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Converting angular momentum between different degrees of freedom within a magnetic material results
from a dynamic interplay between electrons, magnons, and phonons. This interplay is pivotal to
implementing spintronic device concepts that rely on spin angular momentum transport. We establish
a new concept for long-range angular momentum transport that further allows us to address and isolate the
magnonic contribution to angular momentum transport in a nanostructured metallic ferromagnet. To this
end, we electrically excite and detect spin transport between two parallel and electrically insulated
ferromagnetic metal strips on top of a diamagnetic substrate. Charge-to-spin current conversion within the
ferromagnetic strip generates electronic spin angular momentum that is transferred to magnons via
electron-magnon coupling. We observe a finite angular momentum flow to the second ferromagnetic strip
across a diamagnetic substrate over micron distances, which is electrically detected in the second strip by
the inverse charge-to-spin current conversion process. We discuss phononic and dipolar interactions as the
likely cause to transfer angular momentum between the two strips. Moreover, our Letter provides the
experimental basis to separate the electronic and magnonic spin transport and thereby paves the way
towards magnonic device concepts that do not rely on magnetic insulators.
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The advent of spintronics is usually associated with spin
transport mediated by charge carriers in metallic ferromag-
nets (FMs) and related effects such as the giant [1–3] and
the tunneling magnetoresistance [4–6]. These phenomena
are based on the spin of itinerant electrons and the flow of
spin-polarized electric currents in FMs. A substantial step
forward was taken with the transfer of spin angular
momentum from itinerant electrons to the magnetic order
via spin transfer torque (STT) effects [7–9]. This has enabled
more efficient magnetic memories and the generation of
quantized excitations of the magnetic system (magnons) at
GHz frequencies in spin transfer torque oscillators by a dc
charge current bias [10–13], which are now considered as
spintronic building blocks for computing architectures
beyond the von Neumann scheme [14–17].
A key breakthrough came with the demonstration that

spin information can be communicated via magnons
instead of itinerant electrons. Magnons are bosonic quasi-
particles and thus provide intriguing possibilities such as
condensation [18,19] and quantum fluctuations engineer-
ing [19–21], not admitted by the fermionic electrons. The
recently developed pathway for spin transport via magnons

is to use magnetic insulators, where itinerant electron
transport is absent. Nevertheless, to enable electrical access,
nonmagnetic metal strips on top of magnetic insulators
have been used to electrically induce magnon spin trans-
port [22–25], even through magnetic domain walls [26]. In
these heterostructures, one utilizes charge-to-spin current
interconversion in the non-magnetic metal, e.g., by the
direct and inverse spin Hall effect (SHE) [27–30], to inject
and detect magnon spin transport in the adjacent magnetic
insulator. This approach is based on the transfer of angular
momentum across the interface, which therefore needs to
be transparent to spin currents.
In this Letter, we develop and demonstrate a pathway to

access magnonic spin transport in an all-electrical fashion
without requiring magnetic insulators. To realize this
concept, we utilize two isolated ferromagnetic (FM) metal
strips with width w and separation d as electrical injector
and detector of spin current while allowing angular mo-
mentum transport between the two strips [see Figs. 1(a) and
1(b)]. The two FM strips are deposited on top of a dia-
magnetic insulator (DI) substrate as detailed in the
Supplemental Material [31]. Figure 1(c) shows that a
Ni-Ni structure exhibits a finite voltage Vdet on one Ni
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wire, when driving a current Iinj in the adjacent Ni strip and
applying a sufficiently large magnetic field H to align the
magnetization M along the surface normal z. Rotating the
magnetic field in three orthogonal rotation planes with
the rotation angles α, β, γ [see Figs. 1(e)–1(g) for the
definition of the rotation planes], we observe that Vdet
vanishes to within our experimental resolution when the
magnetization is oriented in the sample plane.
To elucidate the origin and shape of Vdet, we first

consider the situation in the injector wire (FM1) with
the magnetization M1 oriented along the surface normal as
illustrated in Fig. 1(a). By charge-to-spin current conver-
sion via the anomalous spin Hall effect (SHE) [30,40–42],
the charge current bias Iinjkx in the FM1 strip generates an
electronic spin accumulation polarized along the magneti-
zation direction at the two sides of the wire over the
electronic spin decay length λel. This can be seen as the
generation of electronic spin accumulation via the typical
SHE [28,30], like in a nonmagnetic metal, but with a
crucial difference: the inherent magnetization eliminates all
spin accumulation transverse to it [40–42]. The electronic
spin accumulation (described via the electron spin chemical
potential μel) interacts with the thermal magnon bath via
inelastic spin-flip scattering. A magnon accumulation is
thereby generated on the edges over the magnon decay
length λm [see Fig. 1(a)] [43].

The (spin) angular momentum of the magnon accumu-
lation at the right side of FM1 can be transported to the
detector wire (FM2) via dipolar coupling [44,45] and
phonon-mediated spin transport through the DI [46–52].
A nonzero angular momentum transfer between the two
separated FMs on the DI can therefore take place so that an
angular momentum current jm−m flows along −y into the
FM2 strip. Therefore, a finite gradient in the magnon
chemical potential at the left side of FM2 arises, which in
turn leads to an electronic spin current flow js ¼ −jsy. In
the FM2 strip js is then transformed into a charge current
Idet flowing along −x by the inverse charge-to-spin current
conversion processes. Since in the experiment we detect the
open circuit voltage Vdet, the resulting charge accumulation
leads to an electric field Edetkx.
This picture is consistent with the experimentally

observed electric field direction. We emphasize that the
direction of the observed electric field is opposite compared
to the typical lateral magnon spin transport in magnetic
insulators [22–25].
The magnetic field orientation dependence of the signal

can be motivated when considering the device geometry
[see Fig. 1(b)]. The distance between and the width of the
wires is always large compared to their thickness, i.e.,
t ≪ d, w. If we change the orientation of the magnetization
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FIG. 1. (a) Spin transport experiments between two FM strips on a diamagnetic insulator. Charge-to-spin conversion leads to an
electronic spin accumulation μel at the edges of the FM1 layer upon application of a current Iinj with the spin polarization oriented along
the magnetization M. The electronic spin accumulation gives rise to a magnon chemical potential μm, which relaxes on the scale of the
magnon diffusion length λm, which exceeds the electronic spin diffusion length λel. The finite magnon accumulation at the right side
couples to the thermal magnon bath in the FM2 strip by dipolar coupling and via phonon spin transport through the DI and thereby
induces a dc current Idet in the FM2 strip by spin-to-charge conversion. (b) Illustration of the chemical potential profiles for Mky. The
electron spin accumulation is now at the top and bottom surfaces and fails to generate any substantial magnon chemical potential as
t ≪ λm. Thus, no angular momentum transport signal is observed in the detector. (c),(d) Angle dependence of Vdet for Ni-Ni strips [panel
(c)] and CoFe-Pt strips [panel (d)] obtained at 280 K and μ0H ¼ 2 T, 7 T. Black squares correspond to ip rotations, red circles to oopj
rotations and blue triangles to oopt rotations, respectively. (e),(f),(g) Illustration of the rotation planes used for the angle-dependent
measurements: in-plane rotation [(e), ip], out-of-plane perpendicular to j [(f), oopj], and out-of-plane perpendicular to t [(g), oopt].
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into the sample plane M1ky, the charge-to-spin current
conversion process via the anomalous SHE gives rise only
to a spin accumulation at the top and bottom surfaces of
the metal wires on the length scale of λel. In contrast, the
magnon chemical potential remains negligible due to the
FM thickness t being much smaller than the magnon
diffusion length λm and the two (top and bottom) surfaces
contributing oppositely to the magnon chemical potential
generation. We note that in a device geometry that utilizes
FM strips with a much larger thickness (t > λm), the dipolar
coupling should also persist for in-plane magnetization
arrangements. As nonequilibrium magnons are generated
in FM1 only when the magnetization has a finite compo-
nent along the surface normal, our proposed mechanism is
consistent with a cos2ðβ; γÞ modulation of the signal taking
into account the projection of the magnetization on the
surface normal for both the injector and detector wire,
where the same process takes place in reverse. This is
consistent with the experimental result shown in Fig. 1(c).
We note that a similar transport of out-of-plane spins was
observed in all-electrical magnon transport experiments
where ferromagnetic wires are placed upon magnetic
insulators [42]. However, the absence of magnons in the
diamagnetic insulator excludes such a mechanism in our
devices.
From the angular dependence we extract the modulation

amplitude ΔVdet as shown in Fig. 1(c). For the Ni-Ni strips
ΔVdet is of the order of 100 nV, corresponding to an
equivalent resistance ≈1 mΩ for this device. This signal
magnitude is comparable to the amplitudes in all-electrical
magnon transport experiments using FM strips and yttrium
iron garnet layers [41,42,53], showing that such signals can
be routinely detected. The absence of the effect when one
of the electrodes is replaced by Pt shows that a purely
electronic spin accumulation is insufficient to observe the
signal as shown in Fig. 1(d). This observation indicates that
the effect relies on the interconversion of electronic and
magnonic spin accumulations. Furthermore, a contribution
of potential orbital currents can be excluded by the same
notion, as a finite orbital Hall effect is attributed to Pt.
The magnetic field dependence ofΔVdet corroborates the

importance of the out-of-plane projection of the magneti-
zation (see Fig. 2), as it exhibits a saturation behavior for all
FM1-FM2 strips within the noise level of our measure-
ments. The onset of saturation agrees with the external
magnetic field required to overcome the magnetic
anisotropy and thus align the magnetization along z.
Since we need to fully saturate the magnetization along
the out-of-plane direction to maximize the transfer of
angular momentum, we conclude that magnetic domains
do not play a role in our present experiments. Moreover,
since ΔVdet is not reduced for large magnetic fields, we
conclude that thermal magnons with large wave vector
dominantly contribute to the spin transport. This is further
supported by measurements with different ferromagnetic

materials for FM1 and FM2, where the fundamental
magnon mode frequency differs.
To establish the dominant angular momentum transport

mechanism, we investigate the temperature, drive current,
and injector-detector distance dependence of ΔVdet.
Transfer of angular momentum from electrons to magnons
depends on the thermal magnon population in the ferro-
magnet and thus on its temperature [54,55]. This can be
intuitively understood as the coupling strength between
electrons and magnon scales with the magnon mode
occupancy, which increases with temperature. As shown
in Fig. 3(a), ΔVdet (amplitude of the cos2 dependence)
indeed depends sensitively on temperature.ΔVdet decreases
with decreasing temperatures for all investigated samples.
For T ≤ 100 K, the extracted ΔVdet is below our detection
limit. This observation is consistent with the magnonic
origin and the expected role of the thermal magnon bath in
the interconverison between the electronic and magnonic
spin. Note that for better comparison between the different
combinations of the FMs we normalized ΔVdetðTÞ to the
value ΔVdet at the maximum temperature in the measure-
ments (280 or 300 K).
The temperature dependence is similar to all-electrical

magnon transport experiments, where a reduction at low
temperatures is found [23,56]. However, the Tα dependence
with α ∼ 1.5 observed in Ref. [23] and which is attributed
to the spin convertance at the interface [54,57] to the spin
transport does not fit our data. The dashed black line
indicates that α ∼ 3 is more adequate to describe our data.
The implications of this dependence on the dominant
mechanism for angular momentum transport are discussed
further below.
As shown in Fig. 3(b), ΔVdet depends dominantly linear

on Iinj for all FM1-FM2 strips (dashed same colored lines
indicate a linear fit with zero y-axis intercept). This is
compatible with a nonequilibrium process in linear
response driven by electronic and magnonic spin accumu-
lations proportional to the electrical current drive [55]. For
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for CoFe-CoFe strips (light blue symbols), and Ni-Py strips
(green symbols), and CoFe-Py strips (brown symbols) at
T ¼ 280 K. For large external magnetic fields ΔVdet saturates
once the external magnetic field is large enough to fully align the
magnetization of both strips along the out-of-plane direction.
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large currents a cubic deviation is observed for CoFe-CoFe
that stems from Joule heating increasing the device temper-
ature and thereby ΔVdet. Note that thermal effects to the
voltage that are independent of the direction of current
flow are removed by a current reversal technique and
therefore do not contribute to the signal (see Supplemental
Material [31]).
To analyze how the wire separation d of the FM1-FM2

strips and the thickness t influence ΔVdet, we utilized 4
samples with several Py-Py strips with identical width w
and a systematic variation in d, while varying t for each
sample deposited on YAG or Al2O3 substrates. To remove
any device variations, we calculated the spin transfer
efficiency ηsðdÞ ¼ Idet=Iinj ¼ ΔVdet=V inj for each device.
Here, we utilized that the resistance of our injector and
detector strips are identical within 1%–3%. For ηsðdÞ we
observe a reduction with d (see Fig. 4) for all investigated
samples. Moreover, our data suggest that the spin transfer
efficiency is enhanced with increasing t, but the inves-
tigated thickness range at present is too limited to extract a
concrete dependence.
The d dependence of the signal may provide valuable

information about the physical mechanisms underlying
our observed finite magnon conductance across the spa-
tially separated FM1-FM2. The contribution due to the
diffusive transport of an intermediary, such as phonons,

may be expected to result in an exponential dependence
∼ expð−d=λphÞ [58], which also is the long-distance limit
for a theoretical model of phonon angular momentum
transport [50]. An oscillatory behavior has been predicted
[50] for the angular momentum transport mediated by
phonons between two ferromagnets and for short distances
d, which we do not observe in our experiments. This
indicates that phonons might not be the dominant source of
spin transport here. On the other hand, magnons in either
ferromagnet can extend to the respective other one by
dipolar coupling, so that angular momentum transfer
between the two FMs may manifest an algebraic decay
with d, providing evidence for the relevance of dipolar
interactions. This phenomenon is established in literature
and is referred to as magnon tunneling [59–61]. Quanti-
tative modeling of this mechanism without knowledge of
the spectral distribution of contributing magnons is how-
ever complicated and rendered analytically intractable by
the finite sizes of the two FMs and the long-range nature of
the dipolar interaction. Thus, we heuristically motivate a d
dependence that may capture the dipolar coupling contri-
bution. We hope this approach and experimental data
motivate more elaborate and detailed theoretical works
in the future.
The dipolar interaction between two thin magnetic wires

separated by distance d scales as∼1=d2. The corresponding
coupling between an infinitely wide film and a wire placed
at distance d from its edge scales as ∼1=d. Our finite size
FMs may be expected to manifest a scaling ∼1=dn, with
1 ≤ n ≤ 2. Furthermore, considering that our FMs are wide
and the relevant angular momentum transfer originates
predominantly from a region about λm from the FM edge,
the effective separation between the wires becomes dþ c2
with c2 a distance comparable to λm. Thus, we may
consider the following distance dependence for the dipolar
mechanism, assuming n ¼ 1 for simplicity [62]:
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ηsðdÞ ¼
c1

dþ c2
; ð1Þ

where c1 is a scaling constant. We fit our data with Eq. (1)
(dashed lines in Fig. 4) and obtain similar values c2 ≈
200 nm for all investigated samples (see Supplemental
Material [31] for a detailed list of all fit parameters),
suggesting that the dipolar coupling is likely the main
contribution to our observed angular momentum transfer.
For comparison, we also show the exponential fit to our
data in Fig. 4 for the Py-Py (t ¼ 15 nm) dataset.
Furthermore, in the dipolar interaction-mediated transport
scenario, our observed temperature scaling with T3

[Fig. 3(a)] is attributed to the product of the magnon
number in each FM, which both follow the Bloch T3=2

dependence. The dipolar coupling mechanism does not
require any specific substrate properties. Rather, the sub-
strate only provides a mechanical support onto which the
FM-FM strips are deposited. However, one must consider
that magnetically ordered or paramagnetic substrates can
contribute to the transport of spin angular momentum
between the two FM strips [63,64]. We thus have focused
our Letter on diamagnetic substrates to rule out these
potential contributions. Experiments on a paramagnetic
gadolinium gallium garnet substrate at 280 K, where such
substrate contributions are negligible, yield similar results
(see Supplemental Material [31]).
In summary, our results establish a device architecture to

investigate and exploit magnonic angular momentum trans-
port between two FM strips by all-electrical means. The
concept is based on charge-to-spin current conversion in
the metallic ferromagnets and the interplay of the accu-
mulated electron spin with the thermal magnon gas. The
observed scaling with distance and temperature is compat-
ible with angular momentum transport by dipolar coupling
between the two ferromagnets, but we cannot rule out the
potential dominance or relevance of a phononic contribu-
tion. Thus, our results provide a starting point for future
theoretical works attempting to resolve this outstanding
issue. Our results lay the foundation for an all-electrical
investigation of magnon spin transport and charge-to-spin
current conversion processes in nanostructured FMs. The
presented scheme provides a blueprint for magnonic
devices that do not rely on magnetic insulators and trans-
parent interfaces for spin currents to separate the electronic
and magnonic systems. The angular momentum transport
by dipolar coupling or phonons also is a new perspective to
be considered in all-electrical magnon transport experi-
ments using magnetic insulators interfaced with non
magnetic metals. However, previous experiments with a
nanopatterned gap in the magnetic insulator did not reveal
any finite signals [65]. Our results further provide a
perspective on the characterization and exploitation of
magnonic crystals [66] for spin wave propagation.
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