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The state of an open quantum system undergoing an adiabatic process evolves by following the
instantaneous stationary state of its time-dependent generator. This observation allows one to characterize,
for a generic adiabatic evolution, the average dynamics of the open system. However, information about
fluctuations of dynamical observables, such as the number of photons emitted or the time-integrated
stochastic entropy production in single experimental runs, requires controlling the whole spectrum of the
generator and not only the stationary state. Here, we show how such information can be obtained in
adiabatic open quantum dynamics by exploiting tools from large deviation theory. We prove an adiabatic
theorem for deformed generators, which allows us to encode, in a biased quantum state, the full counting
statistics of generic time-integrated dynamical observables. We further compute the probability associated
with an arbitrary “rare” time history of the observable and derive a dynamics which realizes it in its typical
behavior. Our results provide a way to characterize and engineer adiabatic open quantum dynamics and to
control their fluctuations.
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Introduction.—Systems evolving adiabatically, i.e., via
slow driving protocols, find many applications in physics.
In closed quantum systems, adiabatic dynamics are charac-
terized by the decoupled evolution of the Hamiltonian
eigenvectors [1–10], which is crucial for adiabatic quantum
computation [11–15] and important experimental protocols
such as stimulated Raman adiabatic passage [16]. The
presence of decoherence and dissipation typically imposes
a fundamental timescale in which this decoupled evolution
can beobserved [17–21], as explored in the context of optimal
control [22–25] and of noisy quantum computation [26,27].
Nevertheless, genuine adiabatic dynamics in open quantum
systems occur when the state of the system follows the
instantaneous stationary state of its dynamical generator
[28–33], as is the case for quasistatic thermodynamic proc-
esses [34–37].
Single realizations of open quantum dynamics, or

quantum trajectories, are stochastic [38,39], which can
manifest in the occurrence of quantum jumps, for instance
related to photon emissions [40–45]. For Markovian
dynamics, the full counting statistics of jump-related
observables, such as entropy production currents
[44,46,47], can be obtained using deformed dynamical
generators, introduced within the framework of large
deviation theory [48–61]. However, much less is known
about the characterization of dynamical fluctuations
in open quantum dynamics with time-dependent generators
[62–64], including the case of adiabatic processes.
In this Letter, we show how to fully characterize the

counting statistics of jump-related observables in adiabatic

open quantum dynamics in which the system follows
the instantaneous stationary state of the dynamical gen-
erator [cf. Fig. 1(a)]. We prove an adiabatic theorem for
deformed dynamical generators [57,59], which allows us to
demonstrate that, in these processes, the statistics of time-
integrated observables assumes a large deviation form [48].
Furthermore, we show that adiabatic open quantumdynamics
obeyaso-called temporal additivityprinciple [65–68].That is,
the observables follow an instantaneous large deviation
principle at all times [cf. Figs. 1(b) and 1(c)]. This fact opens
up the possibility of deriving the probability of any time
history of the observable, see sketch in Figs. 1(b) and 1(c).
Such a probability provides a higher level of description of
dynamical fluctuations in the adiabatic process than what can
be obtained from the full counting statistics of time-integrated
observables.The latter can indeedbeobtained from the former
througha contractionprinciple [48], [cf. Fig. 1(c)]. Finally,we
construct an auxiliary dynamics [57,59,69]which can realize,
as typical realization, any rare realization of the observable
timehistory in theoriginal adiabaticprocess.Our findings (see
Refs. [65–67,70–79] for related results in classical dynamics)
shed new insights on open quantum adiabatic processes and
provide a powerful approach to control, even as a function of
time, their fluctuatingproperties.Ourmethods can be used for
studying fluctuations in adiabatic quantum machines
[43,80,81], both in or out of equilibrium, or for dissipative
quantum computation [82–85].
Open quantum dynamics.—We consider quantum sys-

tems whose dynamics is described by the master equation
ρ̇ðtÞ ¼ LðtÞ½ρðtÞ�, with time-dependent generator
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LðtÞ½ρ� ¼ −i½H̃ðtÞρ − ρH̃†ðtÞ� þ
X
j

J jðtÞ½ρ�: ð1Þ

Here, H̃ðtÞ ¼ HðtÞ − ði=2ÞPj J
†
jðtÞJjðtÞ is the effective

Hamiltonian [39], J jðtÞ½ρ� ¼ JjðtÞρJ†jðtÞ, with JjðtÞ being
the jump operators. The above equation generates the
evolution of the system state ρðtÞ averaged over all possible
realizations of the system-environment interaction [17,38].
Single dynamical realizations are instead described by
quantum jump trajectories [57,59,86], generated by the
stochastic process

dψðtÞ ¼ BðtÞ½ψðtÞ�dt

þ
X
j

�
J jðtÞ½ψðtÞ�

TrðJ jðtÞ½ψðtÞ�Þ
− ψðtÞ

�
dnjðtÞ; ð2Þ

which evolves pure quantum states ψ ¼ jψihψ j. Here,
dψðtÞ is the state increment while dnjðtÞ are Poisson
increments, which can only take the value 0 or 1 with
average value EψðtÞ¼ψ ½dnjðtÞ� ¼ dtTrðJ jðtÞ½ψ �Þ [17,38],
where EψðtÞ¼ψ denotes the expectation over the process

conditional to the system being in ψ at time t. When a
Poisson increment is equal to 1, the state undergoes a jump
associated with the corresponding J jðtÞ. When all incre-
ments are zero, the system evolves continuously through
the map

BðtÞ½ψ � ¼−iH̃ðtÞψþ iψH̃†ðtÞ−ψTr½−iH̃ðtÞψþ iψH̃†ðtÞ�:

A generic time-integrated observable associated with
quantum-jump events can thus be defined as

QðtÞ ¼
X
j

Z
t

0

fjðvÞdnjðvÞ: ð3Þ

When fjðvÞ ¼ 1 ∀ j, QðtÞ equals the total number of
jumps occurred during a trajectory. For other choices, it is
instead related to, for instance, stochastic heat or entropy
production in thermal machines [43,44,47,87,88]. To char-
acterize the properties of this observable, it is convenient to
work with its moment generating function, defined as
ZsðtÞ ¼ E½e−sQðtÞ� through the field s, which is conjugate
to the observable. As shown in Supplemental Material
(SM) [89], the moment generating function can be com-
puted as ZsðtÞ ¼ Tr½ρsðtÞ�, where ρ̇sðtÞ ¼ LsðtÞ½ρsðtÞ� and
with LsðtÞ being the deformed dynamical generator [57,90]

LsðtÞ½ρ� ¼ LðtÞ½ρ� þ
X
j

ðe−sfjðtÞ − 1ÞJ jðtÞ½ρ�: ð4Þ

For time-independent deformed generators and large evo-
lution times τ, ZsðτÞ obeys a large deviation principle,
ZsðτÞ ≈ eτθs with θs being the scaled cumulant generating
function ofQðτÞ. In such a time-independent framework, θs
coincides with the dominant eigenvalue of Ls [48,57] and
fully characterizes the probability P½QðτÞ ¼ Q��. This also
takes a large deviation form P½QðτÞ ¼ Q�� ≈ e−τIðQ�=τÞ,
with rate function given by the Legendre-Fenchel transform
IðxÞ ¼ sups∈Rf−sx − θsg [48]. In what follows, we derive
the behavior of ZsðτÞ for the case of adiabatic open
quantum dynamics. To this end, we consider that ŻsðtÞ ¼
TrfLsðtÞ½ϱsðtÞ�gZsðtÞ, where ϱsðtÞ ¼ ρsðtÞ=Tr½ρsðtÞ�,
which we can use to express the moment generating
function as

ZsðτÞ ¼ e
R

τ

0
TrðLsðtÞ½ϱsðtÞ�Þdt: ð5Þ

As we show below, this expression allows us to write θs in
terms of the instantaneous dominant eigenvalues of LsðtÞ.
Adiabatic theorem for deformed generators.—We con-

sider LsðtÞ to vary on the slow timescale u ¼ t=τ, with τ
being the total evolution time and we assume it to be
diagonalizable with right and left eigenmatrices, rms ðtÞ
and lm

s ðtÞ. These are such that LsðtÞ½rms ðtÞ� ¼ λms ðtÞrms ðtÞ
and L�

sðtÞ½lm
s ðtÞ� ¼ λms ðtÞlm

s ðtÞ, where λms ðtÞ are the

FIG. 1. Adiabatic open quantum dynamics and large devia-
tions. (a) During an adiabatic dynamics (total evolution time τ),
the system is described by the instantaneous steady state ρSSðuÞ
of the dynamical generator LðuÞ, in the slow rescaled timescale
u ¼ t=τ. (b) Sketch of different time histories of the instantaneous
“rate” qðuÞ of an observable of interest, e.g., the instantaneous
photonemission rate. We highlight the typical time history, two
with small Gaussian fluctuations and a rare one displaying a large
deviation from the typical value. (c) Because of the slow
dynamics, the system spends a large amount of time in each
rescaled time interval du. This implies that the probability
function for each instantaneous rate qðuÞ [see illustration in
panel (a)] obeys a large deviation principle. Combining them
provides the probability functional for time histories of the
observable. (d) The full counting statistics of the time-integrated
observable, QðτÞ ¼ τ

R
1
0 du qðuÞ, can be obtained from the

optimal, i.e., most likely, trajectories providing the values
of QðτÞ ¼ Q�.
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instantaneous eigenvalues of LsðtÞ and L�
sðtÞ is the dual

generator acting on operators. We consider the dominant
eigenvalue λ0sðtÞ to be unique (and thus real), so that
λ0sðtÞ > Refλms ðtÞg, for m ≥ 1. With these definitions,
our adiabatic condition reads (C1) kṙms ðtÞk; kl̇m

s ðtÞk;
jλ̇ms ðtÞj ∼ 1=τ, encoding that the generator varies slowly
for large τ. Our second assumption is related to the
uniqueness of the dominant eigenvalue λ0sðtÞ and is con-
veniently expressed as the existence of a finite gap Δ for all
times: (C2) Δ ≔ infm>0; ∀ tfjλ0sðtÞ − Refλms ðtÞgjg > 0.
Given the two assumptions above, we prove in the SM

[89] that, within the rescaled slow timescale u ¼ t=τ,

lim
τ→∞

ϱsðuÞ ¼ r0sðuÞ; 0 < u ≤ 1: ð6Þ

Note that, with a slight abuse of notation we denote the
dependence on the slow timescale u in the same way as that
on the original timescale t. Equation (6) shows that under
the evolution with the deformed dynamical generator the
normalized state ϱsðuÞ follows the path of the instantaneous
dominant right eigenmatrix of LsðtÞ. This result thus
extends the adiabatic theorem for open quantum systems
[28–33] to deformed dynamical generators and includes,
for s ¼ 0, the case of completely generic open quantum
dynamics satisfying conditions (C1)–(C2). Importantly,
controlling the evolution of the state under the deformed
dynamical generator, as in our result, does only provide
information about the stationary state (s ¼ 0 case) as in
usual adiabatic theorems, but also encodes, in a nontrivial
way, some information (for s ≠ 0) about the spectrum of
excitations of the generator of the adiabatic open quantum
dynamics. Furthermore, our approach allows us to establish
that Eq. (6) holds, for both s ¼ 0 and s ≠ 0, irrespectively
of the initial state of the system.
As a consequence of Eq. (6), the moment generating

function ZsðτÞ in Eq. (5) obeys a large deviation principle,
in the limit τ → ∞, with scaled cumulant generating
function given by

θads ¼
Z

1

0

λ0sðuÞdu: ð7Þ

As such, the statistics of QðτÞ also obeys a large deviation
principle [48], characterized by the function IðQ=τÞ,
obtained as the Legendre-Fenchel transform of θads .
Interestingly, Eq. (7) remains valid also in the case of
degenerate dominant eigenvalues λ0sðuÞ [89].
To benchmark these results, we consider a resonantly

driven two-level atom, with excited state jei, ground state
jgi and Hamiltonian HðtÞ ¼ Ωðt=τÞðσþ þ σ−Þ, where we
defined σ− ¼ σ†þ ¼ jgihej. We assume ΩðuÞ ¼ Ω0 cosðuπÞ
for u < 1=2 and Ω0 sinðuπÞ for u ≥ 1=2. The atom emits
photons, which is described by the jump operator
J ¼ ffiffiffi

γ
p

σ−, where γ is the emission rate. We focus on

the activity, i.e., the total number of quantum jumps,
AðτÞ ¼ R

τ
0 dnðtÞ [57]. Figure 2(a) shows the time-averaged

fidelity between r0sðuÞ and ϱsðuÞ as a function of the total
time τ. The inset displays the fidelity as a function of the
rescaled time u, for increasing τ. The results confirm our
theorem as well as the convergence of the scaled cumulant
generating function to the one in Eq. (7), as τ → ∞ [see
Fig. 2(b)].They further show that our findings remainvalid in
the case of piecewise-differentiable dynamical parameters.
Time history of the observable.—The scaled cumulant

generating function in Eq. (7), together with its Legendre-
Fenchel transform, characterizes the time-integrated observ-
able QðτÞ during an adiabatic process. However, it is also
relevant to characterize the probability of the different time
histories of the observable [cf. Fig. 1(b)] realizing different
values ofQðτÞ. To arrive at such a higher level of description
of the process, we observe that, due to the adiabatic nature of
the open quantum dynamics, the system spends an infinite
amount of time in each of the infinitesimal (rescaled)
time intervals du. For each du, it is possible to define a
coarse-grained instantaneous rate qðuÞ, representing the
time-averaged value of the observable at the rescaled time
u (see Ref. [89] for details). We can thus write QðτÞ ¼
τ
R
1
0 qðuÞdu, where fqðuÞg is a (stochastic) time history of

the observable rate, as illustrated in Fig. 1(b). Discretizing
time and considering that each qðuÞ obeys an independent
large deviation principle, we have that the probability over
time histories is given by P½fqðuÞg� ≈Q

u P½qðuÞ� and, in
the continuous-time limit, with τ → ∞,

P½fqðuÞg�≈ e−τφ½fqðuÞg�; φ½fqðuÞg� ¼
Z

1

0

I ½qðuÞ;u�du;

ð8Þ
where I ½qðuÞ; u� is the instantaneous large deviation func-
tion of qðuÞ, i.e., the Legendre-Fenchel transform of λ0sðuÞ

FIG. 2. Driven two-level atom. (a) Time-integrated fidelity
R
1
0 FðuÞdu, with FðuÞ ¼ Trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ1=2s ðuÞr0sðuÞϱ1=2s ðuÞ

q
, for s ¼

−0.5 (dotted line), s ¼ 0 (dashed line), and s ¼ 0.5 (solid line).
(b) The instantaneous fidelity FðuÞ for different values of Ω0τ,
see legend in panel (c). The parameters are Ω0 ¼ γ and s ¼ −0.5.
(c) Scaled cumulant generating function for the activity. The
black solid line corresponds to θads , while the other lines give the
function θs for different values of Ω0τ. The inset shows how θs
approaches θads as Ω0τ is increased.
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[91]. From a physical perspective, we expect time histories
fqðuÞg to be sufficiently regular, e.g., piecewise analytic
functions of time. Essentially, this shows that adiabatic open
quantum dynamics obey the so-called temporal additivity
principle introduced in Ref. [65]. (See SM for the formal
proof [89]).
The functional in Eq. (8) contains the full information

about time histories of the observable rate fqðuÞg and, thus,
a complete description of fluctuations at the rescaled
timescale u. The typical time history is the one minimizing
the functional φ, that is, the one passing through the
minima of the instantaneous rate functions I ½qðuÞ; u�.
The functional φ can further be used to derive the statistics
of any observable constructed from the time history fqðuÞg.
An example is again the time-integrated observable QðτÞ,
whose functional I can be retrieved, via a contraction
principle [48], as

IðxÞ ¼ inf
∀ fqðuÞg∶ x¼

R
1

0
qðuÞdu

φ½fqðuÞg�: ð9Þ

Physically, this means that the probability of observing
Q ¼ Q� is equal to the probability of the most likely time
history fq�ðuÞg providing value of the time-integrated
observable [cf. Fig. 1(d)].
While the general derivation of the contraction in Eq. (9)

is provided in SM [89], we discuss it here using the example
of the two-level atom, setting for convenience γðuÞ ¼ 4ΩðuÞ
[57]. In this case, we find λ0sðuÞ ¼ 2ΩðuÞðe−s=3 − 1Þ and
I ½aðuÞ; u� ¼ 3faðuÞ log½aðuÞ=a0ðuÞ� − ½aðuÞ − a0ðuÞ�g,
where a0ðuÞ ¼ ð2=3ÞΩðuÞ is the typical time history of the
activity rate. To compute the minimization in Eq. (9), we
perform a functional derivative and set it to zero. This results
in a�ðuÞ ¼ a0ðuÞe−μ=3 where μ is a Lagrange multiplier
introduced to enforce the constraint in Eq. (9). Integrating
a�ðuÞ over time, we find A� ¼ A0e−μ=3 which fixes the
Lagrange multiplier to μ� ¼ 3 logðA0=A�Þwith A0 being the
typical value of the time-integrated observable AðτÞ.
Substituting this information into the functional φ
[cf. Eq. (8)], we find IðA�=τÞ ¼ 3½ðA�=τÞ logA�=A0−
ðA� − A0Þ=τ�, which is the same result one gets by calculat-
ing the Legendre transform of θads given in Eq. (7) [57].
The functional φ is formally derived as the Legendre-

Fenchel transform of the scaled cumulant generating
“functional” Θ½fsðuÞg�, associated with a time dependent
field sðuÞ [89]. The function Θ½fsðuÞg� is obtained as in
Eq. (7) from the eigenvalues of the deformed operator in
Eq. (4) defined with a time-dependent sðuÞ. The knowledge
of such a deformed operator gives us a handle to manipulate
on-demand time histories of the observable: by choosing
s�ðuÞ such that −δΘ½fs�ðuÞg�=δs�ðuÞ ¼ q�ðuÞ, we can
indeed define a suitable open quantum dynamics which
produces, as typical, the rare time history fq�ðuÞg of the
original process [57,59,69]. Such an auxiliary dynamics is
given by [89]

HAðuÞ ¼ 1

2

nh
l0
s�ðuÞðuÞ

i
1=2

H̃ðuÞ
h
l0
s�ðuÞðuÞ

i
−1=2 þ H:c:

o
;

JAj ðuÞ ¼ e−
s�ðuÞ
2

fðuÞ
h
l0
s�ðuÞðuÞ

i
1=2

JjðuÞ
h
l0
s�ðuÞðuÞ

i
−1=2

;

ð10Þ

where l0
s�ðuÞðuÞ is the dominant left eigenmatrix of the

deformed operator with time-dependent field s�ðuÞ.
Applications.—As a first application, we consider a

system composed by two two-level atoms attached to
different thermal baths. The system Hamiltonian is
H ¼ ωðσhote þ σcolde Þ þ Ωðσhot− σcoldþ þ H:c:Þ, with σe ¼
jeihej and where the superscripts hot and cold indicate
the atom in contact with the corresponding thermal reser-
voir. The dynamics is governed by a time-dependent
Lindblad generator derived via a weak coupling of the
system with the thermal baths [17,89]. The jump operators

thus read Jbij ¼
ffiffiffi
γ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωji=ωÞ3NbðωjiÞ

q
jϵiihϵjj, where b

indexes the baths, γ is a rate, NbðωÞ ¼ 1=ðeβbω − 1Þ, and
ωij ¼ ϵj − ϵi is the difference between the energies of the
eigenstates jϵji and jϵii of H [17]. They implement
transitions between the eigenstates jϵii and jϵji of H. In
addition, we include a phenomenological laser driving
term, Hlaser ¼ gðσhotx þ σcoldx Þ [92–94]. The entropy pro-
duction associated with any quantum jump in the dynamics
is defined as the energy exchanged with the corresponding
thermal bath responsible for the transition, �Δσbij ¼
�ωijβb [43,44,47]. The time-integrated entropy flow from
the hot bath to the cold one can thus be defined as
ΣðτÞ ¼ P

i;j;b

R
τ
0 βbðtÞωijdnbijðtÞ, where dnbij are the incre-

ments associated with the different jump operators [47].
The inverse temperature of the hot bath follows the
protocol βhotðtÞ ¼ β0hot=½1þ ð1=2Þsin2ðtπ=τÞ�.
Figure 3(a) shows the instantaneous rate function for the

stochastic entropy current, which displays a symmetry
[95,96] related to the existence of entropy fluctuation
relations at all times t [see inset of Fig. 3(a)]. Figure 3(a),
alsoprovidesnumerical results fromquantum trajectories for
both the original dynamics and an auxiliary one displaying a
rare realization of the observables.We note that this analysis
can be extended to other quantities, such as stochastic heat
and work [88,97,98].
We then consider a three-level system, with basis states

j0i; j1i; j2i, and time-dependent Hamiltonian HðtÞ ¼
Ω1ðtÞj0ih1j þΩ2j0ih2j þ H:c. The system is subject to
decay from state j1i to j0i, described by the jump operator
J ¼ ffiffiffi

γ
p j0ih1j. Such a system can be interpreted as a

nonequilibrium quantum machine [94]. It can be readily
realized in experiments [99] and may find application as a
microscopic engine [100,101].
For this three-level system, we consider the activity

AðτÞ ¼ R
τ
0 dnðtÞ, which is equivalent (up to the rate γ) to the

heat dissipated into the environment. We further consider
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Ω1ðtÞ ¼ Ω0
1½1 − sinð2πt=τÞ=2�. Typical trajectories of the

system feature coexistence between an active phase (fre-
quent emissions) and an inactive one (no emissions)
[57,99,102]. As such, the instantaneous rate function of
the activity shows a broad minimum associated with very
large fluctuations, which can also be observed in a single
realization of the quantum dynamics [see red squares in
Fig. 3(b)]. We then bias the system dynamics in a way that
it is found in the active phase for u < 1=2 and in the
inactive one for u ≥ 1=2. In this case, the total dissipated
heat is essentially determined by the emissions during the
active phase. This simple example highlights the impor-
tance of investigating fluctuations of thermodynamic quan-
tities in quantum machines as well as of controlling their
full time history beyond the global time-integrated value.
Discussion.—We have derived a complete statistical

characterization for open quantum systems in the adiabatic
regime. Our analysis can be extended to different quantum
stochastic processes, such as diffusive quantum trajectories
associated with homodyne-detection experiments [103]. It
would be interesting to explore whether the auxiliary
quantum dynamics derived here can be exploited to control
the performance of (adiabatic) quantum machines [104–
106]. With regard to applications in adiabatic quantum
computing [21,107], it would be important to generalize
our analysis to characterize the full counting statistics of
state-dependent observables [50], such as the fidelity. This
would require the application of numerical schemes as in
Ref. [108] or the derivation of a level 2.5 formalism for

adiabatic open quantum dynamics [50,109]. Full counting
statistics find applications in quantum sensing and inter-
ferometry [110–113]. Our results may thus allow for novel
protocols for sensing critical values of dynamical param-
eters by detecting sudden changes, during an adiabatic
evolution, of the statistics of emission related observables.

The codes used to produce the numerical results of this
Letter are available on Zenodo [114].
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