particle cumulant
method or the event-plane (EP) method of the same-
order (Φn),

vnf2g≡ hh2in;−ni ≈ vnfΦng; ð3Þ

are superpositions of linear and nonlinear components, e.g.,

the hexadecapole flow v4 ¼ vðLÞ4 þ vðNLÞ4 ¼ vðLÞ4 þ χ4;22v22
with the nonlinear response coefficient χ4;22. Here the
multiparticle azimuthal moment [26,27] is given by
hmin1;n2;…;nm ≡ heiðn1φk1

þn2φk2
þ���þnmφkm Þi, where h··i aver-

ages over all particles of interest (POI) in a given event, and
an outer hh··ii denotes further average over an ensemble of

events. For the most central collisions, vðLÞ4 ≫ vðNLÞ4 [28].

However, vðNLÞ4 is directly related to the eccentricity of the

collision geometry, while vðLÞ4 is dominated by event-by-
event fluctuations. As a result, linear relations βn ∝ ϵn (ϵn is
the multipole moment of the initial-state entropy density
distribution of the collision medium), e.g., used in
Ref. [29], are no longer appropriate for the extraction of
β4 as the linear relation vn ∝ ϵn is broken for n ≥ 4 [30]; a
full description of the dynamic evolution of the collision
medium is required.
In this work, we focus on observables related to v4fΦ2g

calculated with respect to the second-order EP, not the
same-order Φ4. The three-particle asymmetry cumulant,

ac2f3g≡ hh3i2;2;−4i ¼ hv42i1=2v4fΦ2g; ð4Þ

reflects the flow harmonic correlation between v2 and
v4 [31–34]. Here hv42i¼hh4i2;2;−2;−2i¼2v2f2g4−v2f4g4
denotes the four-particle cumulant. In the absence of
nonflow effects, the ac2f3g can be written as [32]

ac2f3g ¼ hv22v4 cos 4ðΦ4 −Φ2Þi: ð5Þ

The nonlinear response coefficient is given by [32]

χ4;22 ≡ v4fΦ2g
hv42i1=2

¼ ac2f3g
hv42i

: ð6Þ

It has been found in previous studies of isobar collisions
[34] that ac2f3g and hcos 4ðΦ4 −Φ2Þi are sensitive to β2
and β3, while χ4;22 is sensitive to neither. We will
demonstrate, using state-of-the-art viscous hydrodynamic
simulations, that χ4;22 is sensitive only to β4. This provides
a clean probe of β4;U of the 238U nucleus.
Transformation from nuclear deformation to final-state

observables depends on the evolution of the medium
created in relativistic heavy ion collisions, which is
theoretically uncertain. This issue can be circumvented
by comparing similar collision systems where those uncer-
tainties largely cancel, the best example of which is the
isobar Ruþ Ru and Zr þ Zr collisions [35–37]. In this
study we use Auþ Au collisions in comparison to Uþ U,
and construct relative quantities,

RðXÞ ¼ 2
XUU − XAuAu

XUU þ XAuAu
; ð7Þ

where X stands for a given observable, vnf2g2, ac2f3g,
hcos 4ðΦ4 −Φ2Þi, or χ4;22. If the 197Au nucleus is spherical,
then RðXÞ probes the deformations of 238U; in general,
RðXÞ is sensitive to the difference between the 238U and
197Au nuclei.
Model setup and analysis.—In this study, Uþ U and

Auþ Au collisions are calculated by the event-by-event
(2þ 1)-dimensional viscous hydrodynamic model iEBE-
VISHNU [38–40] to simulate the dynamic evolution of the
QGP medium, together with the hadron cascade UrQMD
model to simulate that of the subsequent hadronic matter
[41,42]. The initial condition of the collisions is obtained
by the TRENTo model [40,43], given a nuclear density
distribution. All parameters for the iEBE-VISHNU sim-
ulation are taken from [44], except the normalization
factor to match multiplicity, the inelastic cross section
σNN ¼ 42 mb to match collision energy, and the Gaussian
smearing parameter w ¼ 0.5 fm following a recent study
on nucleon size [45,46].
Five WS nuclear density distributions are used for 238U,

as listed in Table I. The first row is the commonly accepted
set taken from Ref. [8,47,48] where β4;U ¼ 0. The β4;U is
poorly known; to study its effect on final observables,
we choose a moderate value β4;U ¼ 0.1 [49,50] for UðnewÞ.

PHYSICAL REVIEW LETTERS 132, 262301 (2024)

262301-2



The other parameters for UðnewÞ are obtained by forcing
the moments of the density distribution, hr2i and hr4i
(hrni ¼ R

ρðrÞrndr3=A), and the quadrupole moment Q̂20

with the finite β4;U to be the same as those for β4;U ¼ 0. A
finite β4;U reduces the β2 to keep the value of β�2 unchanged
as constrained by experiment [cf Eq. (2a)]. Three more
cases are tested, Uðtest1Þ, Uðtest2Þ, and Uðtest3Þ, with various β2
and β4 values, keeping the other parameters simply as same
as on the first row (the hr2i, hr4i, and Q̂20 will be slightly
different). The WS parameters for Au listed in Table I are
set to the commonly used values [51,52]. A test case AuðtestÞ
is also included with a larger β2;Au.
About 106 hydrodynamic events are calculated for each

case of Uþ U and Auþ Au collisions, together with 10
oversampling of UrQMD afterburner for each hydrody-
namic event. The standard Q-cumulant method and the
pseudorapidity-separated subevent method [26,27] are used
and found to yield similar results. The results from the
former are presented in this Letter.
Results and discussions.—Figure 1(a) shows Rðv2f2g2Þ,

the Uþ U and Auþ Au difference in v2f2g2 by Eq. (7). As
v2f2g is sensitive to β2, the Rðv2f2g2Þ value is smaller for
UðnewÞ than for U in ultracentral collisions, leading to the
proposition in Ref. [12]. [The smaller β2 requires a larger β4
by Eq. (2a), but the effect of β4 is smaller as shown by the
Rðv2f2g2Þ of Uðtest1Þ.] However, such a smaller Rðv2f2g2Þ
can also be achieved with a larger β2;Au, as mentioned in the
introduction. This is verified by the ratio of U to AuðtestÞ
with a larger β2;Au magnitude [blue curve in Fig. 1(a)].
Thus, Rðv2f2g2Þ is ambiguous in constraining β4. In less
central collisions, the difference between the neutron
and proton distributions (i.e., the neutron skin) may play
a role [12,53,54], but those collisions are not the focus of
our study.
One would naively expect that Rðv4f2g2Þ is a sensitive

probe to β4. However, the effect of β4 on v4 is small in
Uþ U collisions, as shown in Fig. 1(b). We have checked
that, while the initial ϵ4 depends on β4, these dependencies
have largely been washed out by system evolution. As
pointed out in Ref. [30], the linear response vn ∝ ϵn no
longer holds for higher-order flow harmonics, as the

corresponding hydrodynamic response with event-by-event
fluctuations is not only nondiagonal but also nonlinear. The
linear and nonlinear components of v4 in Uþ U collisions
have been discussed by transport model simulations, and
the effect of β4 is found to be overwhelmed by the large β2
of U [18].
Previous studies indicate that ac2f3g is sensitive

to β2 and β3 in relativistic isobar collisions [34]. Such
sensitivities, inherited from the individual flow harmonic
differences [see Eq. (5)], remain in Rðac2f3gÞ as seen
in Fig 2(a) between UðnewÞ and Uðtest1Þ. The finite β4;U
significantly reduces Rðac2f3gÞ in ultracentral collisions,
evident by the change from U to UðnewÞ in Fig. 2(a). These
results indicate that Rðac2f3gÞ is sensitive to both β2 and
β4, and such sensitivities are most evident in ultracentral
collisions. We have calculated ac2f3g also with more
extreme deformations, Uðtest2Þ and Uðtest3Þ, which further
confirm the β2 and β4 sensitivities as shown in Fig. 2(a).
The EP correlation hcos 4ðΦ4 −Φ2Þi can be used to

reduce the individual flow contributions from lower order

TABLE I. WS parameters for 238U and 197Au used in this Letter.

R0 (fm) a (fm) β2 β4

U 6.87 0.556 0.286 0.000
UðnewÞ 6.90 0.538 0.259 0.100

Uðtest1Þ 6.87 0.556 0.286 0.100

Uðtest2Þ 6.87 0.556 0.232 0.100

Uðtest3Þ 6.87 0.556 0.286 0.200

Au 6.38 0.535 −0.131 −0.031
AuðtestÞ 6.38 0.535 −0.160 −0.031
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FIG. 1. The flow harmonic relative difference Rðvnf2gÞ be-
tween most central Uþ U and Auþ Au collisions at top
RHIC energy, obtained from iEBE-VISHNU simulations. The
standard Q-cumulant method is applied on charged particles with
0.2 < pT < 2 GeV=c and jηj < 2.
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multipoles [34]. Figure 2(b) shows Rðhcos 4ðΦ4 −Φ2ÞiÞ.
The trends are similar to Rðac2f3gÞ, while the effect of β2
has been reduced, as seen in the relative changes from
Fig. 2(a) to 2(b) for UðnewÞ, Uðtest1Þ, and Uðtest2Þ. We note,
however, that residual β2 dependence is still present in
Rðhcos 4ðΦ4 −Φ2ÞiÞ as suggested by the centrality depend-
ence of U=Au. This is because the EP correlations involve
not only the EP angles, but also their magnitude [32,55].
We have shown significant effect of β2 and smaller effect

of β4 on v2f2g2. Similar effect from β2 remain in ac2f3g;
the effect of β2 in hcos 4ðΦ4 −Φ2Þi is reduced. We have
also shown the effects of β4 are significant on both ac2f3g
and hcos 4ðΦ4 −Φ2Þi, dominating those from β2 in ultra-
central collisions. This makes them good observables to
probe β4. On the other hand, the nonvanishing values and
the variations of Rðac2f3gÞ and Rðhcos 4ðΦ4 −Φ2ÞiÞ with
centrality for the U density (where β4;U ¼ 0) suggest
sensitivities on system size difference between the two
systems, which would cause uncertainties to probe β4 in
ultracentral collisions.

We now move on to our ideal observable, the relative
difference in the nonlinear response coefficient, Rðχ4;22Þ.
This is shown in Fig. 3. The result for U density shows a
weak centrality dependence, with nearly zero magnitudes.
These features confirm that the χ4;22 is insensitive to β2
and the system size difference [34]. The later property is
important for the comparison between Uþ U and
Auþ Au, since the uncertainties due to differences in
system size are generally critical for some other observ-
ables. The results from UðnewÞ, Uðtest1Þ, and Uðtest2Þ with the
same β4;U ¼ 0.1 but different β2 overlap and differ sig-
nificantly from the U density where β4;U ¼ 0, further
demonstrating insensitivity of Rðχ4;22Þ to β2 and strong
sensitivity to β4;U. The latter is reinforced by the Uðtest3Þ

density with a more extreme β4. Moreover, the ambiguities
shown in Fig. 1(a) are no longer present, since the change in
β2;Au does not affect χ4;22, shown by the solid blue curve
(U=AuðtestÞ) in Fig. 3.
The nucleon-nucleon hard-core potential plays a crucial

role in nucleon-nucleon correlations, important to multi-
plicity fluctuations and participant eccentricities [56,57].
The hard-core potential is typically modeled by a minimum
nucleon-nucleon distance (dmin) [52,58]. In this study, we
use dmin ¼ 0.4 fm [52], and if a nucleon lands too close to
any previously sampled nucleon, its angular position is
regenerated until it lands far enough away. In principle,
once a new nucleon lands at d < dmin from any already-
generated nucleons, the nucleus has to start from scratch to
avoid any bias. We have checked that such brutal force
method gives the same results as the sampling method used
in TRENTo. We have also checked that using a large
dmin ¼ 0.9 fm inspired by Bayesian analysis [44,59] with
the TRENTo prescription does not affect our results.
It is noteworthy that previous studies indicate that

the χ4;22 depends on the freeze-out temperature in the
hydrodynamic simulation [60]. With UrQMD afterburner,

FIG. 2. The relative differences in (a) the asymmetric har-
monic correlation, Rðac2f3gÞ, and (b) the event-plane correla-
tion, Rðhcos 4ðΦ4 −Φ2ÞiÞ between most central Uþ U and
Auþ Au collisions. Simulation data and analysis are the same
as in Fig. 1.

FIG. 3. The relative difference in the nonlinear response co-
efficient, Rðχ4;22Þ, between most central UþU and AuþAu
collisions. Simulation data and analysis are the same as in Fig. 1.
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such dependencies are weakened, and we have verified that
a variation of Uþ U collisions by 10 MeV in the freeze-out
temperature does not affect our results.
We note that the Uþ U and Auþ Au collisions, while

similar, still have appreciable difference, on the order of 20%
in particle multiplicities. Differences in the hydrodynamic
properties between the systems, such as shear and bulk
viscosities, can cause differences in the final-state observables.
However, such differences in most central collisions [32] are
expected to be significantly smaller than the differences from
nuclear deformations shown in Figs. 2 and 3.
Experimental measurements of anisotropy flow are

contaminated by nonflow correlations—those unrelated
to the global event-wise correlation and of nonhydrody-
namic origins [61–64]. Nonflow contributions are typically
proportional to inverse multiplicity, thus are lower in Uþ U
than in Auþ Au collisions by approximately 20%.
Because of the larger deformity of 238U than 197Au, nonflow
contamination is further reduced in Uþ U. However, with
an overall nonflow contamination of a few tens of percents
in v2n in central collisions [65–69], nonflow can cause an
effect on the order of 10% on Rðv2f2g2Þ and possibly also
on Rðhcos 4ðΦ4 −Φ2ÞiÞ and Rðac2f3gÞ. Such contamina-
tion is insignificant compared to the magnitudes shown in
Fig. 2. Nonflow should be significantly suppressed in the
ratio quantity χ4;22, so their effects are likely negligible in
Rðχ4;22Þ compared to the magnitudes shown in Fig. 3.
Summary.—The quadrupole deformation β2;U of the 238U

nucleus has been well studied. Its hexadecapole deforma-
tion β4;U is, however, poorly known but is of critical
importance in nuclear physics. In this study, we use the
state-of-the-art iEBE-VISHNU model to investigate
the effect of β4;U on final-state observables in relativistic
heavy ion collisions, an unconventional way recently
developed to determine nuclear structure with instant
snapshots. It is found that the relative differences between
most central Uþ U and Auþ Au collisions in the asym-
metry cumulant Rðac2f3gÞ, the event-plane correlation
Rðhcos 4ðΦ4 −Φ2ÞiÞ, and the nonlinear response coeffi-
cient Rðχ4;22Þ are sensitive to β4. The first two are also
sensitive to β2, making them less ideal to probe β4. The last
observable, Rðχ4;22Þ, is found to be solely sensitive to β4;U,
and is independent of the lower-order multipoles and the
size difference between the two collision systems. This
makes Rðχ4;22Þ an ideal observable to probe β4;U. Such
information is already in store in RHIC data. Once β4;U is
measured, the β2;U can be determined more precisely than
our current knowledge which may truly resolve the v2
puzzle in Uþ U collisions. Our observable can also be
readily applied to relativistic isobar collisions to extract the
β4 of isobar nuclei, with even higher precision owe to the
exquisite control of systematics.
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