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Ferroelectricity in CMOS-compatible hafnia (HfO,) is crucial for the fabrication of high-integration
nonvolatile memory devices. However, the capture of ferroelectricity in HfO, requires the stabilization of
thermodynamically metastable orthorhombic or thombohedral phases, which entails the introduction of
defects (e.g., dopants and vacancies) and pays the price of crystal imperfections, causing unpleasant wake-
up and fatigue effects. Here, we report a theoretical strategy on the realization of robust ferroelectricity in
HfO,-based ferroelectrics by designing a series of epitaxial (HfO,),/(CeO,), superlattices. The designed
ferroelectric superlattices are defects free, and most importantly, on the base of the thermodynamically
stable monoclinic phase of HfO,. Consequently, this allows the creation of superior ferroelectric properties
with an electric polarization > 25 pC/cm? and an ultralow polarization-switching energy barrier at
~2.5 meV/atom. Our work may open an avenue toward the fabrication of high-performance HfO,-based

ferroelectric devices.

DOI: 10.1103/PhysRevLett.132.256801

Introduction.—Discovering ferroelectrics that are com-
patible with CMOS is crucial for fabricating high-integra-
tion nonvolatile memory devices [1,2]. The hafnia (HfO,)
that is extensively used in CMOS devices [1] became one
such material since the finding of ferroelectricity in Si-
doped HfO, [3]. However, the ferroelectric phases of HfO,
are thermodynamically metastable over a broad temper-
ature range (e.g., from 0°C to 1500°C) and at ambient
pressure—the stable phase being the monoclinic P2;/c
phase, which is paraelectric [4]. So far, the strategies for
realizing ferroelectricity in HfO, mostly rely on the
introduction of defects (e.g., dopants and vacancies) under
special fabrication conditions (e.g., suitable film thickness
and epitaxial strain) [1,5-14]. The role of crystal defects is
to either stabilize the metastable ferroelectric phases (being
orthorhombic or rhombohedral) [6,7] or induce the ferro-
electricity in the monoclinic phase [8,14]. Such strategies
yielded the fabrication of various HfO,-based ferroelec-
trics, represented by Y-doped HfO, [15-18], La-doped
HfO, [19-21], Hf,_,Ce, 0O, [22-26], Hf(, 571y 5O, [27-33],
HfO,/ZrO, superlattices [34-36], and Hf(Zr), O, [37]
with orthorhombic Pca2; or rhombohedral R3m space
group. However, these resulting materials often suffer
from imperfections such as crystal defects and mixed
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nonferroelectric phases (see e.g., Ref. [1]). Such imperfec-
tions are detrimental to the ferroelectric cycling stabilities
in HfO,-based ferroelectrics, causing wake-up and fatigue
effects [1,8,38,39].

Having a new strategy to design robust ferroelectricity in
HfO,-based compounds is therefore highly desirable and
timely. Here, we explore the possibility for engineering
ferroelectricity in defect-free monoclinic HfO, by sym-
metry analysis and first-principles simulations. We show
that such ferroelectricity can, in fact, be achieved by
creating the (HfO,),/(CeO,), superlattices, where Hf
and Ce ions are appropriately ordered. Unlike the previ-
ously reported HfO,-based ferroelectrics, our proposed
ferroelectricity in (HfO,),/(CeO,), superlattices origi-
nates from the thermodynamically stable P2;/c phase of
HfO, and its natural evolution into a ferroelectric state via
nanostructuring. Engineering ferroelectricity in these
superlattices is thus guaranteed and results in defect-
irrelevant HfO,-based ferroelectrics with superior ferro-
electric properties.

Creating ferroelectricity in the monoclinic phase.—The
lattice parameters (a,b,c) of the bulk P2,/c¢ HfO,—
obtained by first-principles calculations—are (5.08, 5.16,
5.25) f\, where a, b, and ¢ are along the [100], [010], and
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(a) Schematization of the P2;/c phase of HfO,. (b)—(d) Three antipolar motions of Hf ions in the P2,;/c phase of HfO,.

(e) The [100]-oriented (HfO,),/(X0,), superlattice obtained by replacing a sequence of Hf ions (of the P2, /¢ HfO, oxide) by X ions;
such replacements are ordered with respect to the (100) crystallographic plane. In reality, the positions of Hf, X, and O in the
(HfO,),/(X0,), superlattice will be adjusted, compared with those of Hf and O in P2, /¢ HfO,. In (e), we merely sketch the formation
of the [100]-oriented (HfO,),/(X0,), superlattice (from P2, /c HfO,), without demonstrating the adjustments of the ionic positions.
(f),(h) The atomic displacements in the [100]-oriented (HfO,),/(X0O,), superlattice. (g) The atomic displacements in the [001]-oriented
superlattice. The Hf, X, and O ions are represented by cyan, purple, and yellow spheres, respectively. The displacements of Hf or X ions
are denoted by gray, blue, or purple arrows—the displacements of O being not shown. In (a) and (e), the [100] and [001] axes form a
non-90° monoclinic angle; in (b)—(d) and (f)—(h), the [100], [010], and [001] axes are perpendicular to each other.

[100] crystallographic directions, respectively [see Fig. 1(a)].
The [100] and [001] directions exhibit a monoclinic angle of
~99.6°. Symmetry analysis indicates that the Hf sublattice in
this P2,/c phase presents three types of antipolar motions
[see Figs. 1(b)-1(d)], compared with the high-symmetric
Fm3m phase [40]. In these motions, we can identify two
types of crystallographic planes, colored cyan and orange in
Figs. 1(b)-1(d). The Hf ions within the cyan or orange plane
are displaced along the same direction, while those between
the cyan and orange planes are moved oppositely. In Fig. 1(b),
we depict one antipolar motion involving the displacements
of Hf ions along [100] and [100] directions. The Hf ions
displaced along [100] and those displaced along [100] are
stacked along the crystallographic [100] direction. More
vividly, the cyan and orange planes in Fig. 1(b) are alternately
aligned along the crystallographic [100] orientation. In the
same stacking mode, the displacements of Hf ions can also
occur along [001] and [001] orientations [see Fig. 1(d)].
Besides, the P2, /¢ phase exhibits another antipolar motion
[see Fig. 1(c)], where the displacements of Hf ions are along
[010] and [010] orientations and the stacking (of the [010]-
displaced and [010]-displaced Hf ions) is occurring along the
crystallographic [001] direction. In these three cases, the
overall displacements of Hf ions along opposite directions are
identical in magnitude, compensating with each other (i.e., no
electric polarization).

To engineer ferroelectricity in P2;/c phase of HfO,, a
possible strategy is to create the (HfO, ), /(XO,), superlattice
with X being different from Hf. In this superlattice, the Hf and
X ions should be stacked in such a way that Hf and X ions are
displaced along +a and F « directions (a being [100], [010],
or [001]) [41], respectively [see Figs. 1(f)—1(h)]. Essentially,
the (HfO,),/(X0,), superlattices can be obtained via the
replacements of some specific Hf ions in P2;/c HfO, by
X ions, as exemplified by Fig. 1(e). Under these circum-
stances, the Hf and X ions are displaced, albeit oppositely,
with noncompensated magnitudes, yielding net off-center
displacements and an electric polarization.

As shown in Figs. 1(f) and 1(h), the [100]-oriented
(HfO,),/(X0,), superlattice [42] allows electric polariza-
tion along +[100] and +£[001] directions. Figure 1(g)
sketches the displacements of Hf and X ions in the
[001]-oriented (HfO,),/(X0,), superlattice. This super-
lattice gains an electric polarization along +[010] direction.
As for the [010]-oriented superlattice, no net off-center
displacements can be expected. Our aforementioned argu-
ments are confirmed by the symmetry analysis: the [100]-
and [001]-oriented (HfO,),/(X0,), superlattices exhibit
Pc and P2, space groups, respectively, both of which
are compatible with ferroelectricity. The [010]-oriented
(HfO,),/(X0,), superlattice, on the other hand, is centro-
symmetric and nonferroelectric. Our strategy for engineering
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ferroelectricity in (HfO,),/(X0O,), superlattice can basi-
cally be linked with the notion of hybrid improper ferro-
electricity that was previously developed to describe the
ferroelectricity in perovskites superlattices and Ruddlesden-
Popper compounds [43-46].

Energetics of the (HfO,),/(CeO,), superlattices.—Our
aforementioned discussion suggests that stabilizing the
[100]- or [001]-oriented (HfO,),/(X0,), superlattice is
the key to engineering ferroelectricity in it. In view of this,
we decide to find appropriate XO, oxide so that it can
combine with P2,/c¢ HfO, and form the [100]- or [001]-
oriented superlattice. We recall that the P2, /c HfO, can be
seen as the derivative of the fluorite-type Fm3m HfO, [1].
Finding another fluorite-type XO, oxide will be the design
principle for our aforementioned (HfO,),/(X0,), super-
lattices. Searching the Materials Project database [47,48]
and following Ref. [2], we identify CeO, and ZrO, as
the candidates for XO,. We first explore the ferroelectri-
city in (HfO,),/(Ce0,), superlattice, and move to the
(HfO,),/(ZrO,), superlattices at a later stage. The CeO,
oxide is fluorite-structured with the Fm3m space group
[49] over a wide temperature spectrum (e.g., from 0°C to
2500°C) [50-52]. Earlier work shows that CeO, can form
solid solutions with HfO,, yielding HfO,-based ferro-
electrics (see, e.g., Refs. [22-26]). The shared proto-
type structure (i.e., fluorite type) of P2,/c HfO, and
Fm3m CeO, implies the possibility for achieving the
(HfO,),/(Ce0,), superlattice. Experimentally, this kind
of short-period superlattice can be epitaxially grown on
appropriate substrates. To accommodate the [100]- or
[001]-oriented (HfO,),/(Ce0,), superlattice, the cubic
(100)-oriented substrate with appropriate in-plane lattice
parameter app may be selected for such epitaxial growth.

Now, we mimic the (HfO,),/(CeO,), superlattice
grown on various substrates (i.e., with various app) by
first-principles calculations. We examine the [100]-, [010]-,
and [001]-oriented (HfO,),/(CeO,), superlattices, since
superlattices of these types can geometrically match the
cubic (100)-oriented substrate. For each of the super-
lattices, we fix its in-plane lattice vectors to (app,0,0)
and (0, ap, 0), and relax its out-of-plane lattice vector and
atomic positions. Figure 2(a) shows the energetics of the
[100]-, [010]-, and [001]-oriented (HfO,),/(CeO,), super-
lattices as a function of app. The [100]-oriented (HfO,),/
(Ce0,), superlattice is more stable than the [010]- and
[001]-oriented cases over a broad app range (e.g., from 5.24
to 5.34 A) [53]. These in-plane lattice parameters corre-
spond to (i) compressive strains ranging from —3.0% to
—1.1% with respect to 5.40 A of bulk Fm3m Ce0O,, and
(ii) tensile strains ranging from 0.8% to 2.7% with respect
to (b +¢)/2 =520 A of bulk P2,/c HfO,. In particular,
the [100]-oriented (HfO,),/(CeO,), superlattice with
ap = 5.30 A roughly corresponds to the —1.9% compres-
sively strained CeO, and the 1.9% tensilely strained HfO,.
Compared with their bulk phases, the HfO, and CeO, in the

% (a) —0— [100]

3 20} —¥— [010]

Q —— [001]

£ 10 1

i S i e S S

d o0 ) :
240

& St = .

£ 22f =

8] (b) TSR

Q 20 - Py TSl

3 B

=18 - P,

a
16+ H

__10

g

15 8

s 6

S

3 4

5 2

g 0 ) ) ) ) ) 1
524 526 528 530 532 534 5.36

ap (R)

FIG. 2. Various physical quantities of the (HfO,),/(CeO,),
superlattice as a function of the in-plane lattice parameter ajp.
(a) The relative energy AE of the [100]-, [010]-, and [001]-
oriented superlattices. (b) The electric polarization P of the [100]-
oriented superlattices. (c) The polarization-switching energy
barrier AE’ for the [100]-oriented superlattices.

[100]-oriented (HfO,),/(CeO,), superlattices are moder-
ately strained. Such moderate strain conditions imply the pos-
sibility for growing the [100]-oriented (HfO,),/(CeO,),
superlattice epitaxially.

Landau theory for hybrid improper ferroelectricity in the
(HfO,),/(Ce0,), superlattices.—Prior to studying the ferro-
electric behaviors of the [100]-oriented (HfO,),/(Ce0O,),,
we develop the Landau theory for describing the ferroelec-
tricity in the (HfO,),/(Ce0,), superlattices. To this end,
we start from the cubic Fm3m HfO, and create a tetragonal
(HfO,),/(Ce0,), superlattice (P4/mmm space group),
where the Hf and Ce ions are ordered by layer along z di-
rection [see Fig. 3(a)]. With respect to the tetragonal phase,
we identify a sequence of nonpolar atomic motions that
may be hosted by the [100]- and [001]-oriented (HfO,),/
(Ce0,), superlattices. These motions are shown in Fig. S1 of
the Supplemental Material (SM) [54]. Apart from these non-
polar motions, there are three polar motions in (HfO,),/
(Ce0,), superlattices, namely, P, (y = x, y, z) being asso-
ciated with the electric polarization along y direction. These
atomic motions exhibit a variety of trilinear couplings shown
in Eq. (S1) of the SM. As for the [100]-oriented (HfO,),/
(Ce0,), superlattice, symmetry analysis suggests the fol-
lowing atomic motions: Oy = (Py,P,,T5",M'~, M>* M**,
M*= M3~ ,M3"), with the nonpolar motions schematized in
Fig. 3. The trilinear couplings regarding the [100]-oriented
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FIG. 3. The schematizations of the nonpolar atomic motions in the [100]-oriented (HfO,),/(Ce0,), superlattice (Pc space group).
(a) The P4/mmm reference phase of (HfO,),/(CeO,),. (b)—(h) The nonpolar atomic motions. The Hf, Ce, and O ions are denoted by
cyan, purple, and yellow spheres. The Cartesian directions of our coordinate system are labeled by “x,” “y,” and “z.” The
crystallographic [100] direction in P2, /¢ HfO, roughly corresponds to the z axis. The atomic displacements are shown by red arrows. In
the M 2‘ motion, the displacements contributed by Ce and O ions are negligible compared with those from Hf ions; for displaying clarity,
we enlarge the magnitudes of Ce’s and O’s displacements in (g).

superlattice  are
azM g‘M §+PZ +

Hyp=aM* M*~P_+a,M* M'~P_+
kP PIS"  + PP .MyM* +
BP MM+ PP MTMY* + B P.MYM'T +
BT MM ATSTMY M=+ T MM -
M3 M3+, Of particular interest are the couplings
given by HYOW = o M**M* P, + a,M>*M'"P, +
My MyTP, + [P My MY+ PP MM+
BeP M5 ™M*~ + ;P M3 M'~. These terms are P, X X,-
type couplings (X; and X, being two nonpolar motions) and
imply that the combination of X; and X, nonpolar motions
leads to electric polarization P;(- Forinstance, the coexistence
of M?* and M*~ nonpolar motions [see Figs. 3(d) and 3(f)]
indicates the emergence of electric polarization along z
direction, as suggested by the a; M>* M*~P_ term.

We move on to discuss the polarization switching path in
the [100]-oriented (HfO,),/(CeO,), superlattice. To this
end, we take our aforementioned O, state as our initial
state, and identify the possible final states when switching
the polarization from (P,,P.) to (—P,,—P,). The H gy
discussed above indicates that reversing the polarization
will change some of the nonpolar motions and maintain
others. This can be demonstrated as follows, taking
aM**M'"P_ and ;P M;"M'" terms as examples. The
a, M3+t M'~ P, term implies that reversing P, will flip either
M'~ or M*" (but not both). Working with ;P M5 " M'",
this causes two possible consequences: (i) if M3* is not
flipped (M'~ being flipped), M3 " will not be flipped either,
and (ii) if M>* is flipped (M~ being not flipped), M5 will
be flipped as well. Furthermore, the KPXPZF3+ term implies

that 3" will be unchanged when switching (P,,P.) to
(=P, —P.). Following this logic, we identify two possible
final states O/, and O, with respect to Oy¢,. Apart from
the reversed P, and P_, the O/, state showcases reversed
M*, M?*, and M3 ", while the O/, state exhibits reversed
M'=, M*~ and M. The O, and O, final states suggest
the 01(9-0', and O;yy-0', polarization switching paths
for [100]-oriented (HfO,),/(Ce0,), superlattice [79].
Ferroelectricity in the [100]-oriented (HfO,),/(CeO,),
superlattices.—We move on to determine the polarization
switching behavior for the [100]-oriented (HfO,),/
(CeO,), superlattice with ap = 5.30 A. Regarding this
superlattice, the Oj()-0y, (respectively, Oip0-O7y)
switching path indicates the intermediate P2/c (respec-
tively, P2,/c) phase for polarization switching [80]. The
energy barriers for the polarization switching via Oo-0',
and 0,y-0', paths are ~13.6 and ~77.2 meV/atom
(see Fig. S4 of the SM), respectively, obtained by first-
principles self-consistent calculations (without structural
relaxations). The nudged elastic band (NEB) algorithm [81]
further decreases the energy barrier (regarding the
0100-0'y path) to ~5.3 meV/atom (see Fig. S4 of the
SM). We also examine the effect of ap on the polarization-
switching barrier in [100]-oriented (HfO,),/(CeO,),
superlattices [see Fig. 2(b)]. Varying ap from 5.24 to
5.34 A reduces the barriers from ~7.5 to ~2.5 meV /atom.
The energy barriers for polarization switching in
[100]-oriented (HfO,),/(Ce0,), are far lower than
~40 meV /atom in the Pca2, phase of HfO, [82]. In
particular, the ultralow energy barrier of ~2.5 meV/atom
in (HfO,),/(Ce0,), superlattice (ajp being 5.34 A) is also
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significantly reduced, compared with ~7.6 meV/atom in
the rhombohedral Hf; 3O, [37]. This implies that the
[100]-oriented epitaxial (HfO,),/(CeO,), superlattices
enable the polarization switching via ultralow coercive
electric field.

We next compute the electric polarization for the [100]-
oriented (HfO,),/(Ce0,), superlattices. By symmetry, the
[100]-oriented (HfO,),/(Ce0O,), enables the P, and P,
components of the polarization. Figure 2(c) shows the
polarization of the [100]-oriented (HfO,),/(Ce0,), as a
function of ap. At ap = 5.30 A, the P, and P, are ~20.8
and ~22.1 pC/cm?, yielding a total electric polarization of
~30.4 uC/cm? [83]. Varying ap from 5.24 to 5.34 A
decreases the total electric polarization from ~32.8 to
~25.8 uC/cm?. The electric polarization values in the
[100]-oriented (HfO,),/(Ce0,), superlattices are thus
sizable, being comparable to those observed in various
HfO,-based ferroelectrics [e.g., ~22 pC/cm? in
Hf(Zr),,,0, [37], ~34 pC/cm? in Hfy5Zr;50, [30],
and ~50 pC/cm? in Y-doped HfO, [16]].

Beyond (HfO,),/(Ce0O,),, hafnia-based ferroelectrics
may also be achieved by creating the (HfO,),/(ZrO,),
superlattices—ZrO, crystallizing into the P2;/c phase
(similar to monoclinic HfO,) at ambient conditions [1].
In this regard, we explore the possibility for robust
ferroelectricity in (HfO,),/(ZrO,), superlattices via
first-principles  simulations. The polarizations for
[001]- and [100]-oriented (HfO,),/(ZrO,), superlattices
(with no epitaxial constraints) are ~0.46 uC/cm? and
~2.68 uC/cm?, respectively. Such polarization values for
(HfO,),/(ZrO,), superlattices are much smaller than those
in the [100]-oriented (HfO,),/(Ce0,), superlattices. As a
matter of fact, the ionic radius of Hf (0.83 A) and
Zr (0.84 A) are very close to each other [84]. Achieving
sizable polarization in monoclinic (HfO,),/(ZrO,), super-
lattice thus seems unlikely.

Summary.—In summary, we demonstrate by symmetry
analysis that the Hf sublattice in the monoclinic phase of
HfO, presents three types of antipolar motions. These
antipolar motions enable the creation of electric polariza-
tion in this monoclinic phase by forming the [100]- or
[001]-oriented (HfO,),/(XO,), superlattice (X # Hf). Our
first-principles calculations further predict the [100]-
oriented (HfO,),/(Ce0,), superlattices as a new class
of hafnia-based ferroelectrics. The ferroelectricity in
(HfO,),/(Ce0,), superlattices is tunable by varying its
in-plane lattice parameters (ap). In particular, our desig-
nated ferroelectric superlattice (ajp = 5.34 A) showcases a
sizable electric polarization > 25 pC/cm? and an ultralow
energy barrier at ~2.5 meV /atom, which is promising for
the design of nonvolatile memory devices (e.g., ferroelec-
tric random-access memory) with high integration and low
power cost.

Note added.—During the peer review process, we became
aware of a work [85] that mainly focuses on the ferro-
electricity in various hafnia-based superlattices—being
rooted in the ferroelectric orthorhombic phase of hafnia.
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