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Non-Hermitian degeneracies reveal intriguing and nontrivial behaviors in open physical systems.
Examples like parity-time (PT) symmetry breaking, topological encircling chirality, and enhanced sensing
near an exceptional point (EP) are often associated with the abrupt nature of the phase transition around these
degeneracies. Here we experimentally observe a cavity-enhanced second-harmonic frequency (SHG)
conversion on a PT symmetry line, i.e., a set consisting of open-ended isofrequency or isoloss lines, both
terminated at EPs on the Riemann surface in parameter space. The enhancement factor can reach as high as
300, depending on the crossing point whether in the symmetry or the broken phase of the PT line. Moreover,
such enhancement of SHG enables sensitive distance sensing with a nanometer resolution. Our works may
pave the way for practical applications in sensing, frequency conversion, and coherent wave control.
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Hermiticity of a Hamiltonian is the key postulate of
quantum mechanics. It ensures the real eigenvalues and
physical observables in ideal closed quantum systems.
However, a ubiquitous non-Hermitian nature is generally
manifested inmost physical systems due to the no-conserving
energy or particle flow (gain or loss) with the environment.
Among these open systems, a special class of non-Hermitian
Hamiltonian with parity-time (PT) symmetry can exhibit
entirely real eigenvalues in their symmetric phase. This
surprising symmetry has been demonstrated inmany physical
fields, including optics [1–3], acoustics [4,5], microwaves
[6,7], electronics [8–10], opto-mechanics [11–13], and cold
atoms [14,15]. Moreover, such PT-symmetric structures have
enabled various intriguing features, including unidirectional
invisibility [16], pump-induced laser terminations [17],
dissipative optical parametric amplifiers [18–20], and loss-
induced transparency [21]. Essential to these findings is a
prominent non-Hermitian degeneracy called exceptional
point (EP) [22], which corresponds to the phase transition
point at which the eigenvalues of the underlying system and
the corresponding eigenvectors simultaneously coalesce.
Such EPs representing the exact balance between the internal
gain or loss and mode coupling can exhibit square root and
other integer-root singularities, making them extremely
sensitive to external perturbation [23–25].

Recently, this property of EPs has attracted tremendous
interest in sensing scenarios, including single nanoparticle
sensing with optical microcavities [25], enhanced Sagnac
effect in an optical gyroscope [26,27], and PT-symmetric
electromechanical accelerometer [28]. In these works, the
attention has been limited to the real part of the energy
eigenvalues, i.e., the eigenfrequency splitting Δω, which
can be enhanced by orders of magnitude through the ε1=N-
dependence (where N is the order of the EP and, ε is the
perturbation) [29–31]. However, few efforts have been
made to investigate the drastic change at EP in the
imaginary part of the energy eigenvalues, which also plays
a crucial role in non-Hermitian lasers [32] and coherent
perfect absorbers [33,34]. Moreover, non-Hermitian sys-
tems usually are complicated with multiple parameters,
forming touching [35,36], intersecting [37], or partially
overlapping [38] Riemann sheets in the multiple-parameter
space. On these Riemann surfaces, the exact PT symmetry
condition often emerges as PT-symmetry lines [39] that
feature either isofrequency or isoloss properties but not
both [40], in contrast to the EPs. Probing the intrinsic
dynamics across these PT-symmetry lines, especially those
involving more than one EP, is important for non-Hermitian
and topological physics [41–43]. However, the experimen-
tal realization and control of such non-Hermitian systems
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require more degrees of freedom, posing a challenge to
demonstrating PT-symmetry lines on the Riemann surfaces.
In this work, we theoretically and experimentally dem-

onstrate an enhanced second harmonic generation process
in an optical microcavity with second-order nonlinearity,
showing that a PT-symmetry line (henceforth referred to as
the PT line for short) on the Riemann surface in parameter
space can greatly enhance SHG. Moreover, two distin-
guished scenarios when crossing the PT line are demon-
strated for the enhanced SHG, depending on whether the
crossing occurs in the symmetric or broken phase of the PT
line. The highest SHG enhancement factor is found to be
around 300 in the broken phase of the PT line. Moreover,
these two crossing scenarios also result in two different
mode crossing in the SHG spectra, i.e., normal mode
crossing in the broken phase and anti or avoided mode
crossing in the symmetry phase, depending on the degen-
eracy whether existing on the real or imaginary part of
the PT line. Based on the enhanced SHG, a sensitive
distance sensing scheme with a nanometer resolution has
been demonstrated. These results provide a more general
paradigm and experimentally feasible scheme to probe the

consequences of non-Hermitian degeneracies, opening a
new avenue for non-Hermitian physics.
The proposed PT symmetry line can be realized in a

whispering-gallery-mode (WGM) optical microcavity of
quadratic second-order nonlinearity χð2Þ [Fig. 1(a)], which
allows the second harmonic (SH) generation (SHG) from
an incoming pump beam with a fundamental wave (FW)
frequency ωp. Inside the microcavity, both the SH and FW
waves can individually experience optical resonances, at
which their frequency detunings, i.e., Δs, Δp from each
resonance center are strictly determined by the cavity
dispersion and the energy conservation requiring the SH
frequency ωs ¼ 2ωp [Fig. 1(b)]. Effectively, these coupled
resonances in the frequency domain can construct a PT
symmetry in a synthetic space [13], and these interesting
phenomena can be interpreted in a non-Hermitian manner
with the help of the PT-symmetry line as follow.
Here the governing Hamiltonian of our system can be

formulated as iðdψ=dtÞ ¼ Hψ , where ψ ¼ ðα; βÞT repre-
sents the field vectors and α; β are the internal cavity
amplitudes for FW wave at ωp, and SH wave at ωs,
respectively. H is a 2 × 2 non-Hermitian Hamiltonian:

FIG. 1. Parity-time symmetry line on the Riemann surfaces for the enhanced SHG in an optical microcavity. (a) SHG process in a lithium
niobate microcavity with two optical modes: the fundamental mode ωp0 and the SH ωs0 as shown in (b). The pump light (red) at ωp is
converted into its second harmonic light (blue) at ωs through the χð2Þ process. The corresponding Riemann surfaces for the real (c) and
imaginary parts (d) of the square-root term of the eigenvalues, as a function of G=γΔ and Δ=γΔ. The PT symmetry line, i.e., Δ ¼ 0, is
separated into two regimes: the symmetry phase (solid line) and the broken phase (dashed line). There are two types of eigenvalue evolution
across the PT symmetry line (grey planes): Type I crossing (8G2 − γ2Δ > 0) intersects the symmetry phase of the PT line, where the
imaginary parts of the eigenvalues coincide but the real parts differ at Δ=γΔ ¼ 0. Type II crossing (8G2 − γ2Δ < 0) intersects the broken
phase, where the real parts of the eigenvalues coincide but the imaginary parts differ atΔ=γΔ ¼ 0. Simulation parameters: γΔ ¼ −0.2 GHz.
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H ¼
�−Δp − iγp −g�α�

−gα −Δs − iγs

�
; ð1Þ

where the subscript “p” and “s” represent the pump and the
SH, respectively. γp;s are their effective cavity decay rates
due to internal absorption, scattering, radiation loss, and
external coupling, which are typically different for the
two wavelengths; g is the second-order nonlinear coupling
constant determined by χð2Þ, mode volume, and field
overlap. Δp;s ¼ ωp;s − ωp0;s0 are the frequency detunings
from their neighboring WGMs, which are related by
Δs − Δp ¼ Δp − δ and δ ¼ ωs0 − 2ωp0 is the frequency
mismatch between two cavity modes. Δp is controlled by
scanning the pump frequency, while δ can be tuned by
changing the photorefractive effect via the pump power
(details in the Supplemental Material [44]). The superm-
odes of the Hamiltonian are hybridization between the
fundamental and its second harmonic. Note that, H is a
nonlinear Hamiltonian as well, whose off-diagonal terms,
e.g., −g�α�,−gα, depend on the internal fields α and the
second-order nonlinear coupling constant g.
Under linear approximation, solving the Hamiltonian

gives two eigenvalues:

λ� ¼ 1

2

��
−Δp −Δs − iγp − iγs

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ iγΔÞ2 þ 4G2

q �

¼ 1

2

��
−Δp −Δs − iγp − iγs

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔp − δþ iγΔÞ2 þ 4G2

q �
; ð2Þ

where Δ ¼ Δs − Δp, γΔ ¼ γs − γp, G ¼ jgαj. We define
two eigenmodes as the “þ”mode and the “−”mode, which
correspond to λþ and λ−, respectively. Obviously,
the dependence of the eigenfrequency on the system
parameters is determined by the square-root term η� ¼
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ iγΔÞ2 þ 4G2

p
in Eq. (2). For simplicity, we only

consider the square-root term, and Figs. 1(c) and 1(d) show
the complex Riemann surfaces of η� over the
(Δ=γΔ,G=γΔ)-plane. If the detuning term vanishes, i.e.,
Δ ¼ 0, this Hamiltonian returns to the well-known PT
symmetry condition, represented by singularity lines in the
Riemann surface, termed as the PT symmetry line [39].
As usual, the PT symmetry line can be divided into the
PT-symmetric phase (4G2 − γ2Δ > 0 solid line) and the
broken phase (4G2 − γ2Δ < 0 dash line), separated by an
exceptional point at 4G2 ¼ γ2Δ. Note that, the linear
approximation is valid near the PT line, for larger pumps
or detunings, the nonlinearity should be considered [43].
More interestingly, for a constant G, solely tuning the

detuning term Δ can result in two distinct dynamics, i.e.,
type I and type II crossings, depending on the intersection
with the symmetric or broken phase of the PT line [40]:

for the type I crossing as shown in Fig. 2(a), when
4G2 − γ2Δ > 0, two eigenvalues on the Riemann surfaces
only intersect in the imaginary part, right at the symmetric
phase of the PT line. In contrast, the type II crossing
(4G2 − γ2Δ < 0), instead, only permits such intersection
occurring in the real part [Fig. 2(b)]. In Eq. (2), if γΔ ¼ 0,
the eigenvalues η� ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4G2

p
can form a double

cone topology with a linear dependence of Δ and G and
this creates a diabolic point (DP) at Δ ¼ G ¼ 0. On the
other hand, for the case Δ ¼ 0, the eigenvalues η� ¼
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2 − γ2Δ

p
show the PT symmetry line and create an

EP at 4G2 ¼ γ2Δ, where both the real and the imaginary
parts of the eigenvalues degenerate and η� exhibits a
square-root parameter dependence. It is well known that
a double-resonant scenario, i.e., Δs ¼ Δp ¼ 0 can lead to
tremendous SHG enhancement in a conventional optical
cavity [57,58]. As shown in Fig. 2(d), the double resonance
can enhance SHG up to ∼100 as compared to the
nonresonant case. However, it is often underappreciated
that such a double resonant scheme can instead result in a
surprising mode splitting of SHG [Fig. 2(c)] due to a strong
FW pumping or reduced loss in the cavity.
Previously, many prior works emphasized the EP

enhancement for various sensing themes as compared to
the DP case [59]. Here similar trends can be expected in
our case of crossing PT lines for the SHG. In the case of
crossing the PT line near Δ ¼ 0, the eigenvalues read
η� ≈� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2ΔγΔ þ 4G2 − γ2Δ

p
. If j4G2 − γ2Δj is small, i.e.,

near the EP, η� are mainly dependent on Δ or γΔ (which
can be affected by external perturbations such as nano-
particles [25]), exhibiting a square-root behavior similar to
the EP case [24]. However, when j4G2 − γ2Δj becomes
large, enough, the square-root dependence of γΔ turns
weak. Therefore, the maximum sensitivity or enhancement
can be found near the EP and decrease as the intersection
point moves away from the EP. For example, in the type I
crossing shown in Fig. 2(a), j4G2 − γ2Δj ¼ 0.02 GHz, the
evolution of eigenvalues is relatively smooth at the inter-
section. On the contrary, at the type II crossing shown in
Fig. 2(b), j4G2 − γ2Δj ¼ 0.0008 GHz, the evolution of
eigenvalues becomes much steeper at the intersection. In
this case, a sharp SHG enhancement can be expected. Since
the system is nonlinear, all subsequent results are obtained
under the condition that the steady-state solution of the
nonlinear equation is nonlinearly stable.
In our experiment, a z-cut thin-film lithium niobate

microdisk with ∼100 μm diameter and Q-factor ∼106 is
fabricated by photolithography and chemo-mechanical pol-
ishing (CMP) [54,60]. The FW signal around the 1550 nm
telecommunication band is coupled into the microcavity
through a tapered fiber. On the output port, the FWand SHG
are separated by a 780=1550 nm wavelength division multi-
plexer (WDM), and separately received by an InGaAs
photodetector (PD) and a photomultiplier tube (PMT).
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The tapered fiber is precisely positioned on a piezoelectric
stage (∼10 nm resolution) to tune the gap (∼100 nm) from
the cavity. Different coupling conditions can be controlled
by the position of the contact point on the edge of the
microdisk, resulting in different coupling losses to control
γΔ term [44]. Here we utilize an inherent photorefractive
effect of lithium niobate materials [55,56] to tune the
detuning term δ in Eq. (2), a crucial technique in our
experiment (details in the Supplemental Material [44]).
The scanning frequency of the pump laser is ∼20 Hz,
much faster than the rate of photorefractive decay [55,56].
Therefore, the photorefraction can be assumed to be
proportional to the input FW’s power, which can be
controlled by a variable optical attenuator (VOA).
In both crossing scenarios, the SHG is mainly generated

through cavity resonance enhancement. When scanning the
FW laser wavelength, two SHG peaks appear: one near the
FW resonance mode ðωp0Þ and the other near the SH mode
ðωs0Þ. In the case of large detuning, i.e., Δ ≫ γΔ, G, the
real part of eigenvalue in Eq. (2) reveals two solutions for
the above two cases, i.e., ωp ¼ ωp0 for λþ and ωs ¼ ωs0

for λ−. In this case, either the FWmode or the SHG mode is

on resonance only, but not both. This singlet resonance
scenario can be clearly observed in the SHG spectra in
Fig. 3(a) during the FW laser scanning, where the þ mode
exhibits a slightly higher SHG than the − case. In order to
obtain a higher conversion efficiency, it is natural to merge
the two resonance modes together. Effectively, this requires
minimizing the square-root term in Eq. (2), so that when
the FW laser is on resonance (Δp ¼ 0), the mode splitting
between the þ and − SHG modes can be reduced by
minimizing δ. Experimentally, δ can be tuned by precisely
varying the input pump’s power through photorefractive
effects as mentioned [49]. Here the FW and SHG modes
react to the input pump differently and δ can be assumed to
be almost linearly related to the pump power calibrated in
the Supplemental Material [44]. Note that, the loss term γΔ
remains constant during the tuning process.
Figure 3 shows the SHG spectra for both type I [Figs. 3(a)

and 3(c)] and type II [Figs. 3(b) and 3(d)] crossing scenarios
at different pump powers. Here the variation of the pump
remains relatively smallwithin10%,but their induced changes
in δ are much larger. For type II crossing [Fig. 3(b)], initially,
the þ mode (blue) and the − mode are well separated along

FIG. 2. Two crossing scenarios of the PT Line. There are two types of eigenvalue evolution across the PT symmetry line (gray planes):
(a) Type I crossing (4G2 − γ2Δ > 0) intersects the symmetry phase of the PT line, where the imaginary parts of the eigenvalues coincide
but the real parts differ at Δ=γΔ ¼ 0, leading to avoided crossing in SHG spectra in (c). (b) Type II crossing (4G2 − γ2Δ < 0) intersects
the broken phase, where the real parts of the eigenvalues coincide but the imaginary parts differ at Δ=γΔ ¼ 0, leading to the mode
superposition in SHG spectra in (d). Corresponding experimental results are shown in (c) and (d). Upper insets: Far away from the
crossing ðωs0 < 2ωp0Þ, SHG mainly from single resonance enhancement. Simulation parameters: γΔ ¼ −0.2 GHz.
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the frequency axis due to ωs0 < 2ωp0. To facilitate analysis,
we set the scanning start frequencyof the laser as the frequency
zero of the horizontal axis. When increasing the pump power,
effectively reducing δ, ωs0 approaches 2ωp0. Two split SHG
resonance peaksmerge into one single peak near the condition
Pin ≈ 1.025 mW,where the intensity of the−mode suddenly
surges to a maximum SHG enhancement of over 300 times as
compared to the pre-merge case. However, further increase of
the pump leads to the walk-off of the two modes again.
It is not a straightforward task to switch to the type I

crossing by simply increasing G to reach the condition of
4G2 − γ2Δ > 0, since the detuning term δ also depends on

the input pump’s power. Experimentally, we find it more
feasible to reduce γΔ instead. The loss terms γp and γs can
be controlled by moving the contact point between the
tapered fiber and the microcavity (Supplemental Material
[44]). In this manner, we have been able to minimize γΔ to
around −0.25 GHz. Like the type II crossing, the initial
two split modes in the SHG spectra are getting closer to
each other when approaching the PT line, and the − mode
is amplified during the process [Fig. 3(a)]. However, in
sharp contrast to the type II crossing, the two modes tend
not to cross with each other at the PT line, exhibiting an
avoided or antimode crossing (AMC) in Fig. 3(c) [40].

FIG. 3. Experimental observation of the type I and type II crossings of the PT symmetry line. Experimental results of SHG spectra at
(a) the type I and (b) type II crossings. The small pump power difference can lead to a large disturbance to the detuning difference via
thermo-optical photorefractive effects. The eigenmodes− (red peak) andþ (blue peak) show anti- or avoided mode crossing at the type I
scenario (a), but cross with each other at the type II crossing (b). (c) and (d) The real parts and imaginary parts of the square-root term of
the eigenfrequencies measured through the SHG spectra near the PT line, i.e., δ ≈ 0. The top parts of (c) depict the real parts of the
avoided mode crossing, while the − mode in the imaginary parts first surges rapidly near the AMC point and saturates afterward. (d) A
clear mode crossover and a clear SHG peak at the PT line. Error bars represent the uncertainty in the measurement due to the system
jitter. Circles and triangles: experimental results. Solid lines are theoretically calculated through coupled mode theory. Numerical
parameters: γp ¼ 0.45, γs ¼ 0.2 in (c); γp ¼ 0.725, γs ¼ 0.425 GHz in (d).
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More interestingly, the intensity peak of the − mode
continues to surge even after passing the AMC point and
finally saturates, this is also consistent with the calculated
results of the imaginary part as shown in Fig. 3(c). In
comparison, the SHG only peak at the crossing point in the
type II crossing [Fig. 3(d)]. Here the overall SHG enhance-
ment factor is only 5, not as large as the previous type II
crossing case since the average imaginary part of type I
crossing is below the cases of type II as shown in Fig. 1(d).
Like the EP [61,62], the PT line could also potentially

enhance the sensing applications. As a proof-of-principle
experiment (Fig. 4), we demonstrate a PT-line enhanced
nanometer-resolution distance sensing near the PT line of a
type II crossing. An atomic force microscope (AFM) tip
mounted on a nanotranslation stage is externally approach-
ing the microcavity to perturb the SHG [Fig. 4(a)]. Both
loss factors and frequency detuning mismatch are affected
as the tip approaches. The system initially operates at the
PT line and rapidly decays its SH intensity as the tip
approaches [Figs. 4(b) and 4(d)]. In this manner, the gap
distance can be precisely measured with the SHG, and the
corresponding resolution can be obtained around 0.4 nm
(details in the Supplemental Material [44]). In comparison,
for an off-PT line case [Figs. 4(b) and 4(c)], both the − and
þmodes demonstrate only marginal changes influenced by

external perturbations, either in the amplitude [Fig. 4(b)] or
the mode splitting [Fig. 4(c)]. By comparing Figs. 4(c)
and 4(d), it is evident that the signal-to-noise ratio has
increased by ∼9 dB at the PT line. From the fitted curve, it
can be inferred that the relationship between eigenvalues
and γΔ is approximately γ0.7Δ dependence near the PT line
and almost linear dependence in the off-PT line case.
In conclusion, we have experimentally demonstrated a

cavity-enhanced second-harmonic frequency conversion in
a PT symmetry line, where the two crossing scenarios
reveal dramatic distinct crossing dynamics and enhance-
ment factors. As compared to prior works of EPs, the PT
line is much easier to access experimentally than the
singularity condition such as the EP. In the future, extra
assistance such as nanoparticles may help to control the
loss term γΔ, so that the enhancement factor can be further
improved. Our work provides a new perspective on the
enhancement of frequency conversion in non-Hermitian
physics, paving the way for practical applications in
sensing, frequency conversion, and coherent wave control.

This work was supported by the National Science
Foundation of China (Grants No. 12274295, No. 12341403);
the National Key R&D Program of China (Grants
No. 2023YFB3906400, No. 2023YFA1407200).

FIG. 4. PT-line enhanced distance sensing. (a) Optical microscope image of the LN microcavity and the Au-coated AFM.
(b) Experimental results of SHG output dependence of the tip’s radial position. The results are compared with the PT-line crossing case
(black) and the one away from the PT line (blue and red) in the type II crossing, and their corresponding spectra are depicted in (c) and
(d). Dashed lines are fitted curves. Pump power: 1 mW. Error bars denote the standard deviations of three measurements. Inset: A
schematic diagram showing the specific locations of the crossing and noncrossing situations along the parameter curve.
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