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We study the time evolution of mean values of quantum operators in a regime plagued by two
difficulties: the smallness of ℏ and the presence of strong and ubiquitous classical chaos. While numerics
become too computationally expensive for purely quantum calculations as ℏ → 0, methods that take
advantage of the smallness of ℏ—that is, semiclassical methods—suffer from both conceptual and practical
difficulties in the deep chaotic regime. We implement an approach which addresses these conceptual
problems, leading to a deeper understanding of the origin of the interference contributions to the operator’s
mean value. We show that in the deep chaotic regime our approach is capable of unprecedented accuracy,
while a standard semiclassical method (the Herman-Kluk propagator) produces only numerical noise. Our
work paves the way to the development and employment of more efficient and accurate methods for
quantum simulations of systems with strongly chaotic classical limits.

DOI: 10.1103/PhysRevLett.132.260401

Semiclassical approximations to quantum mechanics,
which we distinguish from purely “classical approxima-
tions” in the sense that they should account for interference
effects, have a long and venerable history since they were
introduced almost immediately after the invention of quan-
tum mechanics [1] (and remarkably somewhat before [2]).
The successes of these semiclassical techniques in providing
both effective approximation tools and physical under-
standing of the mechanisms at play have been demonstrated
over time in a large number of systems in the integrable or
nearly integrable regime [3] as well as in the deep chaotic
regime [4].
Surprisingly, the semiclassical computation of some very

simple and common quantities poses both conceptual and
practical problems that have not been solved until today. The
conceptual problem has to do with the internal coherence of
semiclassical approximations, namely the fact that different
semiclassical approaches, or the use of different coordinate
systems, must lead to the same result up to negligibly small
terms. The derivation of this equivalence almost always
implies the use of the stationary-phase (or steepest-descent)
approximation (SPA), which appears therefore as one of the
keystones onwhichwe strongly rely to ensure the soundness
of semiclassical approaches.
The problem is the following. For some physical

quantities, among which the simplest is the time evolution
of a smooth operator’s mean value, a blind application of
the SPA leads to the incorrect result that only the classical
contribution remains, and that all interference effects are
washed out. This failure of the SPA, which goes beyond the
need for uniform approximations [5], can actually be seen

as one further example of the lack of commutation between
the semiclassical (ℏ → 0) and longtime (t → ∞) limits [6].
The practical consequence of this conceptual difficulty is
that the computation of several quantities always relies on
some form of initial or final value representation [7,8], the
most famous one being that of Herman and Kluk (HK) [9],
which amounts essentially to evaluating all integrals
using a numerical Monte Carlo technique. This family
of approaches, and in particular HK, are easy to employ in
practice and usually provide good approximations to
correlations and spectra in systems whose classical dynam-
ics is relatively close to integrability. However, the com-
putation of mean values using such methods converges
slowly and has larger errors when compared to correlation
functions [10]. This is further worsened by the fact that, due
to an inherent prefactor inversion, initial value representa-
tions fail as one enters the deep chaotic regime [7,11]. The
main consequence of such problems is that there is nowa-
days no semiclassical tool capable of computing something
as simple as the time evolution of a smooth operator’s mean
value in the deep chaotic regime—even in the near-
integrable regime no efficient methods exist. Note that a
pure quantum numerical approach is also usually computa-
tionally expensive in the deep semiclassical regime (for
which semiclassical expressions are most accurate), due to
the need of very fine grids [12].
The conceptual difficulty mentioned above has been

addressed in a recent paper by some of us [13]. The source
of failure of the SPA was identified, and a canonically
invariant expression for the mean value of smooth operators
was derived in which only the integrals for which the SPA
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cannot be used remain to be performed numerically.
Moreover, these integrals should be sampled only on a
classical scale, and are therefore much easier to evaluate
than the highly oscillatory (on a quantum scale) integrals in
HK [14]. However, Ref. [13] did not assess the numerical
efficiency or semiclassical accuracy of the approach, nor
did it compare it with other widely used methods such as
HK. The goal of this Letter is to illustrate the effectiveness
of this approach on a simple system, while simultaneously
providing a rather general conceptual background on why it
works. In the regime where one can apply HK, we
demonstrate that our approach does at least as well and
at a significantly lower numerical cost. More importantly,
our approach retains its remarkable accuracy as one goes
deeper in the chaotic regime, while the HK results become
essentially numerical noise.
As is typical when employing semiclassical methods,

our conclusions come accompanied by a wealth of geo-
metrical insight into the underpinnings of mean-value
calculations, tracing the source of quantum coherence to
the self-interference of an evolving curve associated with
the system’s initial state. Here, we assume evolution to be
generated by the kicked rotor system (KRS),

mk ¼ mk−1 − α cos θk−1;

θk ¼ θk−1 þ αmk mod 2π; ð1Þ

where k counts the number of iterations, or kicks, an initial
point ðm0; θ0Þ in phase space is subjected to [15]. The
kicking strength α is responsible for bringing the system
from a near-integrable regime to a mixed one, and later to
the deep chaotic regime in which the measure of regular
islands tends to zero as phase space becomes almost fully
chaotic. These regimes are reached for α ≪ 1, α ≈ 1, and
α ≫ 1, respectively. Since the angular momentum m is
unbounded, a curve evolved according to (1) can diffuse in
the deeply chaotic regime, while an initial state jψ0i
propagated using its exact quantum equivalent,

jψki ¼ exp

�
−
iαm̂2

2ℏ

�
exp

�
−
iαdsin θ

ℏ

�
jψk−1i; ð2Þ

will remain bounded [16]. As is well known, this renders
the KRS a prototype for theoretical and experimental
studies on dynamical and Anderson localizations [18].
We will focus on the time-dependent mean value

hÔiðt ¼ kÞ ¼ hψkjÔjψki with the initial state given by a
plane wave of initial angular momentum M0,

ψ0ðθÞ ¼
1ffiffiffiffiffiffi
2π

p exp

�
−
iM0θ

ℏ

�
; ð3Þ

with M0 ¼ nℏ, n∈N. The operator Ô will be assumed to
act as a “classical detector” that measures the probability of

finding the system in the neighborhood of some angular
momentum mc and some angle θc, within some classical
scale σ. In practice Ô is most easily defined through its
Weyl symbol,

W½Ô�ðm;θÞ¼ 1

2πσ2
exp

�
−

1

2σ2
½ðm−mcÞ2þðθ−θcÞ2�

�
;

ð4Þ

which is just a symmetric, normalized phase-space
Gaussian centered at ðmc; θcÞ and with standard deviation
σ. The larger we pick σ, the more classical the detector
becomes, as can be seen by measuring the effective area
enclosed by (4) in units of ℏ. We shall fix a small value for

FIG. 1. Comparison between (a) classical and (b) quantum
evolutions obtained from iteratingL0 and ψ0ðθÞ using (1) and (2).
For the quantum result we plot the Wigner function, whose
positive and negative values are blue and red, respectively. Initial
states L0 and ψ0ðθÞ can be seen in the insets. The parameters
chosen are α ¼ 0.6, M0 ¼ 3, and ℏ ¼ M0=500. The yellow
(deformed) circle marks 4 standard deviations of the classical
detector (4), which is centered at ðmc; θcÞ ¼ ð3; 2Þ and has
σ ¼ 0.088. For an enlarged view inside the detector, see Fig. 2.
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σ, namely σ ¼ 0.088, in order to clearly observe a gradual
improvement in the approximations as one moves deeper
into the semiclassical regime.
Using (4) the quantum mean value of Ô can then be

calculated according to the phase-space average,

hÔiQU ¼
Z

dmdθW½ψk�ðm; θÞW½Ô�ðm; θÞ; ð5Þ

with

W½ψk�ðm;θÞ¼ 1

2πℏ

Z
2π

0

dγψk

�
θþ γ

2

�
ψk

�
θ−

γ

2

�
eði=ℏÞγm

ð6Þ

the Wigner function of ψk (for the KRS the angular
momentum is quantized, so that the integrals over m
should be understood as discrete sums [19]). The semi-
classical HK expression, hÔiHK, is calculated analogously
to hÔiQU but with the wave function ψk replaced by its
HK equivalent [19].
The WKB quantization of the initial Lagrangian mani-

fold L0 ¼ fðM0; θ0Þ; θ0 ∈ ½0; 2πÞg results exactly in
expression (3). By iterating L0 classically using (1), we
produce an evolved Lagrangian manifold Lk ¼ fðmk; θkÞg
that is the exact classical counterpart of (2) with initial
state (3). As an example, Fig. 1 displays a snapshot of the
classical manifold Lk [Fig. 1(a)] and the quantum Wigner
function W½ψk� [Fig. 1(b)] after k ¼ 200 iterations for the
KRS in the near-integrable regime. The classical mean
value, which we call hÔiCL, is then given by substituting
W½ψk� by a delta function with support on Lk in (5) and is
known in physics literature as the truncated Wigner
approximation (see, e.g., Ref. [26]).
Following Maslov [27], our semiclassical mean value

(SMV) approach is exclusively based on information
contained in Lk and is given by

hÔiSMV ¼ hÔiCL þ 2
X
β

Z
dηW½Ô�ðηÞaβþðηÞaβ−ðηÞ

× cos

�
i
ℏ
SβðηÞ þ iμβπ

2

�
; ð7Þ

as adapted from [13]. Here, each β entering the sum
represents a pair of sections of Lk that fall inside the
detector, which we denote by Lþ

k and L−
k . We refer to each

of these sections as a filament. For phase-space pairs
x� ¼ ðm�; θ�Þ∈L�

k , the coordinates η parametrize the
centers ðxþ þ x−Þ=2 (see [19]). The center action Sβ is
given by the symplectic area of the region enclosed by the
path between xþ and x− on Lk and the line segment joining
xþ and x− [13,28]. Along the path on Lk, one is expected to
cross several points at which the tangent space to Lk is

parallel to the m axis, which semiclassically gives rise to
divergences in the θ representation, known as caustics [29].
While (7) is not impacted by them, it is fundamental to
count how many were traversed in the form of a Morse
index μβ [20,27]. Lastly, the coefficients aβ� measure how
much the manifold was stretched during evolution; i.e.,
they can be thought of as the ratio between the length of an
initial line segment in L0 and of its image in Lk. For a
detailed discussion of these concepts, see Ref. [19].
The classical structure of Fig. 1(a) is standard for near-

integrable systems: The initial manifold L0 is stretched
due to the shearing action of (1) when far from fixed
points, but also captured near them, spiraling into
whorls [30,31]. The semiclassical interpretation of the
oscillations seen in Fig. 1(b) is that all the branches in Lk
interfere with each other, forming the complicated pat-
terns seen in the Wigner function. Before the so-called
Ehrenfest time [32], classical and quantum evolutions
produce the same expectation values (that is, quantum
interference cancels out when computing mean values).
Since we pick a large number of kicks, we are far beyond
the Ehrenfest time [32], and the classical features of Fig. 1(a)

FIG. 2. Panels (a) and (b) provide an enlarged view inside the
detector of Fig. 1 for the classical and quantum cases, respec-
tively. The semiclassical interpretation of the oscillations in (b) is
that they are due to all 24 filaments in (a) interfering with each
other. In panels (c) and (d) we provide an equivalent quantum-
classical comparison in the deep chaotic regime instead of the
near-integrable one, with α ¼ 4.0 and k ¼ 4 (ℏ and M0 are
unchanged). Panel (c) now consists of 851 filaments, whose
interferences result in the ergodic-looking quantum structure
displayed by the Wigner function in (d). Note that the discrete-
ness of the Wigner functions is not due to pixelation, but a
consequence of angular momentum quantization.
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are blurred by quantum interferences in Fig. 1(b). By
selecting a set of interfering branches in Lk, detector (4)
allows us to define a very objective notion of “quantumness”:
the mean value is all the more quantum as more interfering
segments of Lk fall inside the detector. The number of such
filaments depends mostly on the curve defining the initial
state and on the dynamics of the system, but for a high degree
of chaoticity it will grow exponentially with k. In Fig. 1(a),
for instance, there are 24 filaments within the yellow region
defining 4 standard deviations of the detector.
The success of a semiclassical method will depend on

how accurately it is able to reproduce pairwise interferences
between filaments. This task becomes harder if the number
of filaments increases, which can happen by increasing
either the number of kicks k or the kicking strength α. From
the detector’s point of view, the longtime (large k) semi-
classical dynamics and the deeply chaotic regime (large α)
are very similar, and the only important measure is the
number of filaments falling inside its domain. Both limits,
however, are well known to be problematic for semi-
classical mechanics [6], and producing reasonable quanti-
tative results for a large number of filaments is a formidable
task. To have a clearer idea on how intricate such a task is,
in Fig. 2 we focus in on the detector in order to have a better
view of the classical and quantum structures inside it, both
in the near-integrable regime of Fig. 1 and in the deep
chaotic regime. The rather structured Wigner function
Fig. 2(b) in the near-integrable regime, semiclassically
built on top of the simple filaments of Fig. 2(a), finds an
intimidating analog in Fig. 2(d). By emerging as a result of
almost 1000 interfering filaments in Fig. 2(c), the corre-
sponding Wigner function looks ergodic and structureless.
We expect a good match of both HK and SMV with the

exact quantum mean values for the structure shown in

Fig. 2(a). This is indeed confirmed in Figs. 3(a) and 3(c),
where we plot mean values as a function of ℏ. Here, since
the accuracy of semiclassical approximations improves as
expðiM0θ=ℏÞ becomes highly oscillatory, instead of enter-
ing the semiclassical regime by increasing M0 ¼ nℏ we
define a tunable ℏ ¼ M0=n, tracking our results as a
function of the integer n. The advantage is that by fixing
M0 the classical dynamics is frozen. We then see that in the
near-integrable regime both HK and SMV become increas-
ingly accurate as we decrease ℏ, with the former converg-
ing earlier but being slightly less accurate for smaller ℏ
values. On the other hand, in the deep chaotic regime in
Fig. 3(d) the HK calculation is essentially numerical noise,
while the SMV in Fig. 3(b) displays a remarkable quanti-
tative match with the quantum result. The result obtained
from the HK method is also improved by the fact that we
compute wave functions and only then the mean values.
This allows us to renormalize the wave functions according
to ψHK ↦ ψHK=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffikψHKk
p

before plugging them into (5),
correcting for normalization loss due to the fact that the HK
propagator is not unitary. This procedure allows us to
bypass one of the main flaws in the HK method, but can
only be efficiently carried out for systems with a single
degree of freedom. It is also important to be sure that the
HK wave functions are properly converged before taking
the mean values, and we provide extensive convergence
testing in [19].
It can be argued that HK results could be improved by

filtering trajectories or employing one of the many pre-
factor renormalization techniques developed throughout
the years in computational chemistry [11,33]. These tech-
niques, however, are only successful when there exist
regular trajectories that survive the filtering process [11].
In the deep chaotic regime phase space is completely

FIG. 3. Mean value of operator (4) as a function of decreasing ℏ, with ℏ ¼ M0=n, computed quantum mechanically (QU), using the
HK method, and our SMV formula (7). We connect the data with lines for visualization ease. Panels (a) and (c) are in the near-integrable
regime, with α ¼ 0.6 and k ¼ 200, and the detector defined as in Figs. 1 and 2. Panels (b) and (d) are in the deep chaotic regime, with
α ¼ 4.0 and k ¼ 4. HK wave functions employed 5 × 106 and 4 × 107 trajectories for panels (b) and (d), respectively. Convergence tests
and further comparisons can be found in [19].
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dominated by the chaotic sea, and it is no surprise that even
prefactor renormalization was not capable of improving the
quality of HK calculations for the KRS—even when used in
conjunction with wave function renormalization [21]. The
fact that the HK wave functions are converged, yet highly
inaccurate, confirms that the complexity of the classical
structure in Fig. 2(c) is to blame: The HK method is simply
incapable of accounting for all interfering filaments cor-
rectly. The large number of filaments, however, also leads to
a combinatorial problem in a naive implementation of the
SMV: Since all pairs enter (7) and the number of pairs is
given by NðN − 1Þ=2, the computational cost increases
quadratically with the number of filamentsN. This difficulty
can be soothed by keeping in mind that not all pairs need to
be included in (7), only the ones for which the action is not
highly oscillatory—in practice, of OðℏÞ. This renders the
computational cost linear in the number of filaments. Our
implementation also relies on filaments not developing too
much structure (such as coming out from the same direction
as they came in, forming a finger). This is by no means a
shortcoming of the method itself, and our algorithm can be
improved and adapted to particular applications as our
source code is made accessible to the public [19]. For
dealing with the previously mentioned fingers, for instance,
a uniformization procedure in terms ofAiry functions can be
applied to (7) [5].
In principle, our SMV method is ready to be generalized

to the propagation of coherent states, where now complex
Lagrangian manifolds need to be employed [34]. An
implementation for higher-dimensional systems is also
possible, and will mainly imply that the intersection of
the Lagrangian manifold defining our propagated state with
the detector will be of dimension d ≥ 2. Although these
manifolds can be quite complicated, in the deep chaotic
regime they are locally d-dimensional planes, just as the
filaments of Fig. 2 are essentially lines. This can extend the
applicability of our method to complex chaotic systems
(e.g., two or more electron atoms), which lie beyond the
applicability horizons of initial value representations such as
that of Herman and Kluk. Moreover, our approach can be
adapted to address the dynamics of hybrid quantum-
classical systems [35], or to compute other physical quan-
tities with well-defined classical limits, such as the
conductance matrix of quantum dots or the purity (linear
entropy) of a bipartite quantum system.

The source code for computing all data presented in the
paper can be found in [36].
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