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The superconformal index of half-BPS states in N ¼ 4 supersymmetric Yang-Mills with gauge group
UðNÞ admits an expansion in terms of giant gravitons, INðqÞ ¼ I∞ðqÞ

P∞
m¼0 q

mN ÎmðqÞ, where m is the
number of giant gravitons and I∞ðqÞ is the graviton index. The expansion can be viewed as the
implementation of trace relations for finite N. We derive this expansion directly in supergravity from the
class of half-BPS solutions due to Lin, Lunin, and Maldacena in type IIB supergravity. The moduli space of
these configurations can be quantized using covariant quantization methods. We show how this
quantization leads to the precise expression for the expansion in terms of giant gravitons. Our proposal
provides a derivation of the giant graviton expansion directly in terms of quantized supergravity degrees of
freedom, and it recovers discrete data via quantum geometries that are classically nonsmooth.
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Introduction.—The AdS/CFT correspondence posits an
equivalence between quantum field theories and gravity
[1]. In some cases, this correspondence can be viewed as a
classical-quantum duality, where classical gravity can be
used to explore quantum aspects of the field theory, such as
anomalies [2] and entanglement entropy [3]. In its strongest
form, both sides are quantum, and thus AdS/CFT provides
a framework for a complete theory of quantum gravity.
The prototypical example of AdS/CFT is the duality

between four-dimensional N ¼ 4 supersymmetric-Yang-
Mills theory with UðNÞ gauge group and type-IIB super-
gravity on AdS5 × S5. In the large-N limit, the bulk is well
described by classical gravity. However, as pointed out
early on, understanding finite-N corrections is crucial to
ultimately elucidating discreteness of the spectrum in the
gravitational theory, and is central to answering black hole
puzzles such as the information paradox [4].
Discreteness naturally shows up in the spectrum of states

of a compact theory, such as on S1 × S3. Powerful results
for enumerating states of N ¼ 4 SYM can be obtained
within the sector of supersymmetric, i.e., BPS, states. Such
states are counted by the superconformal index, which is a
refined Witten index

INðqiÞ ¼ Tr
�ð−1ÞFe−βHqJii �: ð1Þ

Here ð−1ÞF is the Fermion number operator and H ¼
1
2
fQ;Q†g, where Q is one of the supercharges. The refine-

ment comes from introducing fugacities qi with correspond-
ing charges Ji commuting with Q. Because of the
supersymmetric cancellation between bosons and fermions,
only BPS states with H ¼ 0 contribute to the index.
In this Letter, we reproduce the 1

2
-BPS version of this

index from the dual supergravity point of view. Since the
index counts states in the field theory, the natural frame-
work here is to count the corresponding 1

2
-BPS configura-

tions in IIB supergravity. These solutions were obtained by
Lin, Lunin, and Maldacena (LLM) in Ref. [5], and are
commonly referred to as bubbling solutions. These LLM
solutions are smooth geometries (assuming appropriate
boundary conditions) and can be thought of as D3-branes
dissolved into fluxes much as AdS5 × S5 is obtained in the
near horizon limit of a stack of D3-branes. We develop a
complete understanding of the finite-N index directly in
supergravity and provide insights into gravitational state
counting that can be further applied to the study of black
hole microstates and quantum gravity.
The giant graviton expansion.—At leading order,

AdS/CFT pertains to the large-N limit of the field theory.
In this limit, the field-theoretic index reduces to a simple
form: INðqÞ → I∞ðqÞ, where we have focused on a single
fugacity, q. Finite-N corrections arise from trace relations
removing states from the spectrum. An explicit calculation
of the 1

2
-BPS index suggested a finite-N expansion of the

form [6,7]

INðqÞ ¼ I∞ðqÞ
�
1þ

X∞
m¼1

qmNÎmðqÞ
�
: ð2Þ
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This structure of finite-N corrections is known as the giant
graviton expansion of the index, and much recent work has
been devoted to understanding its features on both sides of
the AdS/CFT correspondence [8–16].
On the gravitational side, I∞ðqÞ has a clear interpreta-

tion as the multigraviton index, counting spin-2 fluctua-
tions in gravity [17]. This component of the index is
independent ofN. The finite-N dependence shows up in the
factors multiplying ÎmðqÞ, which is interpreted as the index
for the world volume theory of a stack of m D3-branes
wrapped on an S3 inside S5 [8–10]. The wrapped D3-branes
are stabilized by angular momentum on S5, and were called
giant gravitons in [18]. In the following, we demonstrate
how an accounting of gravitational solutions can precisely
reproduce both I∞ðqÞ and ÎmðqÞ.
The 1

2
-BPS index.—The 1

2
-BPS states have Δ ¼ J where

Δ is the conformal dimension, and J is one of the Cartan
generators of the SU(4) R symmetry. Counting such states
leads to

INðqÞ ¼ Tr½ð−1ÞFqJ� ¼ YN
n¼1

1

1 − qn
¼ 1

ðqÞN
; ð3Þ

where ðqÞm ¼ Q
m
j¼1ð1 − qjÞ is the Pochhammer symbol.

As a consequence of the q-binomial theorem, this may be
expanded as [19]

INðqÞ ¼ I∞ðqÞ
X∞
m¼0

ð−1Þm q
mðmþ1Þ

2

ðqÞm
qmN; ð4Þ

which admits an interpretation in terms of giant gravitons
due to the term qmN [8], whereN is viewed as the tension of
one giant graviton.
By manipulating the Pochhammer symbol, the giant

graviton expansion can be brought into the suggestive form

INðqÞ ¼ I∞ðqÞ
�
1þ

X∞
m¼1

qmN 1

ðq−1Þm

�
: ð5Þ

Comparison with (2) allows us to identify the m giant
graviton index as

ÎmðqÞ ¼
1

ðq−1Þm
¼ Imðq−1Þ: ð6Þ

The authors of [16,20] provided further insight into the
giant graviton expansion by showing that this expansion
indeed arises from considering the probe limit of giant
gravitons as D3-branes and semiclassical quantization
around the probe solution. Here, we instead recover the
giant graviton expansion of Eq. (5) directly from a fully
backreacted bubbling geometry.

The IIB geometry of giant gravitons.—In seeking a
holographic understanding of the 1

2
-BPS giant graviton

expansion, (5), one is led to consider the 1
2
-BPS configu-

rations in supergravity known as the LLM bubbling
solutions of type IIB supergravity with only the metric
and self-dual five-form active [5]. Because of the preserved
SOð4Þ × SOð4Þ ×R isometry, these solutions depend on
three coordinates, x1, x2, and y. Remarkably, the complete
solution is determined in terms of a single harmonic
function, zðx1; x2; yÞ, which obeys the equation

∂i∂izþ y∂y

�
∂yz

y

�
¼ 0: ð7Þ

LLM demonstrated that the solution is non-singular so long
as z ¼ � 1

2
on the y ¼ 0 plane. With these boundary

conditions at y ¼ 0, the solution to the Laplacian, (7), is
unique, and the IIB solution is fully determined.
The essential point is that LLM geometries are specified

by two colorings [21] of the ðx1; x2Þ plane, which we will
refer to as droplets. Let D denote the region of the y ¼ 0

plane, where z ¼ − 1
2
with boundary ∂D. The complement

Dc has z ¼ þ 1
2
. If the droplets are of finite size, then the

spacetime is asymptotically AdS5 × S5. In particular,
AdS5 × S5 corresponds to a disk of radius R in D, where
R ¼ L2 with L being the AdS radius. Giant gravitons
correspond to a disk with some droplets missing, and dual
giants correspond to droplets outside the disk [5]. Maximal
giants, i.e., those with maximum angular momentum,
correspond to a droplet in the center of the AdS disk.
While the LLM geometries are classical solutions to IIB

supergravity, quantization of the self-dual five-form flux
leads to a quantization of the area of D in integer units of
ð2πÞ2l4

p, where lp is the Planck length. Introducing
ℏ ¼ 2πl4

p, flux quantization becomes

N ¼ 1

2πℏ

Z
D
d2x∈N: ð8Þ

Here, N is identified with the flux of Fð5Þ through S5, or,
equivalently, the number of D3-branes that have dissolved
into fluxes. This choice of an effective ℏ is motivated by
thinking of the (x1,x2) plane as phase space with minimum
area 2πℏ. Flux quantization also requires that each z ¼ þ 1

2

droplet inside of D be quantized mi ∈N, where mi is
interpreted as the number of giant gravitons at position i
with m ¼ P

i mi the total number of giant gravitons.
The energy Δ and angular momentum J may be

extracted from the asymptotic behavior of the metric [5]:

Δ ¼ J ¼ 1

4πℏ2

�Z
D
d2xðx21 þ x22Þ −

1

2π

�Z
D
d2x

�
2
�
: ð9Þ
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The angular momentum J is the dual of the R charge in
field theory, and we denote the corresponding fugacity as q.
Quantization of LLM moduli space and the giant

graviton expansion.—To holographically reproduce the
1
2
-BPS index, we would like to count supergravity states
at fixed N. This corresponds to holding the quantized area
of the region D fixed according to (8) while allowing both
fluctuations of the boundary, ∂D, and topology change.
As observed in [5], boundary fluctuations, as shown in
Fig. 1(a), correspond to graviton modes, while giant gravi-
tons change the topology of the solution. Maximal giants
with fluctuations are depicted in Fig. 1(b). Classically, these
fluctuations live in a continuous moduli space. However,
they were quantized in [22] using the covariant quantiza-
tion method of [23,24].
To quantize giant graviton topologies, we consider the

case of covariant quantization with disjoint boundary, ∂D.
We are interested in the case that ∂D has a set of collected
components labeled by B such that ∂D ¼∪b∈B∂DðbÞ.
Assume that ∂DðbÞ is described by a closed curved γðbÞðsÞ
and let δγðbÞ⊥ ðsÞ denote the outward-directed variation of
∂DðbÞ in the normal direction at a point s∈ ∂DðbÞ. When
γðbÞðsÞ is described by a single-valued curve rðϕÞ, these are
related by

ds
rðϕÞdϕ ¼ δr

δγðbÞ⊥
: ð10Þ

This then has a symplectic form [22] and correspondingly
satisfies a Poisson bracket

n
δγðbÞ⊥ ðsÞ; δγðb̃Þ⊥ ðs̃Þ

o
¼ 2πℏδ0ðs − s̃Þδbb̃: ð11Þ

Importantly, different droplet boundaries are completely
decoupled. This is subject to the constraint of droplet area

quantization

I
γðbÞ

ds δγðbÞ⊥ ðsÞ ¼ 0; ð12Þ

which specifies symplectic sheets in the moduli space of
droplets.
We restrict our focus to maximal giants only. These

maximal giants are all overlapping and centered at the
origin of the LLM plane and hence yield a configuration of
the form shown in Fig. 1(b), with the area of the central hole
related to the number of maximal giants. For a configu-
ration of m maximal giant gravitons, flux quantization
requires

N ¼ R2 − r2

2ℏ
; m ¼ r2

2ℏ
: ð13Þ

We may parametrize the outer boundary by a curve RðϕÞ
and the inner boundary by a curve rðϕÞ, as shown in
Fig. 1(b), such that

RðϕÞ2 ¼
X
n∈Z

αneinϕ; α0 ¼ R2; α−n ¼ α�n;

rðϕÞ2 ¼
X
j∈Z

βjeijϕ; β0 ¼ r2; β−j ¼ β�j : ð14Þ

This parametrization automatically satisfies the area-
preserving constraint, (12). Moreover, after promoting
Poisson brackets to commutators, (11) requires that the
modes satisfy

½am; an� ¼ mδmþn; ½bm; bn� ¼ mδmþn; ð15Þ

where am ¼ αm=ð2ℏÞ and bj ¼ βj=ð2ℏÞ are the normalized
operators. Using (13), the maximal giants then have
charges

Δ ¼ J ¼ mN þ
X
n≥1

a−nan −
X
j≥1

b−jbj: ð16Þ

As a result, the index computed from the gravitational data
takes the form

TrqJ ¼
X∞
m¼0

qmN

�Y
n≥1

X
Nn≥0

qnNn

��Y
j≥1

X
Nj≥0

q−jNj

�
: ð17Þ

The first term on the right corresponds to J ¼ mN, which is
the “classical” angular momentum of m maximal giants.
The second term originates from the an fluctuations, with
Nn denoting the occupation number for each mode. This
term corresponds to quantized multigraviton fluctuations
on the outer boundary of the LLM disk, giving I∞ðqÞ ¼
1=ðqÞ∞ as expected.

FIG. 1. The LLM description of AdS5 × S5 is given by a disk of
radius R. Here we schematically portray fluctuations about this
background. (a) Graviton fluctuations parametrized by the curve
RðϕÞ. (b) Maximal giant with both graviton fluctuations on the
outer boundary parametrized by RðϕÞ and fluctuations of the
maximal giant on the inner boundary parametrized by rðϕÞ.
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Now consider the third term, which is the contribution of
the giant graviton fluctuations, ÎmðqÞ. We may not make
the approximation that the inner boundary is large enough
to support arbitrary bj fluctuations, as the size of the inner
boundary is associated with ℏ. Indeed, observe that bj
changes J by j, and so increases r2 by 2ℏj. Consequently,
the inner radius is

rðϕÞ2 ¼ 2ℏ

�
mþ

X
j

Njeijϕ
�
; ð18Þ

where Nj is the bj occupation number. If
P

j Nj > m, then
the radius squared can go negative. To avoid this, we must
cut off the sum of occupation numbers atm. The coefficient
of each term q−n in the expansion of ÎmðqÞ should
therefore count the sets of occupation numbers satisfying

X∞
j¼0

Njj ¼ n; ð19Þ

with the additional constraint on the total sum,
P

j Nj ≤ m.
This counting is precisely the number of partitions of n into
at most m parts. By a standard result from the theory of
partitions, the same result is obtained by counting the
number of partitions of n with no part greater than m.
Therefore,

ÎmðqÞ ¼
Ym
j¼1

1

1 − q−j
¼ 1

ðq−1Þm
¼ Imðq−1Þ; ð20Þ

giving the full index

INðqÞ ¼ I∞ðqÞ
X∞
m¼0

Imðq−1ÞqmN: ð21Þ

In particular, we see that (21), derived from quantizing the
LLM description, matches the giant graviton expansion (5).
The Fermi droplet picture and the boundary

Hamiltonian.—Although we have focused on semiclassical
quantization of bubbling geometries, one may take a
complementary approach to 1

2
-BPS states. LLM solutions

are dual to a subsector of chiral primaries in N ¼ 4 super
Yang-Mills with Δ ¼ J [5]. These admit a description in
terms of free fermions in a harmonic oscillator potential
[25,26]. In particular, the “droplets” in the ðx1; x2Þ plane in
the supergravity description precisely correspond with
droplets in the free fermion phase space. We now consider
the effective picture of quantizing this fermion liquid.
Consider a droplet of m (not necessarily maximal) giant

gravitons. Then this will have charges

Δ ¼ J ¼ r2

4ℏ2
ðR2 − r2 − ξ2Þ; ð22Þ

where ξ denotes the distance from the origin of the AdS
disk, R denotes the radius of the AdS disk, and r denotes
the radius of the giant(s) (see Fig. 2). Because of flux
quantization, this may be recast as

Δ ¼ J ¼ mðN − pÞ ¼ mp0; ð23Þ

where p ¼ ξ2=2ℏ is the quantization of ξ2, and p0 ¼
1;…; N is a convenient choice of angular momentum
quantization [27]. Then, we have a counting problem of
picking occupation numbers np for the N angular momen-
tum levels. To get the contribution of m giant gravitons, we
impose the following constraint:

n1 þ � � � þ nN ¼ m; ð24Þ

and then sum overm. It can be seen that this is the q analog
of the classic balls and bins problem. Thus, we must put m
giant gravitons into N angular momentum levels, whose
solution is

INðqÞ ¼
X∞
m¼0

�
N þm − 1

m

�
q

qm; ð25Þ

where the brackets denote the q-binomial coefficients. We
may observe that (25) can be rewritten as

INðqÞ ¼
X∞
m¼0

Xm
j¼0

qm−j

ðqÞm−j

ð−1Þjqjðjþ1Þ
2

ðqÞj
qjN; ð26Þ

which follows from the q-binomial theorem. Applying the
discrete version of Fubini’s theorem, we may swap the
order of the sums. One can do the sum over m using the q
expansion

I∞ðqÞ ¼
1

ðqÞ∞
¼

X∞
k¼0

qk

ðqÞk
; ð27Þ

FIG. 2. Schematic depiction of giants in the LLM droplet
picture. When ξ ¼ 0, these become maximal giants.
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to get that

INðqÞ ¼ I∞ðqÞ
X∞
j¼0

ð−1Þjqjðjþ1Þ
2

ðqÞj
qjN; ð28Þ

which is precisely the expansion (4). However, j is not
directly interpreted as the number of giant gravitons
(although it is related).
The Fermi droplet picture leads to further geometric

insight. The authors of [28] used deformation quantization
to obtain a Hamiltonian

H¼
X∞
m¼0

cm

�
mþ1

2

�
−
N2

2
;

X∞
m¼0

cm¼N; cm∈f0;1g:

ð29Þ

This is equivalent to the Hamiltonian of N free fermions in
a harmonic oscillator potential as follows:

H¼
XN
i¼1

�
fiþ

1

2

�
−
N2

2
; 0≤ f1 <f2< � � �<fN <∞;

ð30Þ

which may then be mapped onto our Fermi droplet picture
by identifying [29]

nN ¼ f1; nN−i¼ fiþ1−fi−1; i¼ 1;2;…;N−1; ð31Þ

which precisely reproduces our earlier Hamiltonian
H ¼ P

N
p¼1 pnp. The counting (24) then corresponds to

fixing fN ¼ N þm − 1.
Let us now discuss the central role of nonsmooth quanti-

zed geometries as follows from these Hamiltonians. The
coloring of the ðx1; x2Þ plane in [28] is given by

zðx1; x2Þ ¼
1

2
−
X∞
n¼0

cnϕnðx1; x2Þ;

ϕnðx1; x2Þ ¼ 2ð−1Þne−r2=ℏLn

�
2r2

ℏ

�
: ð32Þ

Even though ϕn is azimuthally symmetric, these solutions
generate the most general one via Uð∞Þ transformations as
discussed in [30] and we proceed to explore their impli-
cations for the gravitational picture. States of the form

cn<n0 ¼ 0; cn0≤n≤n1 ¼ 1; cn>n1 ¼ 0; ð33Þ

correspond to (nonfluctuating) maximal giant gravitons.
The rest correspond to “new geometries” in the LLM
language.
As shown in Fig. 3, there is an inherent fuzziness

of the colorings in (32). This reflects the fact that the

classical geometry breaks down when quantizing, and we
are left with a quantum geometry. A precedent in this
direction appeared in the context of superstar geometries
in [31,32].
Conclusions.—In order to obtain a discrete spectrum, the

gravitational theory must necessarily be quantized. Since
we have focused on the 1

2
-BPS states, this originates from

D3 branes in AdS5 × S5. There are various complementary
approaches to the quantization of such states. The index can
be obtained in the D3-brane world volume theory [16,20],
by using the Fermi droplet picture, or by quantizing smooth
LLM geometries, as we have shown here. Quantizing the
geometry leads to insight into the importance of nonsmooth
configurations.
It would be interesting to extend the enumeration of

gravity states to indices with less supersymmetry, such as
the ð1=16Þ-BPS index. The goal is to understand the
ð1=16Þ-BPS black holes (with singularities protected by
horizons) [33,34] in terms of ð1=16Þ-BPS bubbling geo-
metries in the same way D3-branes dissolve into LLM
geometries. One could then extend the present analysis to
the bubbling black hole case, and in this manner take us one
step closer to a complete understanding of black hole
microstates and the nature of quantum gravity.

This work is partially supported by the U.S. Department
of Energy under Grant No. DE-SC0007859.

FIG. 3. Plots of u ¼ 1
2
− z as a function of r=

ffiffiffi
ℏ

p
in blue and

their corresponding approximate classical interpretation in the
LLM moduli space in black. We have set N ¼ 50 for visuali-
zation. (a) corresponds to c1 ¼ � � � ¼ c50 ¼ 1 with all other cn
vanishing, and is identified with AdS5 × S5. (b) corresponds to
c31 ¼ � � � ¼ c80 ¼ 1 and all other cn vanishing, and can be
identified with a maximal giant.
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