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We demonstrate how to incorporate a catalyst to enhance the performance of a heat engine. Specifically,
we analyze efficiency in one of the simplest engine models, which operates in only two strokes and
comprises of a pair of two-level systems, potentially assisted by a d-dimensional catalyst. When no
catalysis is present, the efficiency of the machine is given by the Otto efficiency. Introducing the catalyst
allows for constructing a protocol which overcomes this bound, while new efficiency can be expressed in a
simple form as a generalization of Otto’s formula: 1 − ð1=dÞðωc=ωhÞ. The catalyst also provides a bigger
operational range of parameters in which the machine works as an engine. Although an increase in engine
efficiency is mostly accompanied by a decrease in work production (approaching zero as the system
approaches Carnot efficiency), it can lead to a more favorable trade-off between work and efficiency. The
provided example introduces new possibilities for enhancing performance of thermal machines through
finite-dimensional ancillary systems.
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With inspiration coming from the field of chemistry,
a catalyst has been introduced in quantum information
theory as an auxiliary system that expands the range of
possible state transformations while remaining unchanged
throughout the protocol [1,2]. Catalysis was subsequently
also applied to quantum thermodynamics [3–14]. In par-
ticular, catalysis was used to enhance performance of
cooling [15–17]. In the context of thermal machines
working in a cyclic fashion, it emerges as the most apparent
generalized thermodynamic resource.
In this Letter, we want to characterize the catalyst’s

ability to enhance the performance of quantum heat
engines. We show that the presence of a catalyst not only
boosts the efficiency, but also can drive a machine that was
not working as an engine to the engine regime. Moreover,
the catalyst can also increase an engine’s power (i.e., work
per cycle) or lead to a more favorable power versus
efficiency trade-off. These results are obtained within a
class of two-stroke engines closely related to the Otto
engine.
The conventional Otto cycle is one of the most well-

known paradigms for constructing heat engines at the
microscopic scale and has been thoroughly investigated
both theoretically [19–37] and experimentally [31,38–43].
Its simple operational mode is based on interaction with the
environment alternating with energy-level transformations,
collectively forming the four-stroke thermodynamic cycle.
The central question in the Otto engine studies is how to

enhance its performance. Most of the research primarily
focuses on dynamical optimization, aiming to achieve a
better balance between power and efficiency by considering
different system-environment couplings [41,44–46]. Yet,
there has been limited attention given to fundamentally
improving efficiency alone, solely through a less dissipa-
tive heat-to-work conversion. In this case, there seems to be
no novel ideas explored beyond the obvious approaches
like the usage of the nonthermal baths [47–51].
We consider an operational simplification of the

Otto cycle, which reduces it from four to just two strokes
[52–59]. The fundamental concept of the two-stroke engine
involves breaking down the cycle into two distinct stages:
(i) work extraction through an isoentropic process and
(ii) heat exchange via thermalization with heat baths. This
division significantly streamlines the engine’s operation, as
after the work stroke the cycle can be promptly completed
by bringing the working body into contact with the
respective environments. The primary trade-off for this
simplification is an increase in the engine’s dimension.
Specifically, the simplified, two-stroke engine requires
simultaneous operation on the pair of two-level systems
(TLSs), while only a single TLS is required for the four-
stroke Otto engine. Here, we focus on the two stroke-model
representing an analog of the Otto cycle. However, the
concept of two-stroke engines extends beyond this, and
detailed analysis, including optimality proofs, will be
presented for this general model in Ref. [60].
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Within this paradigm, we provide a systematic method-
ology for how to include a d-dimensional catalyst into
an operation of the two-stroke engine that leads to the
generalized “d-Otto” efficiency, given by the formula

ηd ¼ 1 −
1

d
ωc

ωh
; ð1Þ

with a positive work production for

d∈
�
ωc

ωh
;
βcωc

βhωh

�
: ð2Þ

We identify regions of parameters (temperatures βc and βh
and frequencies ωc and ωh) where the presence of the
catalyst is a necessary condition for the machine to work as
an engine as well as the regions where the catalyst brings
higher efficiency or work production.
Although we concentrate here on engines, the idea can

be easily generalized and applied for refrigerators and
heat pumps as well. Generally, it opens a new range of
possibilities for increasing the performance of thermal
machines. Notably, in contrast to most of the other studies,
in our case, the catalyst is included explicitly as the finite-
dimensional system.
Two-stroke engine.—We commence by introducing a

two-stroke engine, which is conceptually depicted in Fig. 1.
The engine operates in two fundamental steps: the work
stroke and the heat stroke. In the initial stage, two thermal
systems denoted as τh and τc (coming from hot and
cold bath and marked in Fig. 1 by red and blue colors,
respectively) are brought into contact with a third system ρs
(marked in green), functioning as a catalyst. The work
stroke is defined as the ergotropy extraction process
[61–65], where work is carried out by an external agent.
Finally, during the heat stroke, hot and cold systems are
thermally equilibrated, which also uncorrelates the catalyst
and restores the engine to its initial state.
A mathematical description of the proposed engine is

based on the following assumptions: (i) The initial state of
the engine is defined as the product state: ϱ¼ τh⊗ τc⊗ρs,
where τh;c∝ expð−βh;cHh;cÞ are thermal states with corre-
sponding (inverse) temperatures βh <βc and Hamiltonians
Hh;c; (ii) a single cycle of the engine is described by a
unitary process U, such that ϱ → UϱU†; (iii) the final
marginal state of the catalyst is equal to the initial one:
Trhc½UϱU†� ¼ ρs. Then, thermodynamics of the engine
is introduced based on the following exchanged heat
definitions:

Qh;c ¼ Tr½Hh;cðϱ −UϱU†Þ�; ð3Þ

which is precisely the amount of energy that needs to be
provided by external baths in order to thermalize the
systems. In accordance with the first law, the work that

is provided by external agent is equal to W ¼ Qc þQh,
such that efficiency of the engine is given by

η ¼ W
Qh

¼ 1þ Qc

Qh
: ð4Þ

One may prove that in this framework the second law
is satisfied, such that the Clausius inequality holds:
βhQh þ βcQc ≤ 0.
In this Letter, we are interested in one of the simplest

engines that consists of the hot τh and cold τc TLSs and
the d-dimensional catalyst ρs. The initial thermal states
of TLSs are τk ¼ Z−1

k ðj0ih0jk þ e−βkωk j1ih1jkÞ with
Hamiltonians Hk ¼ ωkj1ih1jk, where Zk ¼ 1þ e−βkωk

(for k ¼ h, c). The catalyst is described by the density
matrix ρs ¼

P
i pijiihijs with an arbitrary Hamiltonian

from d-dimensional Hilbert space. Moreover, we concen-
trate solely on unitary operations U given by the set of
transpositions of the energy levels (the so-called swaps).
For example, the swap jijki ↔ ji0j0k0i corresponds to the
unitary action Ujijki ¼ ji0j0k0i and Uji0j0k0i ¼ jijki.
Otto efficiency (without a catalyst).—Let us start with a

protocol with two TLSs (without the assisted catalyst),
which leads to the Otto efficiency. In this case, to extract
positive work W > 0 via the transposition of the energy
levels, there must be an inversion of the population in the
composite state of τh ⊗ τc. In the following, we represent

FIG. 1. Two-stroke engine assisted by a catalyst. The opera-
tional principle of a two-stroke engine is to combine thermal
resources, such as hot and cold thermal two-level systems, and
use an assisted catalyst to reduce the total energy of the system
by performing work W on an external agent. The first work
stroke is performed on an isolated system and is considered a
unitary process. After that, the used fuels are removed and
thermalized again, triggering corresponding hot Qh and cold
Qc heat flows. The catalyst, after removing the fuel, returns to
its initial state, allowing the entire process to be repeated. As a
main result, we demonstrate that a d-dimensional catalyst can
enhance the efficiency of the process to the generalized Otto’s
formula: η ¼ 1 − ð1=dÞðωc=ωhÞ.
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the initial (diagonal) density matrix by the vector of
probabilities p⃗0¼ðZhZcÞ−1ð1;e−βhωh ;e−βcωc ;e−βhωh−βcωcÞ
(with corresponding energies 0, ωh, ωc, and ωh þ ωc).
From here, we see that the ground state j00i is the most
occupied state and the excited state j11i is the least. Thus,
the only possibility to extract work from the system via
swap is to transpose j01i ↔ j10i providing that e−βhωh >
e−βcωc and ωh > ωc (i.e., the inversion of population is
present). In this case, we achieve the Otto efficiency:

η1 ¼ 1 −
ωc

ωh
: ð5Þ

One may also prove that this is the optimal efficiency in
the whole set of unitary operations [60]. The index “1”
indicates here a trivial one-dimensional catalyst. Although
we mainly focus on efficiency, later we will provide the
general formula for the work production [see Eq. (16)].
2-Otto efficiency (two-dimensional catalyst).—Let us

now reveal how the efficiency of the process may be
increased via the assisted catalyst, which essentially boils
down to increasing the hot heat Qh while keeping the cold
one Qc constant.
From now on, we concentrate solely on disjoint swaps.

One may consider an internal swap jijki ↔ ji0j0ki, that
does not affect the state of the catalyst, or the external swap
jijki ↔ ji0j0k0i, with the change in the catalyst state.
Clearly, the protocol based solely on internal swaps
satisfies the cyclicity at the price of trivializing the
problem. Thus, we consider at least one external swap
of the type jijki ↔ ji0j0k0i. Now, let us label the initial set
of occupation probabilities by p⃗l ¼ ðpðlÞ

1 ; pðlÞ
2 ; pðlÞ

3 ; pðlÞ
4 Þ,

for l ¼ 1, 2 representing two different states of the
catalyst, such that p⃗1 ¼ p p⃗0 and p⃗2 ¼ ð1 − pÞ p⃗0, where
p∈ ½0; 1� describes the state of the catalyst. The final
state of the system (after the permutation) is labeled by

s⃗l ¼ ðsðlÞ1 ; sðlÞ2 ; sðlÞ3 ; sðlÞ4 Þ, such that the cyclicity constraint

is given by
P

i p
ðlÞ
i ¼ P

i s
ðlÞ
i .

Then, let us consider a protocol with only one external
swap. We label it by i ↔ j, when the ith state from the
first block is swapped with the jth state from the second
one. For example, a swap 1 ↔ 3 results with a set of

occupation probabilities: s⃗1 ¼ ðp(2)
3 ; pð1Þ

2 ; pð1Þ
3 ; pð1Þ

4 Þ and

s⃗2 ¼ ðpð2Þ
1 ; pð2Þ

2 ;p(1)
1 ; pð2Þ

4 Þ. In general, for the i ↔ j swap,
one can show that the heat flow is given by

Qh;c ¼
�
εh;ci − εh;cj

��
pð1Þ
i − pð2Þ

j

�
; ð6Þ

where εh;ci are the corresponding energies of the hot or
cold TLS associated with the ith state. However, one
can easily show that to satisfy the cyclicity condition,

i.e.,
P

i p
ðlÞ
i ¼ P

i s
ðlÞ
i , the equality pð1Þ

i ¼ pð2Þ
j has to be

obeyed, which consequently results in no heat and work
flow at all. The same reasoning is true for the process with
three external swaps, since there is no difference between
the catalyst states, and the three-swap process is equivalent
to the one-swap process.
As a conclusion, we see that the only advantage that we

can get from the presence of the catalyst is for a process
with two external swaps. Let us then consider two disjoint
swaps: i ↔ j and n ↔ m. From this, we get a formula for
the heat flow:

Qk¼
�
εki −εkj

��
pð1Þ
i −pð2Þ

j

�
þ�

εkn−εkm
��

pð1Þ
n −pð2Þ

m

�
; ð7Þ

and the cyclicity condition translates to the relation

pð1Þ
i þ pð1Þ

n ¼ pð2Þ
j þ pð2Þ

m , such that

δp≡ pð1Þ
i − pð2Þ

j ¼ −
�
pð1Þ
n − pð2Þ

m

�
: ð8Þ

Finally, we have

Qk ¼ ðεki þ εkm − εkj − εknÞδp: ð9Þ

Then, to maximize the efficiency, one has to increase
the hot heat flow and decrease the cold one. This can be
achieved by putting i ¼ m ¼ 3 and j ¼ 2, n ¼ 1. In
accordance, we get

Qh ¼ 2ωhδp; Qc ¼ −ωcδp; ð10Þ

which results in the so-called “2-Otto” efficiency:

η2 ¼ 1 −
ωc

2ωh
: ð11Þ

d-Otto efficiency (d-dimensional catalyst).—The gener-
alization of the protocol for d-dimensional catalyst is
illustrated in Fig. 2. We propose a specific loop of disjoint
swaps, such that the cold and hot current is defined as

Qh;c ¼
X
i

ωh;c
i δpi; ð12Þ

where δpi is the probability difference and ωh;c
i is the

energy difference (for hot or cold subsystem) for the ith
swap. Then, since we consider a loop of swaps, such that
each swap links the neighboring columns, the cyclicity
condition boils down to a simple condition:

δpi ¼ δpj ≡ δp; ð13Þ

for all i and j, corresponding to null net flow of the
probability. With this insight, one designs swaps as in Fig. 2
to get the maximal hot heat flow and minimal (negative)
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cold heat flow, namely,

Qh ¼ dωhδp; Qc ¼ −ωcδp; ð14Þ

which leads to the generalized efficiency:

ηd ¼ 1 −
1

d
ωc

ωh
: ð15Þ

Work production and regime of operation.—By solving
δp [cf. (8)], we derive the formula for the work production:

Wd ¼ Qh þQc ¼
ðdωh − ωcÞ

�
e−dβhωh − e−βcωc

�
ð1þ e−βhωhÞð1þ e−βcωcÞfd

; ð16Þ

with

fd ¼
ðe−dβhωh − 1Þðe−βcωc − 1Þ

ð1 − e−βhωhÞ2

þ dðe−dβhωh − e−βcωcÞðe−βhωh − 1Þ
ð1 − e−βhωhÞ2 : ð17Þ

According to Eq. (15), the catalyst provides an enhance-
ment in engine efficiency ηd provided the machine works in
the engine’s mode, i.e., whenever the provided work (16) is
positiveWd > 0. The condition boils down to the following
inequality:

βh
βc

<
ωc

dωh
< 1; ð18Þ

that proves that the engine’s efficiency is always smaller
than Carnot, i.e., ηd < ηc ¼ 1 − βh=βc.

FIG. 2. Graphical representation of disjoint swaps that lead to d-Otto efficiency. The plot represents all the energy levels of the
composite system, where jijki≡ jiihjjicjkis. Each column represent a kth state of the catalyst, such that the cyclicity condition reflects
the conservation of the sum of probabilities within the column. For disjoint swaps, this boils down to the equal flow of the probability δp
between the connected columns. Connected levels (via either red or blue arrow) are swapped within the work extraction stage. The red
and blue arrows represent the energy changes of hot and cold TLS, respectively, where the up arrow corresponds to increase and down
arrow to decrease in energy. The process is designed in such a way that, if δp > 0, the hot TLS is deexcited in each transposition and the
cold TLS is excited in one of the transpositions. For d transpositions, we get the following heat flows: Qh ¼ dδQh ¼ dωhδp and
Qc ¼ −δQc ¼ −ωcδp, which implies η ¼ 1þQc=Qh ¼ 1 − ωc=ðdωhÞ.

FIG. 3. Regimes of the enginemode.According to inequality (18),
the regime of the engine mode (i.e., withW > 0) is provided solely
by the frequency ratio ωc=ωh and temperature ratio βc=βh. The
graph presents regimes for different dimensions of the catalyst d.
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Equivalently, for fixed bath temperatures, we provide the
range of all possible dimensions of the catalyst:

d∈
�
ωc

ωh
;
βcωc

βhωh

�
: ð19Þ

(A larger range of parameters for which the engine with
d-dimensional catalyst is operating was obtained via a more
general protocol given in [60]). Figure 3 presents the range
of operation of the engine assisted by the d-dimensional
catalyst, given by the ratio of frequencies ωc=ωh and
temperatures βc=βh, with extensions due to catalyst visible.
Nevertheless, for every d > 1, the range for d does not
cover the entire range for d − 1, so that there exists a regime
where only a standard two-stroke Otto engine works (i.e.,
with d ¼ 1), and the catalytic approach is ineffective in
improving its efficiency or work production.

Finally, one may ask, is the catalyst able to enhance also
the trade-off between efficiency and work production? In
Fig. 4, we provide the positive answer by exploring the
trade-off via changing the dimension of the catalyst d or the
ratio of frequencies ωc=ωh. In particular, one observes that
the catalyst can simultaneously increase both the efficiency
and power (i.e., the performed work per cycle). Moreover,
in the high-temperature limit of the hot bath, by increasing
the size of the catalyst, one gets a more preferable
efficiency versus power curves in a full range of the engine
performance.
Discussion.—This Letter outlines a microscopic heat

engine comprised of a pair of two-level systems that
completes a thermodynamic cycle in two strokes. Our
primary contribution is the formulation of a protocol
that surpasses the optimal efficiency of this engine
(given by Otto’s formula [60]) by incorporating a fine-
dimensional catalyst. We have demonstrated that a
d-dimensional catalyst results in a generalized d-Otto
efficiency (15), which notably exhibits catalytic enhance-
ment even with the smallest two-dimensional catalyst.
Additionally, a catalyst extends the engine’s operational
range and can offer a superior efficiency versus work
production trade-off.
The methodology of modifying heat currents via catalysts,

studied here for a specific two-stroke engine, can be success-
fully applied to other thermalmachines aswell. This opens up
avenues for future research in microscopic engines and could
contribute to cutting-edge technologies, such as the utilization
of thermalmachines in quantumcomputing (e.g., by applying
them for the qubit resetting [66]).
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FIG. 4. Efficiency versus work production trade-off. The trade-
off for a top panel is explored via changing the dimension of the
catalyst d (points on the curve), whereas for a bottom panel via
changing the ratio of frequencies ωc=ωh. In the top panel,
catalytic enhancement is generally observed in the increased
efficiency and, particularly, in increased work production. In the
bottom panel, the high-temperature limit of the hot bath provides
a more favorable trade-off across the full range of operation.
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