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Charge carrier doping usually reduces the resistance of a semiconductor or insulator, but was recently
found to dramatically enhance the resistance in certain series of materials. This remarkable antidoping
effect has been leveraged to realize synaptic memory trees in nanoscale hydrogenated perovskite
nickelates, opening a new direction for neuromorphic computing. To understand these phenomena, we
formulate a physical phase-field model of the antidoping effect based on its microscopic mechanism and
simulate the voltage-driven resistance change in the prototypical system of hydrogenated perovskite
nickelates. Remarkably, the simulations using this model, containing only one adjustable parameter whose
magnitude is justified by first-principles calculations, quantitatively reproduce the experimentally observed
treelike resistance states, which are shown unambiguously to arise from proton redistribution-induced local
band gap enhancement and carrier blockage. Our work lays the foundation for modeling the antidoping
phenomenon in strongly correlated materials at the mesoscale, which can provide guidance to the design of
novel antidoping-physics-based devices.
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In band semiconductors such as silicon, the electronic
structure is rigid against charge carrier doping, which only
shifts the Fermi energy toward the conduction or valence
band edge, thereby increasing the carrier density and
conductivity. In half-filled Mott insulators, charge carrier
doping can not only shift the Fermi energy but also induce
an insulator-to-metal transition [1], thus increasing the
conductivity. However, it was recently found that carrier
doping can cause a colossal decrease in the conductivity in
several classes of solid-state materials that possess within
the Mott-Hubbard gap additional intermediate bands that
have been split from the principal conduction or valence
band [2–6]. Examples of these materials are perovskite rare
earth nickelates [2,7–15], SrCoO3−δ [3], LiδFeSiO4 [4],
LiδIrO3 [4], and TiO2−δ [5]. This novel behavior poses a
formidable challenge in understanding doping physics. It is
worth pointing out that semiconductors typically find use
after we understand how to dope them as seen in numerous
examples over the years from silicon to gallium nitride. The
microscopic theory derived from first-principles calcula-
tions illustrates that carriers doped onto the intermediate
bands merge the occupied portion of the intermediate bands
into the valence or conduction band, thereby exposing the
large Mott-Hubbard gap and dramatically reducing the
number of charge carriers (Fig. 1) [4,5,16].
This antidoping effect opens a new way of manipulating

band gaps and resistance states, possibly giving rise to
many novel applications. One outstanding example is
perovskite rare earth nickelates. Hydrogen doping the
nickelate SmNiO3 enhances its resistivity by up to 8 orders

of magnitude [2], enabling voltage-controlled tree-shaped
resistance states [17]. This allows the emulation of neural
trees [17] and synaptic networks [18], which has promising
applications in adaptive computing. While simple models
based on the phenomenologically exponential variation of
resistance with doping concentration have been proposed to
explain the nonlinear dependence of resistance on voltage
bias [17,19], there is no theory yet to capture the treelike
memory states and branching phenomena. Developing
theoretical treatments of the evolution of electrical transport
behavior is broadly relevant to understanding the physical
properties of such quantum materials and is of increasing
interest to beyond-von Neumann computing frameworks,

FIG. 1. Schematic diagrams of the density of electronic states
showing the mechanism of antidoping. Electrons from hydrogen
atoms are doped onto the intermediate band (IB), and then merge
their occupied states into the valence band (VB), which may also
enhance the gap (Eg1) across the valence band and the inter-
mediate band and that (Eg2) across the valence band and the upper
Hubbard band (UHB).
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wherein materials with tunable band structures are highly
sought after.
In this work, we develop a physical phase-field model of

the antidoping effect based on its microscopic mechanism.
We take the hydrogenated SmNiO3 as a model example to
investigate the antidoping-induced resistance states. Since
the antidoping phenomenon is observed across this family
of perovskite rare earth nickelates (e.g., SmNiO3, NdNiO3,
EuNiO3, etc.) [7,14,15], our theoretical treatment should be
generalizable to other materials. The simulations quantita-
tively reproduce the experimentally observed treelike
resistance states and demonstrate that a higher electric
field reactivates the otherwise saturated proton distribution,
which enhances the local band gap and carrier blockage,
thereby generating a new resistance branch.
Inspired by the phase-field model of another strongly

correlated material, vanadium dioxide [20,21], we write the
chemical free energy density of nickelates as a sum of the
intrinsic, correlated part fL and the free carrier part
fe − fe0,

F¼
Z

½fLðη;S1;S2Þþfeðη;p;n1;n2;nHÞ−fe0ðηÞ�ddx; ð1Þ

where d is the spatial dimension and x is the spatial
coordinate vector. η, S1, and S2 are the order parameters, p
the free electron-hole density, n1 the free electron density of
the intermediate (ligand hole) band inside the Mott-
Hubbard gap, n2 the free electron density of the upper
Hubbard band, and nH the proton concentration. They are
all fields dependent on x and time t. η characterizes the
lattice structure and electronic phases (η ¼ 0: orthorhombic

metal; η ≠ 0: monoclinic insulator), and S1 and S2
characterize the magnetic order (S1 ¼ S2 ¼ 0: para-
magnetic; S1 ≠ 0 or S2 ≠ 0: antiferromagnetic) [22].
fL ¼ fL0ðη;S1;S2Þþ κ1ð∇ηÞ2=2þ κ2½ð∇S1Þ2þð∇S2Þ2�=2,
where fL0 is the local Landau potential energy density [22]
and the other terms are the gradient or exchange energy
density with κ1 and κ2 being constants. fL0 reproduces the
temperature-tolerance factor phase diagram of the nickel-
ates [22]. fe0 is fe without doping so that F ¼ R

fLddx
without doping at equilibrium.
To incorporate the antidoping effect into the free energy

density of free carriers fe, we consider the microscopic
mechanism [4,5,16] in which the electrons released from
the hydrogen atoms go to the intermediate band and are
localized near the protons, thereby effectively consuming
the itinerant states on the intermediate band (Fig. 1). The
number of consumed itinerant states per unit volume
should thus be equal to nH. Because of the screening
and drag of the localized electrons, the proton responds to
electric fields with an effective charge q less than its
nominal charge e, which is the amount of elementary
charge. A characteristic of the insulator-metal transition is
that the gap between the intermediate band and the valence
band, Eg1, and that between the upper Hubbard band
and the valence band, Eg2, both depend on the electronic
phase order parameter η. The lowest order invariant
approximations for the gaps are Eg1 ¼ Δ1η

2 and
Eg2 ¼ Δ2η

2, where Δ1 and Δ2 are constants. By adopting
the zero-band-width limit and setting the zero energy point
to the midpoint between the valence and intermediate
bands, we write fe as

fe ¼
Δ1η

2

2
ðpþ n1Þ þ

�
Δ2 −

Δ1

2

�
η2n2 þ ϵfnH þ eϕðp − n1 − n2Þ þ qϕnH

þ kBT

�
p ln

�
p
Nv

�
þ ðNv − pÞ ln

�
1 −

p
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�
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�
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�
þ nH ln

�
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�
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�
þ n2 ln

�
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�
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where the last two lines are the entropy contributions. ϵf is
the formation energy of an interstitial hydrogen and ϕ is the
electric potential. kB is the Boltzmann constant, and T is the
temperature. Nv, N1, and N2 are the effective densities of
states of the valence band, the intermediate band, and the
upper Hubbard band, respectively. Note that Eq. (2) does
not depend on the microscopic origin of electron localiza-
tion, which is probably complex and different in different
materials. Therefore, our phase-field model is robust and
general.
The resistance trees can be generated simply by applying

a series of brief voltage pulses to the nickelate. The Joule

heating power in the nickelate would be low because the
nickelate remains an insulator during the whole process.
Therefore, the temperature of the nickelate can be assumed
to stay the same as the ambient temperature. This
assumption also allows us to test whether the resistance
states can be generated only by athermal effects. The
equations of evolution for a general three-dimensional
system are

δF
δη

¼ 0;
δF
δS1

¼ 0;
δF
δS2

¼ 0; ð3Þ
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∂p
∂t

¼ ∇ ·

�
Mh

e
p∇ δF

δp

�
þ Kðp̄ n̄−pnÞ; ð4Þ

∂n
∂t

¼ ∇ ·

�
Me

e
n∇μe

�
þ Kðp̄ n̄−pnÞ; ð5Þ

∂nH
∂t

¼∇ ·

�
nHνae−G

‡=ðkBTÞ2sinh
�

a
2kBT

∇ δF
δnH

��
; ð6Þ

−∇2ϕ ¼ eðp − nÞ
εrε0

; ð7Þ

where μe ¼ δF=δn1 ¼ δF=δn2 and n ¼ n1 þ n2 [23]. p̄
and n̄ are the equilibrium densities of free holes and free
electrons, respectively. K is a rate constant of electron-hole
recombination. Mh and Me are the mobilities of free holes
and free electrons, respectively. We used the nonlinear
transport theory for the proton migration [54], Eq. (6),
where ν is the attempting frequency, a the hopping
distance, and G‡ the hopping barrier. sinhð·Þ of a vector
means applying sinhð·Þ to each component of the vector. εr
is the dielectric constant of the hydrogenated nickelate
taking into account bound charges from doped hydrogen
atoms, and ε0 is the vacuum permittivity.
The values of all the parameters are listed in Table I.

There is only one fitting parameter, q, whose value is
chosen for the simulated neural tree to best match the one
obtained experimentally. To justify the choice of the value
for q, we perform first-principles calculations of the Born
effective charge (not totally equivalent to q) of a hydrogen
atom in H − SmNiO3, and find that it can be as low as 0.29e
along some directions [23].
A one-dimensional system is adequate for simulating the

trees because the expected highly resistive barrier should
not form a filament, but should be approximately homo-
geneous along the direction perpendicular to the applied
electric field [55]. The simulation details are described in
Supplemental Material [23].
We first demonstrate in Fig. 2, upper panel that hydrogen

doping increases the resistance R by more than 5 orders of

magnitude, which agrees remarkably well with the experi-
ment [9] and is a signature of the antidoping effect. The nH
dependence of the resistance is exponential only in the
medium doping range 0.3 f:u:−1 ≲ nH ≲ 0.7 f:u:−1. The
gap also increases with increasing nH and varies with nH
approximately linearly for nH ≳ 0.3 f:u:−1. The steep
increase in the resistance near nH ¼ 0 stems from the fast
increase in the smaller gap Eg1 as a function of nH, whereas
the steep increase in the resistance near nH ¼ 1 f:u:−1 is
due to the saturating effect R ∼ ðN1 − nHÞ−1.

TABLE I. Values of the parameters for SmNiO3. κ1 and κ2 are typical values and K corresponds to a typical carrier lifetime of 1 ns.
They all have minor effects on the simulation results [23]. Mh and Me are on the typical order of magnitude at room temperature
measured by experiments [46,47].Δ1 and Δ2 correspond to a typical band gap of 0.1 eVat room temperature [2,48] and a Mott-Hubbard
gap of 3 eVat zero temperature [4] of pristine SmNiO3, respectively. Nv and N1 correspond to one filled and one empty ligand oxygen
hole per formula unit (f.u.), respectively [23,49]. N2 is obtained by integrating the first-principles calculated density of states [4]. ϵf, ν,
and a are adopted from this work [17]. G‡ corresponds to a proton diffusion coefficient of 1.6 × 10−7 cm2=s measured at room
temperature [50,51] and is close to the first-principles calculation results [17,52] indicating an intra-octahedral hopping mechanism for
proton migration [52]. εr is the squared refractive index measured for hydrogenated SmNiO3 [2,53].

κ1 κ2 Δ1 Δ2 ϵf q Nv N1

1 eV=nm 1 eV=nm 9.6 eV 16 eV 0.9 eV 0.13e 1 f:u:−1 1 f:u:−1

N2 Mh Me K ν a G‡ εr
0.85 f:u:−1 0.1 cm2=ðs VÞ 0.1 cm2=ðs VÞ 3.9 f:u:=ns 782 GHz 0.435 nm 0.235 eV 4.8

FIG. 2. Upper panel: resistance (R) and the smaller gap as
functions of the homogeneous concentration of protons at zero
electric field. Lower panel: resistance change as a function of the
applied electric field with two different durations and of two
different proton concentrations (the initial state is that of a
homogeneous distribution of protons). R0 is R at zero electric
field. R is calculated by V=I, where V is the applied voltage and I
is the boundary current obtained in the simulations.
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We then show in Fig. 2, lower panel that the resistance
increases with increasing electric field and that the resis-
tance change for moderate electric fields (≳8 MV=m)
depends on the field exponentially. This behavior remains
the same as nH is varied. If the electric field is applied for a
longer time, the resistance increases further. These results
are consistent with the experimental measurement for
hydrogenated NdNiO3 [17], whose resistance change
behavior induced by hydrogenation is qualitatively the
same as SmNiO3 [7,14,15].
To see what happens during the voltage-induced resis-

tance enhancement, we show in Fig. 3 the spatiotemporal
evolution of various fields. Protons migrate from the left
electrode, which is connected to the ground, to the right
electrode with a negative voltage. This causes the free
carrier density to decrease near the right electrode and
increase near the left electrode with time, making the band
gap increase near the right electrode and decrease near the
left electrode. These result in a high-resistivity barrier near
the right electrode, thus increasing the overall resistance of
the sample. At t ¼ 3.13 μs, within about 3 nm to the
electrodes, p exhibits sharp spatial changes, which corre-
spond to an accumulation of net charges due to the applied

voltage. The band gap thereby drops in the vicinity of the
right electrode due to the excess screening of electron-
electron interaction there.
We finally depict in Fig. 4 the calculated resistance states

as a function of time and the applied electric field. The
simulation result is in excellent quantitative agreement with
the experiment [17]. The small value of q that leads to this
agreement is a strong indication of the unusual properties of
antidoping and is a manifestation of strong electron
localization and correlation. There are two points to be
noted. One is that the initial proton concentration corre-
sponding to the resistance R0 in the experiment is not
homogeneous, but higher near the negative (right) electrode
and lower near the ground (left) electrode [17]. To account
for this, we apply an electric field of 10 MV=m to the
homogeneous initial state in Fig. 3 for 2 μs and take this
state as the initial state (t ¼ 0) for the simulation in Fig. 4.
The other is that in the experiment every resistance state
and thus the proton distribution are nonvolatile after the
voltage is removed [17]. Therefore, to generate the two
downward branches (orange and red dots in Fig. 4) of the
tree, a bias of opposite polarity was applied to reverse the

FIG. 3. Spatiotemporal evolution of the smaller gap Eg1, proton
concentration nH , free electron density n, and free hole density p
at an electric field of 10 MV=m.

FIG. 4. Upper panel: comparison of experimentally measured
(dots) and calculated neural trees, i.e., the resistance change as a
function of time and applied electric field (see the legend). R0 is
the resistance at t ¼ 0. Lower panel: proton concentration fields
in the states marked by stars with the corresponding colors in the
upper panel. The inset shows the corresponding densities of
itinerant states on the ligand hole band.
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proton distribution [17]. However, this is not the case in our
model. As shown by Eq. (6), we model the evolution of the
proton distribution using the canonical diffusion equation,
so the proton distribution will return to the homogeneous
state with a uniform chemical potential after we remove the
voltage. As a result, we only need to apply a small positive
electric field and then the proton distribution will be
reversed slightly, thereby generating the downward
branches (orange and red lines in Fig. 4). If one accounts
for the nonvolatility by holding the previously applied
voltage, the electric fields generating the two downward
branches would be the same (7 MV=m − 10 MV=m ¼
9 MV=m − 12 MV=m), consistent with the experiment.
The mechanism of this nonvolatility of the proton

distribution is currently not known; it is possibly related
to multiple stable interstitial positions for protons resem-
bling the property of spin glasses and the concentration-
dependent formation energy of interstitial protons [12]. It is
thus currently not feasible to incorporate the nonvolatility
into the phase-field model and should be a subject of
future study.
The lower panel of Fig. 4 shows the proton distribution

in the states marked by stars in the upper panel. For a
constant electric field, nH at different times roughly
intersect at the same point as shown in Fig. 3. In contrast,
the intersection point of the green-star nH and the blue-star
reference nH moves 2.7 nm to the right compared to that of
the orange-star nH and the reference nH. Meanwhile, in a
large portion of the x≳ 60 nm range, the deviation of the
green-star nH from the reference nH is nearly twice that of
the orange-star nH from the reference nH. Because of this
proton redistribution, as the state goes from the orange
star to the green star, the density of itinerant states on the
ligand hole band, N1 − nH, in the 90 ≤ x ≤ 100 nm range
decreases by about 30%–50% (inset in Fig. 4), leading to
greater blockage of current near the right electrode.
Therefore, although the branches of the tree are saturating,
i.e., their slopes decrease with time, a higher electric field
can generate a new branch by reactivating the proton
redistribution process. Since we presumed the isothermal
condition, our results demonstrate that the resistance trees
can be generated in an athermal manner. If q is anisotropic,
the saturating speed of the branches will be different as the
electric field is applied in different directions to a three-
dimensional system.
In conclusion, we derived a phase-field model of anti-

doping based on its microscopic mechanism and used it to
unambiguously demonstrate that the perovskite neural trees
are generated by the voltage-induced reactivation of proton
redistribution. Our model can be further improved to
incorporate the nonvolatility of the proton distribution.
The results are of broad relevance to understanding
the origin of memory formation in quantum materials
and metastable matter that are of interest to emerging
information processing technologies. The model is general,

and one could incorporate material-specific parameters to
model other materials with different dopants.
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