
Inclusive Hadronic Decay Rate of the τ Lepton
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We present a lattice determination of the inclusive decay rate of the process τ ↦ Xusντ in which the τ
lepton decays into a generic hadronic state Xus with ūs flavor quantum numbers. Our results have been
obtained in nf ¼ 2þ 1þ 1 isosymmetric QCD with full nonperturbative accuracy, without any operator
product expansion approximation and, except for the presently missing long-distance isospin-breaking
corrections, include a solid estimate of all sources of theoretical uncertainties. This has been possible by
using the Hansen-Lupo-Tantalo method [M. Hansen et al., Phys. Rev. D 99, 094508 (2019)] that we have
already successfully applied [A. Evangelista et al., Phys. Rev. D 108, 074513 (2023)] to compute the
inclusive decay rate of the process τ ↦ Xudντ in the ūd flavor channel. By combining our first-principles
theoretical results with the presently available experimental data, we extract the Cabibbo-Kobayashi-
Maskawa matrix element jVusj, the Cabibbo angle, with a 0.9% accuracy, dominated by the experimental
error.

DOI: 10.1103/PhysRevLett.132.261901

Introduction.—The hadronic decays of the τ lepton
represent very important probes of both the leptonic and
hadronic flavor sectors of the standard model. A particu-
larly interesting test is the one associated with the Cabibbo
angle, more precisely, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVusj, that can be extracted from
both exclusive and inclusive hadronic τ decays and then
compared with independent determinations coming from

hadronic decays. Currently, the most precise determina-
tions of jVusj are obtained from semileptonic kaon decays,
jVusjKl3

¼ 0.2232ð6Þ, and from the ratio of the leptonic
decay rates of kaons and pions, jVusjK=πl2 ¼ 0.2254ð5Þ
[1,2]. The two determinations exhibit a tension at the level
of 2.8 standard deviations (SD).
The exclusive decay rate Γðτ ↦ KντÞ can be computed

very precisely in QCD. Indeed, by neglecting long-distance
QED radiative corrections, the nonperturbative input
needed to compute Γðτ ↦ KντÞ is the same needed to
compute the decay rate ΓðK ↦ lν̄lÞ, namely, the leptonic
decay constant fK . By combining the world average of the
lattice QCD results for fK given in Ref. [1] with the average
of the presently available experimental measurements of
Γðτ ↦ KντÞ, Ref. [3] quotes jVusjτ-excl ¼ 0.2219ð17Þ, a
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value that is well compatible (0.7 SD) with jVusjKl3
but

lower (2 SD) than jVusjK=πl2 .
The focus of this Letter are the inclusive decays of the τ

in generic hadronic final states Xus with ūs flavor quantum
numbers. We provide, for the first time, first-principles
lattice results for the normalized decay rate

RðτÞ
us ¼ Γðτ ↦ XusντÞ

Γðτ ↦ eν̄eντÞ
; ð1Þ

that we obtained in nf ¼ 2þ 1þ 1 isosymmetric QCD
with full nonperturbative accuracy, without any operator
product expansion (OPE) approximation and that, except
for the presently missing long-distance isospin-breaking
corrections [the long-distance QED and strong isospin-
breaking corrections (that are presently known only for a
limited subset of the exclusive hadronic channels contrib-
uting to τ ↦ Xusντ) have been neglected in all previous

calculations of RðτÞ
us ], include a solid estimate of all sources

of theoretical uncertainties.

RðτÞ
us is an inclusive quantity that depends upon an energy

scale (the τ mass mτ) which is quite higher than ΛQCD and
has been extensively studied in the phenomenological
literature by relying on asymptotic freedom and by using
perturbative and/or OPE approximations. The OPE analysis
performed in Refs. [4,5], and recently reviewed in Ref. [3],
gives jVusjτ-OPE-1 ¼ 0.2184ð21Þ. A different analysis, per-
formed in Refs. [6,7] by determining the higher order terms
in the OPE expansion by fits to lattice current-current
correlators and by using a partly different experimental
input, gives jVusjτ-OPE-2 ¼ 0.2219ð22Þ. While these two
results are compatible at the level of 1 SD, in fact,
jVusjτ-OPE-1 is in strong tension (3.2 SD) with jVusjK=πl2 ;
see Fig. 3.
A direct nonperturbative lattice calculation of RðτÞ

us has
been deemed impossible for several years because of the
problem associated with the extraction of the needed
nonperturbative physical input, i.e., the spectral density
of two hadronic weak currents, from the corresponding
lattice current-current correlators.
The problem has been circumvented in Ref. [8] by

targeting the calculation of spectral integrals that can
readily be obtained starting from the lattice current-current
correlators. While the method avoids OPE assumptions, it
requires perturbative inputs to extract jVusj from the
dispersion integral of the measured hadronic τ decays that,
in fact, do not provide experimental information on the
hadronic spectral density for energies larger than mτ. The
considered dispersion relations have been tailored to
minimize the impact of these perturbative inputs, and
(taking into account the update of Ref. [7]) the result
jVusjτ-latt-disp ¼ 0.2240ð18Þ has been obtained. The nice
agreement of jVusjτ-latt-disp with both jVusjK=πl2 and
jVusjτ-excl can be traced back to the fact, emphasized in

Ref. [9], that the particular dispersion relation used
to get jVusjτ-latt-disp mostly relies on the exclusive decay
τ ↦ Kντ (which instead contributes for less than 25%

to RðτÞ
us ).

In Ref. [10], by building on previous ideas [11,12], we
have shown that a direct nonperturbative lattice calculation
of inclusive hadronic decay rates of the τ is possible by using
the Hansen-Lupo-Tantalo (HLT) method of Ref. [13] for the
extraction of smeared spectral densities from lattice corre-
lators. In that companion paper, we provided all the

theoretical ingredients needed to directly extract RðτÞ
us from

the current-current lattice correlators and performed the first

nonperturbative calculation of RðτÞ
ud , i.e., the normalized

inclusive decay rate in the ūd flavor channel. By combining

our first-principles lattice result RðτÞ
ud=jVudj2 ¼ 3.650ð28Þ

with the world average of the experimental data given in
Ref. [3], we obtained jVudjτ-latt-incl ¼ 0.9752ð39Þ. Our result
for jVudjτ-latt-incl has a 0.4% error and is fully compatiblewith
the more precise result jVudj0þ ¼ 0.973 73ð31Þ coming
from superallowed nuclear β decays [14].
In this work, we apply the method of Ref. [10] in the ūs

flavor channel and present our first-principles lattice QCD
result

RðτÞ
us =jVusj2 ¼ 3.407ð22Þ: ð2Þ

From this, by using the world average of the experimental
data given in Ref. [3], we get

jVusjτ-latt-incl ¼ 0.2189ð7Þthð18Þexp: ð3Þ

Our result, being in very good agreement with both
jVusjτ-OPE-1 and jVusjτ-OPE-2, confirms the previous esti-
mates of jVusj from inclusive hadronic τ decays and,
therefore, also confirms the previous observed tension of
about 2–3 SD with respect to other determinations.
Methods.—The method for a direct lattice QCD calcu-

lation of RðτÞ
us =jVusj2 has been introduced and explained in

full detail in Ref. [10]. The starting point of the calculation
is the following representation of the normalized inclusive
decay rate:

m3
τR

ðτÞ
us

12πSEWjVusj2
¼ lim

σ↦0

X
I¼T;L

Z
∞

0

dEKσ
I

�
E
mτ

�
E2ρIðE2Þ; ð4Þ

which we are now going to illustrate. The factor SEW ¼
1.0201ð3Þ takes into account the short-distance electroweak
corrections [15]. The scalar form factors ρT and ρL are the
transverse (T) and longitudinal (L) components of the
hadronic spectral density

ραβusðqÞ ¼ h0jJαusð0Þð2πÞ4δ4ðP − qÞJβusð0Þ†j0i
¼ ðqαqβ − gαβq2ÞρTðq2Þ þ qαqβρLðq2Þ; ð5Þ
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where P is the QCD 4-momentum operator and Jαus ¼
ūγαð1 − γ5Þs is the hadronic weak current. These also
appear in the spectral representation of the following
current-current Euclidean correlator:

CαβðtÞ ¼
Z

d3xTh0jJαusðt; xÞJβusð0Þ†j0i: ð6Þ

Indeed,

CTðtÞ ¼
1

3

X3
i¼1

CiiðtÞ ¼
Z

∞

0

dE
2π

e−EtE2ρTðE2Þ;

CLðtÞ ¼ C00ðtÞ ¼
Z

∞

0

dE
2π

e−EtE2ρLðE2Þ: ð7Þ

The kernels

Kσ
LðxÞ ¼

ð1 − x2Þ2Θσð1 − xÞ
x

;

Kσ
TðxÞ ¼ ð1þ 2x2ÞKσ

LðxÞ;

ΘσðxÞ ¼
1

1þ e−
x
σ
; lim

σ↦0
ΘσðxÞ ¼ θðxÞ; ð8Þ

are proportional to the phase-space factors and to an in-
finitely differentiable smooth representation of the Heavi-
side step function θðxÞ introduced in order to be able to
apply the HLT method [13]. In the limit in which the
smearing parameter σ vanishes, the energy integral of
Eq. (4) is restricted to the physical range E∈ ½0; mτ�.
As explained in full detail in Ref. [10], it is possible to

obtain at finite lattice spacing (a) approximate representa-
tions of the kernels Kσ

I ðE=mτÞ:

K̃σ
I

�
E
mτ

; gI

�
¼

XN
n¼1

gIðnÞe−naE; ð9Þ

in terms of the coefficients gI . The error of this approxi-
mation can be made to vanish in the limit of an infinite
number of Euclidean lattice times (N ↦ ∞). The HLT
method provides at finite N coefficients g⋆I corresponding
to optimal representations

m3
τR

ðτ;IÞ
us ðσÞ

24π2SEWjVusj2
¼

XN
n¼1

g⋆I ðnÞCIðanÞ ð10Þ

of the smeared spectral integrals appearing in Eq. (4) so
that, up to statistical and systematic errors,

RðτÞ
us ¼ lim

σ↦0

X
I¼T;L

Rðτ;IÞ
us ðσÞ: ð11Þ

See the Appendix and Ref. [10] for further details.

Materials.—The lattice gauge ensembles used in this
work, generated by the Extended Twisted Mass Collabo-
ration (ETMC), are listed in Table I and described in full
detail in Ref. [16]. With respect to that analysis, we have
included two additional gauge ensembles, the C112 and the
E112 (the ensemble with the finest lattice spacing among
those so far produced by the ETMC). Moreover, we have
computed the small corrections in the lattice bare parameters
required to match the isosymmetric QCD world defined by
fπ¼130.5MeV, mπ¼135.0MeV, mK¼494.6MeV, and
mDs

¼ 1967 MeV. This explains the small difference
between the lattice spacings and renormalization constants
given in Table I and the ones quoted in Ref. [16].
We relied on the same mixed-action setup described in

Refs. [16,17] and evaluated, for each of the ensembles in
Table I, the current-current correlator in Eq. (6), extending
to the ūs flavor channel the calculation performed in
Ref. [10] in the ūd sector (to which we refer for further
technical details). In full analogy with that calculation, we
considered two different regularizations of the weak had-
ronic current Jαus, which give rise to the so-called twisted
mass (“tm”) and Osterwalder-Seiler (“OS”) lattice corre-

lators CαβðtÞ. The results for RðτÞ
us ðσÞ obtained in the two

regularizations differ by Oða2Þ cutoff effects [18,19] and
must coincide in the continuum limit.
Results.—In our calculation, we considered several

values of the smearing parameter σ ∈ ½0.01; 0.16� and

evaluated Rðτ;IÞ
us ðσÞ on all the ensembles of Table I by

using the HLT method. The results of the HLT analyses at
σ > 0, including a quantitative study of the finite-size
effects, are presented and discussed in the Appendix.
Here, below, we discuss the continuum and σ ↦ 0 extrap-

olations from which we obtain our physical result for RðτÞ
us .

Further technical details on the analysis procedure can be
found in Ref. [10].
In Fig. 1, we give an example of the continuum

extrapolation for RðτÞ
ud ðσÞ, which we perform separately

for each simulated value of σ. To perform the extrapola-
tions, we take advantage of the fact that in the continuum
limit the results corresponding to the tm and OS regula-
rizations must coincide and, thus, perform a combined

TABLE I. ETMC gauge ensembles used in this work. We give
the values of the lattice spacing a, of the spatial lattice extent L,
and of the vector and axial renormalization constants ZV and ZA.
The temporal extent of the lattice is always T ¼ 2L.

ID L=a a (fm) L (fm) ZV ZA

B64 64 0.079 51(4) 5.09 0.706 377(20) 0.743 00(21)
B96 96 0.079 51(4) 7.63 0.706 427(10) 0.742 78(20)
C80 80 0.068 16(8) 5.45 0.725 405(14) 0.758 14(13)
C112 112 0.068 16(8) 7.63 0.725 421(10) 0.758 28(11)
D96 96 0.056 88(6) 5.46 0.744 110(7) 0.773 67(8)
E112 112 0.048 91(6) 5.48 0.758 231(5) 0.785 42(7)
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extrapolation of the form

RðτÞ
us ðσ; tmÞ ¼ RðσÞ þDtm

1 ðσÞa2 þDtm
2 ðσÞa4; ð12Þ

Rτ
usðσ;OSÞ ¼ RðσÞ þDOS

1 ðσÞa2 þDOS
2 ðσÞa4; ð13Þ

where RðσÞ, Dtm=OS
1 ðσÞ, and Dtm=OS

2 ðσÞ are σ-dependent
free fit parameters. We perform constant, linear, and
quadratic extrapolations in a2. At small values of
σ ≲ 0.12, where the size of the cutoff effects is remarkably
small, we did not perform fits including the a4 terms. In
order to combine the results obtained in the different
correlated continuum fits and provide our final determi-

nation of RðτÞ
us ðσÞ, we make use of the Bayesian Akaike

information criterion (BAIC) discussed in Sec. III B in
Ref. [10]. The histogram shown in Fig. 1 corresponds to the
probability distribution function (p.d.f.) of the continuum
extrapolated results. For all σ, we checked that at least one
of the fits performed has a χ2=d:o:f: close to unit. To
provide a quantitative measure of the quality of our
continuum-limit extrapolations, we considered the spread

ΔaðσÞ ¼
��RðτÞ

us ðσÞ − RðτÞ
us ðσ; aminÞ��

ΔRðτÞ
us ðσÞ

ð14Þ

between the continuum extrapolated value of RðτÞ
us ðσÞ and

the corresponding value at the finest simulated lattice
spacing (ensemble E112), in units of the uncertainty of

the continuum extrapolation ΔRðτÞ
us ðσÞ. The lattice spacing

dependence is essentially absent within uncertainties for

σ < 0.1, where we have ΔaðσÞ < 0.1, while it becomes
increasingly pronounced by increasing σ.
To obtain our final determination of RðτÞ

us =jVusj2, we need
to perform the extrapolation to vanishing σ. According to
the theoretical analysis presented in Appendix B in
Ref. [10], the corrections to the σ ¼ 0 limit are of the form

RðτÞ
us ðσÞ ¼ RðτÞ

us þ R4σ
4 þOðσ6Þ: ð15Þ

To carry out the extrapolation and to properly estimate the
associated systematic error, we perform a first fit to our data
including only σ4 corrections and considering all values of
σ ≤ 0.12 and a second, additional, σ4 þ σ6 fit over the full
range of σ explored. The results of these extrapolations are
shown in Fig. 2. The Oðσ6Þ corrections become numeri-
cally subleading for σ ≤ 0.12, while the σ4 corrections are
subleading for σ ≤ 0.04, where the quality of our con-
tinuum extrapolations is remarkably good and the depend-
ence upon σ is basically absent. Such behavior allows us to
take the σ ↦ 0 limit with full confidence.
Figure 2 also shows that the results corresponding to

different choices of the HLT algorithmic parameters (see
the Appendix) are in perfect agreement, thus confirming the
reliability of our estimates of the systematic errors asso-
ciated with the HLT reconstruction of the smearing kernels.
Taking into account all sources of uncertainties, our final

determination of RðτÞ
us =jVusj2 is

RðτÞ
us =jVusj2 ¼ 3.407ð19ÞstatþHLTþFSEð10Það4Þσ

¼ 3.407ð22Þ: ð16Þ

The first source of uncertainty is due to statistical errors and
finite-size effects (FSEs) and also includes the systematic
uncertainties associated with the HLT spectral reconstruc-
tions. (The HLT and FSE systematic errors have been
estimated with a data-driven approach [see Eq. (A7)] and,

FIG. 1. Illustrative example of the continuum extrapolation of

RðτÞ
us ðσÞ for σ ¼ 0.02. The data points in light blue and orange

correspond to the raw data obtained on the ensembles listed in
Table I, respectively, for the OS and tm regularizations. The data
points in dark red and dark blue are instead inclusive of the
systematic error due to finite-size effects. The different red (for
tm) and blue (for OS) lines show some of the fits obtained using a
constant or linear ansatz in a2. The histogram shown in the left
part of the figure corresponds to the distribution of the continuum
extrapolated results obtained after applying the BAIC. All data
correspond to the kernel reconstructions obtained with the
choice α ¼ rmax ¼ 4 of the HLT algorithmic parameters
(see the Appendix).

FIG. 2. Extrapolation to vanishing σ. The gray and pink bands
correspond, respectively, to the σ4 and σ4 þ σ6 fits to the data
obtained by using α ¼ rmax ¼ 4 for the HLT algorithmic param-
eters (see the Appendix). In the case of the σ4 fit, the data points at
σ > 0.12 have been excluded. The results corresponding to
different choices of the HLT algorithmic parameters are in
remarkably good agreement.
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therefore, are entangled with the statistical error.
Approximately, the HLT systematic error is negligible with
respect to the stat and FSE contributions which are instead
of similar size.) The second source of uncertainty is due to
the continuum-limit extrapolation and has been estimated
by taking into account the spread between the results
obtained in the different fits using the BAIC [see Eqs. (46)
and (47) in Ref. [10] for details]. The third source of
uncertainty is due to the σ ↦ 0 extrapolation, and it is
given by the difference between the results obtained in the
σ4 and σ4 þ σ6 fits shown in Fig. 2. By combining our

theoretical result with the experimental result RðτÞ
us ¼

0.1632ð27Þ quoted in Ref. [3], we obtain

jVusjτ-latt-incl ¼ 0.2189ð7Þthð18Þexp: ð17Þ

In Fig. 3, we compare our determination of jVusjwith the
other existing direct determinations as well as with various
determinations obtained by assuming the unitarity of the

CKM matrix, i.e., jVusj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jVudj2

p
. As the figure

shows, our determination of jVusj from inclusive τ decay
is in good agreement with both jVusjτ-OPE-1 and jVusjτ-OPE-2,
while it is smaller (of about 2 SD) than the determination of
Ref. [8] which, however, mostly relies on the experimental
value of the exclusive τ → Kνl decay.
Our current estimate of jVusj has been obtained by

neglecting long-distance isospin-breaking corrections.
These, instead, have been taken into account in the
determinations jVusjK=πl2 and jVusjKl3

from leptonic and
semileptonic decays [20–29]. The current difference
between our result in Eq. (17) and the determinations of
jVusj from leptonic and semileptonic decays is at the level
of 3.3 and 2.2 SD, respectively. We note that in order to
fully reconcile the 3.3 SD difference with respect to
jVusjK=πl2 one needs an isospin-breaking correction

δRðτÞ
us ¼ 2

�jVusjτ-latt-incl
jVusjK=πl2

− 1

�
¼ −0.058ð18Þ ð18Þ

on RðτÞ
us . At the current level of the theoretical precision, a

first-principles calculation of δRðτÞ
us on the lattice is needed.

Once this calculation is performed, experimental uncer-
tainties will wholly govern the determination of jVusj from
inclusive τ decays.
Conclusions.—In this work, we have extracted for the

first time jVusj from inclusive hadronic τ decays with
full nonperturbative accuracy and with a 0.9% relative
error that, currently, is dominated by the experimental
uncertainty.
Our isosymmetric QCD result has been obtained without

any perturbative approximation but is in fairly good
agreement with previous estimates obtained by using
OPE techniques. Therefore, our result confirms the pre-
viously observed tension of about 3 SD between τ-inclusive
and purely hadronic determinations of jVusj which can no
longer be attributed to the OPE approximation.
The origin of this tension can possibly be ascribed to the

long-distance isospin-breaking corrections, that have been
taken into account in the determinations of jVusj coming
from kaons and pions leptonic decays but that, as in all
previous determinations coming from inclusive hadronic τ
decays, we have presently neglected. In fact, having
obtained a fully nonperturbative result with subpercent
accuracy in isosymmetric QCD, further progress on the
study of inclusive hadronic τ decays can be done only
by computing these corrections from first principles. We
have already started a series of projects dedicated to this
challenging task.
On the other hand, we also noticed that in order to fully

reabsorb the observed tension a rather large (of the order of
5%) isospin-breaking correction would be needed. In light
of this observation, we think that it is important to
investigate the possibility that experimental uncertainties
on the τ-inclusive hadronic decay rate have been under-
estimated and, at the same time, to speculate about possible
new physics scenarios that could explain this puzzle.
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Appendix: HLT analysis.—The HLT coefficients are
obtained by considering different definitions of the so-
called norm functional,

Aα
I ½gI� ¼

Z
Emax

Emin

dEeαaE
����K̃σ

I

�
E
mτ

; gI

�
− Kσ

I

�
E
mτ

�����2; ðA1Þ

measuring the squared distance kK̃σ
I − Kσ

I k2 in functional
space with different definitions of the norm, and by
balancing the systematic error associated with an imperfect
reconstruction of the smearing kernels and the statistical

errors on Rðτ;IÞ
us ðσÞ. These are proportional to the so-called

error functional

BI½gI� ¼
XN

n1;n2¼1

gIðn1ÞgIðn2ÞCovIðan1; an2Þ; ðA2Þ

where CovI is the covariance matrix of the lattice
correlator. At fixed values of the algorithmic parameters
fN; α; λ; Emin; Emaxg, the coefficients are obtained by
minimizing a linear combination of the norm and error
functionals:

∂

∂gIðnÞ
ðAα

I ½gI� þ λBI½gI�ÞgI¼gλI
¼ 0: ðA3Þ

Given the coefficients gλI , the systematic error associated
with the approximate reconstruction of the smearing kernel
can be quantified by considering

dI½gλI � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A0
I ½gλI �
A0
I ½0�

s
: ðA4Þ

The trade-off parameter λ allows one to cope with the fact
that the statistical errors tend to diverge in the dI½gI� ↦ 0
and σ ↦ 0 limits (see Refs. [31–34] for extended
discussions on this point). Indeed, the quality of the kernel
reconstruction improves (dI½gλI � decreases) by decreasing λ,
while the statistical errors decrease (at the price of larger
values of dI½gλI �) by increasing λ. The optimal balance
between statistical and systematic errors is obtained by
studying the stability of the physical results, i.e., of

Rðτ;IÞ
us ðσÞ in this case, with respect to variations of the

algorithmic parameters.
Stability analyses: By relying on the fact that

ρL;TðE2Þ ¼ 0 for E < mK, we set Emin ¼ 0.9mK . The size
of the exponential basis, N, has always been fixed by the
condition that the uncertainty of CIðnaÞ for n ≤ N must be
smaller than 10%. The algorithmic parameter Emax has
been set to Emax ¼ rmax=a and different choices of rmax

have been employed.
In Fig. 4, we show representative examples of our

stability analyses. The robustness of this analysis procedure
has been quantitatively assessed in Ref. [31], where it has
been introduced, and in the works [10,32,33,35–38], where
it has been subsequently applied.
On each ensemble and for each regularization, the

uncertainty on Rðτ;IÞ
us ðσÞ is estimated by varying the param-

eters of the HLT algorithm and by checking that the results
are stable within the statistical errors. The stability plots can
be read from right to left (and can be understood in analogy
with the more familiar effective-mass plots from which the
masses of stable hadrons are usually extracted). In the
rightmost regions, where dI½gλI � is large, the results strongly
depend on the choice of the algorithmic parameters (in the
analogy, these are the small-time regions in which effective
masses are dominated by excited states). The leftmost
regions, where dI½gλI � is very small, correspond to excellent
reconstructions of the smearing kernels. In these regions (in
the analogy, these are the large-time regions in which the
signal on the effective masses of nucleons is usually lost),
the coefficients gλI tend to become huge in magnitude and
oscillating in sign. Neither the central values nor the errors
of the results can be trusted when this happens. Indeed, any
tiny numerical error on the lattice correlators, even round-
ing, excludes the possibility of getting trustworthy results
for the sums corresponding to Eq. (10) in these cases. A
reliable prediction can be obtained when the stability plots
show a plateau in the middle region (the effective-mass
plateau from which the hadron mass is extracted). By fitting
the results in the plateau region, when it exists, one can
certainly get a reliable estimate of the errors. As done in the
already referenced works [10,31–33,35–38], we decided
here to follow a slightly different procedure that, in fact,
provides more conservative estimates of the errors. The
central values and the statistical errors of our results are
quoted by selecting a first reference point in the stability
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region, corresponding to gλI ¼ g⋆I (red vertical lines in
Fig. 4). The choice of g⋆I is obviously not unique. Any point
inside the plateau region can be selected, and the smallest
statistical error would be obtained by taking the rightmost
one. In this work, we have chosen the g⋆I points of the
different stability analyses in the middle of the plateau
regions. The systematic errors associated with the neces-
sarily imperfect reconstruction of the kernels have been
estimated by selecting a second reference point on the left
of g⋆I , that we call g⋆⋆I (black vertical lines in Fig. 4) and
that corresponds to the condition

Aα
I ½g⋆⋆I �

BI½g⋆⋆I � ¼
1

10

Aα
I ½g⋆I �

BI½g⋆I �
: ðA5Þ

The ratio between the accuracy of the kernel reconstruction
and the statistical errors is 10 times smaller at g⋆⋆I with
respect to g⋆I . The systematic errors have then been
quantified by considering the differences

dR ¼ Rðτ;IÞ
us ðσ; g⋆I Þ − Rðτ;IÞ

us ðσ; g⋆⋆I Þ ðA6Þ

and their statistical errors (σdR) and by weighting these
differences by the probability that they are not due to
statistical fluctuations, i.e.,

ΔHLT
I ðσÞ ¼ jdRjerf

�
dRffiffiffi
2

p
σdR

�
: ðA7Þ

We performed 672 stability analyses (one for each ensem-
ble, for each lattice regularization, for each value of σ, and
for each considered value of α and rmax) and found
statistical errors typically at the 0.3%–0.5% level of

accuracy and systematic errors larger than 3 times the
statistical errors in only 2.8% of the cases. The results
corresponding to different values of α and rmax have been
used to cross check the reliability of our estimates of the
HLT systematic errors after having performed, separately,
the continuum and σ ↦ 0 extrapolations; see Fig. 2 in the
main text.

FIG. 4. Left: representative stability-analysis plots for Rðτ;IÞ
us ðσÞ. The data are plotted as functions of dI ½gλI � [see Eq. (A4)] and refer to

the results obtained on the B64 (Rðτ;TÞ
us ) and D96 (Rðτ;LÞ

us ) ensembles for σ ¼ 0.02, using the tm and OS regularization, respectively. In
each figure, the points of different colors correspond to different values of the algorithmic parameters α and rmax ¼ aEmax, while the red
and black vertical lines to the points dI ½g⋆I � and dI½g⋆⋆I � that we use to extract the central values and errors of our results. Right:
comparison between the exact and the reconstructed kernel functions corresponding to the optimal representation obtained in the case
α ¼ rmax ¼ 4 (red vertical line in the corresponding left plot).

FIG. 5. Top: comparison between the results obtained for

Rðτ;TÞ
us ðσÞ on the C80 and C112 ensembles in the OS regulari-

zation and for σ ¼ 0.02. Bottom: comparison between the results
obtained for Rτ;L

us ðσÞ on the B64 and B96 ensembles in the tm
regularization for σ ¼ 0.02. Data correspond to the reconstruction
obtained for α ¼ rmax ¼ 4. FSEs are in almost all cases of similar
size as the statistical error. In both panels, the vertical lines mark
the points dI ½g⋆I � > dI ½g⋆⋆I � for the two ensembles.
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Finite-size effects: We carried out a data-driven esti-
mate of the FSEs, which are quantified by the spread
between the results obtained on the C80 (L ∼ 5.5 fm) and
on the C112 (L ∼ 7.6 fm) ensembles, weighted by the
probability that this spread is not due to statistical fluctua-
tions and maximized over the tm and OS regularizations
[see Eqs. (43) and (44) in Ref. [10] ]. We then also checked
that these estimates are compatible with the corresponding
ones coming from the coarser ensembles B64 and B96 and
included the B96 ensemble (not corrected for FSEs) as an
extra point in our continuum extrapolations. In Fig. 5,
we give examples of such comparison. We have found
that FSEs are generally small and of similar size as our
statistical accuracy (larger than 2 times the statistical errors
in about 1% of the cases).
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