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Despite recent experimental developments, the topological order of the fractional quantum Hall state at
filling ν ¼ 5=2 remains an outstanding question. We study conductance and shot noise in a quantum point
contact device in the charge-equilibrated regime and show that, among Pfaffian, particle-hole Praffian, and
anti-Pfaffian (aPf) candidate states, the hole-conjugate aPf state is unique in that it can produce a
conductance plateau at G ¼ ð7=3Þe2=h by two fundamentally distinct mechanisms. We demonstrate that
these mechanisms can be distinguished by shot noise measurements on the plateaus. We also determine
distinct features of the conductance of the aPf state in the coherent regime. Our results can be used to
experimentally single out the aPf order.
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Introduction.—The fractional quantum Hall (FQH) state
at filling ν ¼ 5=2 [1] is the prototypical candidate for a
non-Abelian phase of matter [2]. This state has attracted
immense attention as a tentative platform for topological
quantum computations [3]. However, to experimentally
verify the realized topological order at this filling remains
an outstanding problem in condensed-matter physics [4,5].
To describe the ν ¼ 5=2 state, several candidate states

were proposed, most prominently the Pfaffian (Pf) [2], anti-
Pfaffian (aPf) [6,7] and particle-hole Pfaffian (phPf) states
[8–11] (see also a related state in Ref. [12]), all with non-
Abelian orders. To date, numerical simulations favor either
the aPf or Pf state [13–18], while in GaAs=AlGaAs
devices, recent measurements of the thermal conductance
[19–21] and upstream noise [22] point towards the phPf
state, supported by edge theory [23–25]. Moreover, despite
recent observations of several even-denominator states in
novel 2D materials [26–33], detailed transport experiments
at ν ¼ 5=2 in these materials remain elusive.
In this Letter, we address the ν ¼ 5=2 conundrum by

analyzing edge transport through a quantum point contact
(QPC) device. Our main goal is to identify hallmarks of the
aPf order related to its hole-conjugate nature, i.e., the
presence of counterpropagating edge modes. In the regime
of equilibrated charge transport, the aPf state is expected to
display a highly nontrivial plateau in the two-terminal
conductance, G ¼ 7=3 (in units of e2=h), when the QPC is
continuously tuned by a gate voltage. This plateau arises
when the local QPC filling factor is νQPC ¼ 3 [Fig. 1(a)],
i.e., higher than the bulk filling νB ¼ 5=2, see Ref. [34] for
a discussion of related quantum-dot and line-junction
setups. Among the non-Abelian candidates, this exotic
mechanism of plateau formation is operative only for the
aPf state due to its unique hole-conjugate character.

However, a G ¼ 7=3 plateau may form by another mecha-
nism for any ν ¼ 5=2 candidate state. This happens if the
QPC instead lowers the local density to the stable FQH
filling νQPC ¼ 7=3, i.e., for νQPC < νB [35]. We demon-
strate that these two kinds of G ¼ 7=3 plateaus can be
distinguished by on-plateau shot noise measurements,
which thereby provide a unique fingerprint for the aPf
state. Further, we explore the evolution of the G ¼ 7=3
plateau arising from νQPC ¼ 3 in the aPf state in the regime
of coherent charge transport, which can be reached for the
lowest temperatures and bias voltages. We show that, due to
disorder, G then generically fluctuates with changing QPC
gate voltage within the range 35=17 ≤ G ≤ 3. Among the
three non-Abelian candidate states, G > 5=2 is reachable

FIG. 1. (a) Schematic setup to measure the two-terminal
conductance G≡ I=ðVS − VDÞ across a quantum point contact
(QPC) in the FQH regime. Here, I is the current collected in drain
(D), and VS and VD are the source (S) and drain voltages,
respectively. For a hole-conjugate state, the QPC region can
accommodate a FQH liquid with local filling νQPC higher than the
bulk filling factor νB. Red and blue solid lines with arrows depict
counterpropagating edge modes. (b) Sketch of the local filling
factor νðrÞ along the gray dashed line in (a). Because of the hole-
conjugate nature of the edge, there exists a region with higher,
integer filling n > νB. Red and blue jumps in νðrÞ correspond to
the edge modes in (a).
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only for the aPf state, which provides a complementary
fingerprint of this topological order.
QPC conductance plateaus.—The unusual situation with

νQPC > νB is a feature common to all hole-conjugate states,
i.e., for fillings satisfying n − 1=2 ≤ ν < n, with n∈Zþ.
Indeed, all such states can be viewed as FQH liquids
formed by condensation of holelike quasiparticles on top of
an integer number n of filled Landau levels [36–38]. As a
consequence, hole-conjugate states naturally accommodate
local regions with νðrÞ ¼ n > νB [see Fig. 1(b)]. This
property suggests the possibility of a local region with
integer-valued filling νQPC ¼ n, despite the application of a
negative gate voltage that normally lowers the local density.
Having νQPC > νB, together with the assumption of fully
equilibrated charge transport, leads to nontrivial conduct-
ance plateaus [39]

G ¼ νBνQPC − ð2νB − νQPCÞνT
2νQPC − νB − νT

; for νQPC > νB; ð1Þ

see Fig. 1(a) for the schematic QPC setup. Here, νT is the
total filling factor discontinuity associated with fully trans-
mitted modes (without any coupling to the other modes).
Equation (1) explains recently observed conductance pla-
teaus for hole-conjugate FQH states [43–45]. In particular,
for the νB ¼ 2=3 state (with νQPC ¼ 1 and νT ¼ 0), a G ¼
1=2 plateau was recently observed [43,44]. Also FQH
states in higher Landau levels were observed to display
nontrivial plateaus classified by Eq. (1) [45].
Crucially, among the ν ¼ 5=2 candidate states, it is only

the aPf state that is hole conjugate. Hence, only the aPf can
produce a conductance plateau by the mechanism gov-
erning Eq. (1). For νB ¼ 5=2, νT ¼ 2, and νQPC ¼ 3,
Eq. (1) evaluates to G ¼ 7=3, in agreement with Ref. [34].
However, conductance plateaus may also arise for a

reduced density in the QPC region [35], with

G ¼ νQPC; for νQPC < νB: ð2Þ

In contrast to the plateaus (1), Eq. (2) holds for any FQH
state provided that the state with filling νQPC < νB is
stabilized in the QPC region. Experimental observations
of plateaus for various FQH states [46–48] can be attributed
to this mechanism. We see that, according to Eq. (2), the
value G ¼ 7=3 is also generated for νB ¼ 5=2 regardless of
the bulk topological order if the QPC region hosts a νQPC ¼
7=3 FQH state. Such a state is indeed the most prominent
state in the range 2 < ν < 5=2. Hence, to differentiate the
two distinct types of 7=3 plateaus and thus to find unique
fingerprints for the aPf state, complementary measurements
are needed. We will show that on-plateau shot noise
measurements meet this demand.
APf edge theory.—The edge consists of three modes in

the second Landau level: two counterpropagating bosonic
modes ϕ1 (red solid lines in Fig. 2) and ϕ1

2
(blue solid lines)

associated with the filling factor discontinuities δν ¼ 1 and
δν ¼ −1=2, respectively, as well as one charge-neutral
Majorana mode χ ¼ χ† (blue dashed lines) [6,7]. We
disregard two integer modes of the lowest Landau levels,
assuming that they are decoupled and simply give a con-
tribution 2 to G. The edge action is S ¼ R

dtðL0 þ LdisÞ
with

L0 ¼
Z

dx
4π

h�
−∂xϕ1ð∂t þ v1∂xÞϕ1 þ 2∂xϕ1

2
ð∂t − v1

2
∂xÞϕ1

2

− 2vint∂xϕ1∂xϕ1
2

�
− iχð∂t − vM∂xÞχ

i
;

Ldis ¼ −
1ffiffiffiffiffiffiffiffi
2πa

p
Z

dxχðxÞ
�
ξðxÞeiðϕ1þ2ϕ1

2
Þ
− H:c:

�
: ð3Þ

Here, v1, v1
2
, and vM are the mode speeds, vint is the

intermode interaction strength, and a is an ultraviolet length
cutoff. The term Ldis describes disorder-induced electron
tunneling with the random complex amplitude ξðxÞ. The
scaling dimension of the disorder term evaluated with
respect to L0 is Δ ¼ 1=2þ ð3=2 − 2xÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2x2

p
, where

x ¼ vint=ðv1 þ v1
2
Þ.

When Ldis is relevant in the renormalization group (RG)
sense for Δ < 3=2 [49], the edge is driven to a dis-
ordered fixed point where Δ ¼ 1 [6,7]. At this point, the
edge hosts three decoupled modes: one charge mode

FIG. 2. (a) QPC configuration for the anti-Pfaffian state with
QPC filling stabilized at νQPC ¼ 3. Red and blue solid lines depict
δν ¼ 1 and δν ¼ −1=2 edge modes propagating in the opposite
directions. The dashed blue line depicts a Majorana mode
propagating in the same direction as the δν ¼ −1=2 mode.
The edge modes are coupled by disorder-induced scattering in
each individual arm of the QPC. The two fully transmitted integer
modes in the lowest Landau levels are not shown. (b) Enlargement
of one QPC arm which bridges the interaction and disorder-free
lead region (x < −L=2) and the QPC region (x > L=2). All
impact of disorder is accounted for by the narrow region jxj <
ϵ=2 with ϵ → 0þ. This feature holds for all four arms LU, LD,
RU, and RD in (a).
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ϕc ≡
ffiffiffi
2

p ðϕ1 þ ϕ1
2
Þ, one neutral mode ϕn ≡ ϕ1 þ 2ϕ1

2
, and

the remaining Majorana mode χ. These are described by
Lfix ¼ Lc þ Ln, where

Lc ¼
Z

dx
4π

½−∂xϕcð∂t þ vc∂xÞϕc�;

Ln ¼
Z

dx

�
1

4π
∂xϕnð∂t − v̄n∂xÞϕn − iχð∂t − v̄n∂xÞχ

−
1ffiffiffiffiffiffiffiffi
2πa

p �
ξðxÞeiϕn − H:c:

�
χ

�
: ð4Þ

Near the fixed point, all possible terms (e.g., ϕc − ϕn
interactions and the velocity anisotropy) are RG irrelevant
[6,7]. Still, these terms cause decoherence, which leads to
intermode equilibration governed by the characteristic
charge equilibration length lc

eq ∼ T−2, with T the temper-
ature. This length defines two distinct charge transport
regimes: the coherent regime L ≪ lc

eq and the incoherent
regime L ≫ lc

eq. L denotes the length of the arms of the
QPC (see Fig. 2). In the following, we separately discuss
transport properties in these two regimes.
Shot noise in the incoherent regime.—We now show that

the two types ofG ¼ 7=3 plateaus for the aPf generate very
distinct (dc) shot noise characteristics as they correspond to
two distinct QPC configurations: (i) νQPC ¼ 3 > νB ¼ 5=2
in Fig. 3(a) and (ii) νQPC ¼ 7=3 < νB in Fig. 3(b). Measure-
ments of nonequilibrium noise involving (partial) equili-
bration on edge segments were recently proposed and
experimentally implemented as a versatile tool to probe
the topological order in various FQH setups [20,23–
25,35,50–56].
The on-plateau shot noise generated in the process of

equilibration (a hallmark of the incoherent regime) among
counterpropagating edge modes depends on the competi-
tion of several characteristic length scales. We therefore
first establish the relevant hierarchy of these length scales.

Motivated by recent experimental observations in both
GaAs=AlGaAs and graphene devices, we assume

lc
eq ≪ LQPC ≪ lh

eq ≪ L: ð5Þ

Here, lh
eq is the heat equilibration length and LQPC is the

size of the QPC region [see Fig. 2(a)]. While full charge
equilibration is achieved over a very short scale (≲1 μm) in
essentially all FQH devices (see, however, Refs. [57–60]
for prominent exceptions), heat equilibration is often poor
at low temperatures with lh

eq ∼ 100 μm [20,52,53,61–66].
We also assume no edge reconstruction, based on recent
measurements of the thermal conductance in graphene [64–
66], which remarkably agree with the values for thermally
nonequilibrated transport without edge reconstruction. This
is further corroborated by scanning tunneling microscopy
experiments [67].
The mechanism for on-plateau shot noise generation in

the incoherent regime is due to charge partitioning at “noise
spots” (yellow regions in Fig. 3) [23,35,50,51]. An inter-
mode charge tunneling event contributes to the noise only if
the constituents of the resulting particle-hole pair reach
different contacts S and D. This indeed happens only at the
noise spots, where the charge current partitions into these
contacts, see the right panels in Fig. 3 for depictions of the
charge flows (solid, yellow lines). Importantly, the tunnel-
ing processes in each noise spot are dominantly generated
by an increase of the noise spot temperature. This heating
occurs by heat flowing from hot spots (red regions in
Fig. 3), where all Joule heating occurs, to the noise spots.
The generated noise in a noise spot, SNS, given by

SNS ¼
e2

h
ðνd − νuÞνu

νd
kBðTd þ TuÞ: ð6Þ

Here, νd=u ¼
Pnd=u

n¼1 δνd=u;n is the total filling factor dis-
continuity of the charged modes propagating downstream
and upstream, respectively, and nd and nu denote the
number of charged downstream and upstream modes,
respectively. Furthermore, Td=u is the temperature of all
downstream and upstream modes at the noise spot. To
compute the total noise in the drain D, we calculate the
local temperatures at the noise spots by solving a set of
transport equations for the charge and energy current along
each edge segment on suitable boundary conditions at the
contacts; see Supplemental Material [39].
In configuration (i), for the experimentally relevant

length hierarchy (5), we obtain kBTd ¼
ffiffiffiffiffiffiffiffi
5=6

p
eV=π and

kBTu ¼
ffiffiffi
5

p
eV=ð3πÞ. Then, the noise S measured in the

drain D is given by

S ¼ 8SNS
9

¼ 8e3ðνd − νuÞνu
9hνd

kBðTd þ TuÞ ≈
0.12e3V

h
; ð7Þ

upon substituting νd ¼ 1, νu ¼ 1=2 for the aPf state. The
prefactor 8=9 stems from the conversion of the single noise

FIG. 3. Hot spots (red regions) and noise spots (yellow regions)
for the two distinct G ¼ 7=3 plateaus of the aPf state in the in-
coherent regime: (a)νQPC¼3>νB¼5=2 and (b) νQPC ¼ 7=3 < νB.
Left panels: the edge configurations. Right panels: the charge flow
(yellow, solid lines) along each edge segment.
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spot SNS to the total noise S [39]. In Fig. 4(a), we plot S vs
the ratio lh

eq=lc
eq for different choices of L. For relatively

small lh
eq=lc

eq, S approaches Eq. (7), as indicated by the red,
dashed line. Further increasing lh

eq=lc
eq causes S to

monotonously decrease towards S ≈ 0.029e3V=h (green,
dashed line), the value in the regime of vanishing thermal
equilibration in the QPC arms, lh

eq ≫ L [39]. As L
increases, the region of Eq. (7) broadens, which reflects
that lh

eq satisfies the hierarchy (5) for a broader range of
values.
In configuration (ii), we find instead S ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lh
eq=LQPC

q
for

the hierarchy (5), where S increases with increasing lh
eq in

contrast to Eq. (7) [see Fig. 4(b)]. This behavior results
from an emergent, circulating δν ¼ 1=3 mode in the QPC
region [see Fig. 3(b)]. This mode heats up continuously by
Joule heating at the hot spots until the heat escapes to other
edge modes by thermal equilibration. The circulating heat
current effectively winds ∼lh

eq=LQPC times before it
reaches a steady state, and as a result, Td, Tu, and S scale

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lh
eq=LQPC

q
. Crucially, regardless of the topological

order of the ν ¼ 5=2 states, the δν ¼ 1=3 mode always
exists in configuration (ii), and therefore this type of noise
characteristics holds for all ν ¼ 5=2 candidate states
(including Abelian states).
Conductance in the coherent regime.—At sufficiently

low temperatures and voltages, FQH experiments can reach
the regime where the charge equilibration is weak [58–60].
In this regime for the aPf state, each QPC arm segment is
described by the fixed point Lagrangian (4). The neutral
sector Ln has an emergent SO(3) symmetry [6,7]: by
defining the Majorana mode triplet ψT ≡ ðψ1;ψ2;ψ3Þ with
ψ1 ¼ ð1=2 ffiffiffiffiffiffi

πa
p Þðeiϕn þ e−iϕnÞ, ψ2 ¼ ½ð−iÞ=2 ffiffiffiffiffiffi

πa
p �ðeiϕn −

e−iϕnÞ and ψ3 ¼ χ, we express Ln as

Ln ¼
Z
x∈RArm

dx

�
−iψT

	
∂t − v̄n∂x þ

X
a¼1;2

ξaL̂a



ψ

�
: ð8Þ

Here, ξ1 ≡ ReðξÞ, ξ2 ≡ −ImðξÞ and ðL̂aÞbc ≡ ϵabc are the
generators of SO(3). The integration range in Eq. (8)
includes all four arm regions in the QPC, x∈RArm; i.e.,
the regions jxj < L=2 in Fig. 2(b). In contrast, the disorder-
free lead and QPC regions are described by the clean L0

in Eq. (3). With a suitable orthogonal transformation
ψ̃ðxÞ ¼ UTðxÞψðxÞ, Eq. (8) becomes

Ln ¼
Z
x∈RArm

dx½−iψ̃Tð∂t − v̄n∂xÞψ̃ �

−
2iθv̄nffiffiffiffiffiffi

πa
p sinðϕnðx ¼ 0ÞÞχðx ¼ 0Þ: ð9Þ

Here θ is a Euler angle to characterize a rotation around the
x̂ axis on SO(3) space for ψðxÞ; see Supplemental Material
[39] for more details on the transformation. We see that the
action (9) has two fixed points, which correspond to the two
values of θ ¼ 0; π, where disorder can be fully removed.
While θ ¼ 0 directly removes the disorder in Eq. (9), for
θ ¼ π, the θ term can be gauged away upon substituting
ϕn → −ϕn and χ → −χ in the region x > L=2.
Equivalently, in a picture of a Bloch sphere on which ψ
rotates by evolving with UðxÞ, ψ does not rotate at all for
θ ¼ 0 (clean limit), while ψ rotates from the north to the
south pole or vice versa for θ ¼ π. A detailed RG analysis
for the entire device shows that θ ¼ 0 and θ ¼ π corre-
spond to a stable and unstable fixed point, respectively [39].
With the two possible fixed points at hand, we determine

the coherent two-terminal conductance G in Fig. 2. To this
end, we boundary match ϕn and ϕc on all interfaces
between lead and arm regions as well as between QPC
regions and arm regions [39]. For all possible combinations
of arm fixed points (i.e., for θij ¼ 0 or θij ¼ π with labels
i∈ fLðleftÞ;RðrightÞg and j∈ fUðupÞ;DðdownÞg), we find

G¼

8>>>><
>>>>:

2þ 1
17

for all θij¼ π;

2þ 1
9

for θLU¼ θLD ¼ π and θRU ·θRD ¼ 0;

or θRU ¼ θRD ¼ π and θLU ·θLD ¼ 0;

2þ1 otherwise:

ð10Þ

Here, 2 represents the contribution of the two lowest-
Landau-level integer modes. At sufficiently low T, such
that L < LT ≡ ℏvn=T, each arm region is separately driven
to the θij ¼ 0 fixed point. In this clean device regime, the
conductance is maximal at G ¼ 3. In contrast, for
LT < L < lc

eq, G fluctuates and its value depends on the
specific disorder realizations, i.e., the precise values of all
θij. These fluctuations generically range between G ¼ 2þ
1=17 (θij ¼ π) and G ¼ 3. As L exceeds lc

eq (i.e., the

(a)

L

(b)

FIG. 4. Anti-Pfaffian noise characteristics S (in units of e3V=h
where V is the bias voltage) vs the ratio of heat and charge
equilibration lengths lh

eq=lc
eq. The noise is evaluated for the two

different QPC configurations in Fig. 3. (a) S is plotted for
νQPC ¼ 3 > νB ¼ 5=2. The solid lines correspond to different
choices of QPC arm lengths 200 ≤ L=lc

eq ≤ 500 in steps of 50.
The red and green dashed lines correspond to analytical values
obtained for the hierarchy (5), and in the limit lc

eq ≪ L ≪ lh
eq,

respectively. (b) S is computed for νQPC ¼ 7=3 < νB for different
LQPC, 3 ≤ LQPC=lc

eq ≤ 12 in steps of 3, with fixed L ¼ 300lc
eq.
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incoherent regime), G approaches G ¼ 2þ 1=3 as dis-
cussed above.
We emphasize that, due to its unique hole-conjugate

nature, the aPf edge permits upstream charge transport,
allowing G > νB ¼ 5=2 in the coherent regime. By con-
trast, the Pf and phPf edges do not entail upstream charge
transport (assuming no edge reconstruction), so that G
cannot exceed 5=2. Hence, G > 5=2 in the QPC geometry
is a hallmark of the aPf state.
Discussion.—Current experiments for identifying the

ν ¼ 5=2 topological order rule out a Pf state by (i) mea-
surements [19,20] of thermal conductance GQ ¼ ð5=2ÞκT
[with temperature T and κ ¼ π2k2B=ð3hÞ], which is smaller
than the Pfaffian prediction GQ ¼ ð7=2ÞκT and (ii) the
observation of upstream modes [22,68], absent for the
Pfaffian state. Therefore, the main competitor states are the
aPf and phPf. The phPf state is further supported by
upstream noise measurements on the interface between ν ¼
5=2 and integer states [20]. Our proposal to measure
conductance plateaus combined with on-plateau shot noise
to single out the aPf state, provides a novel, complementary
approach to fully identify the ν ¼ 5=2 topological order.
Summary.—We studied ν ¼ 5=2 edge transport in a QPC

device. In the incoherent regime, we found that among the
Pf, phPf, and aPf candidate states, the aPf uniquely permits
two mechanisms that generate a conductance plateau at
G ¼ 7=3. We proposed that on-plateau shot noise, S,
differentiate these mechanisms: (i) For νQPC ¼ 3, which
is realized only for the aPf state, S reaches a maximum
value S ≈ 0.12e3V=h in the experimentally relevant regime

(5). (ii) For νQPC ¼ 7=3, S ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lh
eq=LQPC

q
. We also studied

the conductance in the coherent regime, where G > 5=2
emerges uniquely for the aPf state, thus providing another
fingerprint. Our results pave the way for experimentally
pinpointing the ν ¼ 5=2 state in GaAs=AlGaAs, graphene,
and further 2D materials. Our approach can be adapted to
investigate other even-denominator FQH states.
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