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In multistate non-Hermitian systems, higher-order exceptional points and exotic phenomena with no
analogues in two-level systems arise. A paradigm is the exceptional nexus (EX), a third-order EP as the
cusp singularity of exceptional arcs (EAs), that has a hybrid topological nature. Using atomic Bose-Einstein
condensates to implement a dissipative three-state system, we experimentally realize an EX within a two-
parameter space, despite the absence of symmetry. The engineered dissipation exhibits density dependence
due to the collective atomic response to resonant light. Based on extensive analysis of the system’s decay
dynamics, we demonstrate the formation of an EX from the coalescence of two EAs with distinct
geometries. These structures arise from the different roles played by dissipation in the strong coupling limit
and quantum Zeno regime. Our Letter paves the way for exploring higher-order exceptional physics in the
many-body setting of ultracold atoms.
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The exceptional point (EP), a branch point singularity in
the spectrum, is at the heart of many fascinating non-
Hermitian phenomena and applications with no Hermitian
counterparts [1–4]. At an EP of order N, N eigenvalues
and the corresponding eigenstates of a non-Hermitian
Hamiltonian simultaneously coalesce. The simplest is
the second-order EP (EP2) of a two-state non-Hermitian
Hamiltonian, which has been extensively studied in
experiments [3,4]. Lately, observations of EP2s in quantum
systems were reported, including atoms [5–8], ion traps [9],
single spins [10], and cavities [11].
In non-Hermitian systems with more than two states,

multiple EPs can form and interact, resulting in qualitatively
novel phenomenology absent in two-state cases [3,4,12–18].
Each trajectory of these EPs can trace out interesting geo-
metries in the parameter space, yielding a kaleidoscope of
arcs, rings, etc. Their interactions further lead to the coa-
lescence of EPs and creation of higher-order EPs, which
entail novel physics. A paradigm is where the coalescence of
multiple exceptional arcs (EAs) consisting of EP2s produce
an exceptional nexus (EX) [12,15,16], which is not only a
third-order EP (EP3) but also the cusp singularity of EAs.
Different from an EP2, which has a half topological charge,
an EX has a unique, hybrid topological nature associated
with two distinct topological invariants [15,16].
Nonetheless, experimental explorations of higher-

order exceptional phenomena pose challenges due to the
need to tune more parameters: An order-N EP generically
requires the tuning of 2ðN − 1Þ real parameters [17–20].

Initial experiments have been carried out in acoustics
[12,16,21,22], photonics [23,24], electronic circuits [25],
and with single photon [26]. Notably, the observation of an
EX in three-state acoustic systems with parity-time (PT )
symmetry was reported [16]. However, higher-order excep-
tional phenomena have yet to be experimentally studied with
ultracold atoms. In particular, the atomic realization of an EX
is highly desired, as it can pave the way for exploring exotic
properties of EX in themany-body setting of quantum gases.
Here, we experimentally realize an EX based on dissipa-

tive Bose-Einstein condensates (BEC) of 87Rb atoms. A
crucial novelty of our platform is that tunable dissipation
exhibits prominent density dependence, arising from the
collective response of atoms to resonant light.We implement
a dissipative three-state model that hosts an EX within a
two-parameter space, despite the absence of symmetry. We
measure the system’s decay dynamics and analyze the
consequence of density-dependent dissipation. Based on
an effective descriptionof the transient dynamics,we identify
two EAswith different EP geometries, and demonstrate their
coalescence produces an EX. These intriguing EAs and EX
result from the different roles played by dissipation in the
strong coupling limit and quantum Zeno (QZ) regime [27].
Our Letter differs fromprior experiments [4,23,26]where the
implementation (i) concerns single-particle dissipation, and
(ii) requires at least 3 degrees of freedom, or uses symmetries
to alleviate constraints, often resulting in EAs with identical
geometries. Note that versatile EP geometries have recently
attracted significant interest [4].
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We begin with theoretically describing the physics
of a three-level system modeled by the non-Hermitian
Hamiltonian (in the basis j1i; j2i; j3i)

H ¼ Ω1

0
B@

0 1 0

1 0 w

0 w −iΓ̄

1
CA; ð1Þ

where the coherent coupling rate Ω1 between states j1i and
j2i is used as the energy unit. Hamiltonian H involves two
degrees of freedom: the coherent coupling rate w∈R
between j2i and j3i, and the dissipation rate Γ̄∈R of j3i.
Depending on the dissipation Γ̄ being weak or strong

relative to w, two EP2s can emerge and eventually lead to
EX, which can be qualitatively understood as follows. (i) In
the strong-coupling limit w ≫ 1 and Γ̄≲ w, j1i is essen-
tially decoupled. In the subspace spanned by j2i and j3i,
therefore, the effective Hamiltonian is Heff=Ω1 ¼
−iðΓ̄=2ÞI þ ½wσx þ iðΓ̄=2Þσz� with the identity matrix I
and Pauli matrices σi (i ¼ x, y, z), which hosts an EP2

we1 −
1

2
Γ̄e1 ¼ 0: ð2Þ

When Γ̄ < Γ̄e1 , the Heff=Ω1 has complex eigenvalues

ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − Γ̄2=4

p
Þ − iΓ̄=2, andwhen Γ̄ > Γ̄e1 , two imaginary

eigenvalues ið−Γ̄=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ̄2=4 − w2

p
Þ exist. (ii) In the oppo-

site strong-dissipation limit Γ̄ ≫ w; 1, the QZ effect [27]
occurs and confines the system in the subspace spanned
by j1i and j2i, decoupled from j3i. In this Zeno subspace,
the effective Hamiltonian is H0

eff=Ω1 ¼ −iðw2=2Γ̄ÞI þ
½σx þ iðw2=2Γ̄Þσz�. Thus an EP2 occurs at

1

2
w2
e2 − Γ̄e2 ¼ 0: ð3Þ

When Γ̄ < Γ̄e2 , the eigenvalues of H0
eff=Ω1 are imaginary

and bifurcate. But when Γ̄ > Γ̄e2 , the eigendecay rates
∼w2=ð2Γ̄Þ are degenerate, while the real parts bifurcate
and asymptotically approach�1 for Γ̄ → ∞. Different from
the linear EP arc in Eq. (2), Eq. (3) implies a parabola. Thus,
increasing Γ̄=w in Eq. (1) from Γ̄=w → 0 to Γ̄=w → ∞may
result in two EP2s, whose coalescence creates an EX (EP3).
The above analysis is numerically verified in Figs. 1(a)

and 1(b) in the ðΓ̄; wÞ plane. The EX occurs atw ¼ 2
ffiffiffi
2

p
and

Γ̄¼3
ffiffiffi
3

p
, where eigenvalues are degenerate at EEP3=Ω1¼

−
ffiffiffi
3

p
i, and eigenstates coalesce into jψiEP3 ¼ ði= ffiffiffi

6
p Þj1i þ

ð1= ffiffiffi
2

p Þj2i − ði= ffiffiffi
3

p Þj3i. The different EP geometries of the
two arcs in Fig. 1(b) agree with Eqs. (2) and (3) [28].
At the EX, the system exhibits anisotropic responses to

perturbations H1 [14–16] that reflects the hybrid topologi-
cal nature of the EX [15,16]. Consider the perturbed
Hamiltonian H0 ¼ HEX þ zH1 with z ¼ ϵeiθ (ϵ=Ω1 → 0).

Its eigenstates (eigenvalues) exhibit two distinct scaling
behaviors [Fig. 1(c)]: (i) For perturbations such as
H1 ¼ j3ih3j, all perturbed eigenstates (eigenvalues) scale
as ∝ z1=3; (ii) For perturbations like H1 ¼ ij1ih3j−
ij3ih1j þ ð ffiffiffi

3
p

=3Þj2ih1j þ ð ffiffiffi
6

p
=6Þj2ih3j, two eigenstates

(eigenvalues) scale as ∝ z1=2, while the remaining one
∝ z [28]. To reveal topological property of the states near
the EX, we calculate [28] the Berry phase ϕB accumulated
in the parallel transport [15,16,29] of a perturbed eigenstate
in a closed loop depicted in Fig. 1(c). For z1=3 perturbation,
we find that all eigenstates return to their initial point after
three cycles and accumulate a quantized Berry phase of
ϕB ¼ −2π, same as the PT -symmetric scenarios. In case
(ii), however, we find that two eigenstates, which scale as
z1=2, return after two cycles, with ϕB ¼ −2.17π, while the
remaining eigenstate returns after just one cycle, with
ϕB ¼ −0.83π; these Berry phases are not quantized due
to the absence of symmetry [35], unlike PT -symmetric
scenarios [15,16].
Experimentally, we implement Eq. (1) based on the 87Rb

BEC as shown in Fig. 2. We exploit three ground-state
hyperfine states (jF ¼ 1; mF ¼ 0i, jF ¼ 1; mF ¼ −1i and
jF ¼ 2; mF ¼ 0i) of 87Rb atoms, respectively, to encode
j1i, j2i, and j3i. Level couplings are shown in Fig. 2(a). To
realize tunable dissipations in j3i, we use a laser light at
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FIG. 1. Exceptional nexus (EX) formed in two-dimensional
(2D) parameter space in the absence of symmetry. (a) Calculated
eigenvalues of Hamiltonian (1) as a function of dissipation rate Γ̄,
for w ¼ 6; 4.5; 2

ffiffiffi
2

p
(gray, blue, and purple), respectively. Only

the real components are shown. (b) Two EAs with different EP
geometries merge at the EX in the ðΓ̄; wÞ plane. (c) Anisotropic
perturbation effects near the EX. We numerically calculate the
eigenvalues E0

j (j ¼ 1, 2, 3) and eigenstates of the perturbed
Hamiltonian H0 ¼ HEX þ zH1, where z=Ω1 ¼ 0.1eiθ. Left
panel: H1 ¼ j3ih3j. Right panel: H1 ¼ ij1ih3j − ij3ih1j þ
ð ffiffiffi

3
p

=3Þj2ih1j þ ð ffiffiffi
6

p
=6Þj2ih3j. Real parts of E0

j are shown as a
function of z.
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λ ¼ 780 nm to drive a resonant transition from jF ¼ 2;
mF ¼ 0i to an electronically excited state jF0 ¼ 3i with
atomic linewidth γ ¼ 2π × 6.06 MHz, such that when
atoms populate jF ¼ 2; mF ¼ 0i, they are lost from the
system at a rate Γ. Tunable Γ is achieved by controlling the
laser power. In all measurements [28], we start with

preparing a BEC with a numberN0 ∼ 2.5 × 104 87Rb atoms
in jF ¼ 1; mF ¼ −1i at the temperature ∼50 nK.
To determine the dissipation rate Γ [inset of Fig. 2(b)],

we use a microwave (MW) π pulse to transfer the BEC
from jF ¼ 1; mF ¼ −1i to jF ¼ 2; mF ¼ 0i; subsequently,
the MW field is switched off while the resonant laser is
switched on. By monitoring the short-time dynamics of the
population N3ðtÞ in jF ¼ 2; mF ¼ 0i, we obtain Γ through
an appropriate fit of data via the formula N3ðtÞ ¼ N0e−2Γt.
We have checked that, in the absence of the dissipation
beam, the natural atom loss in the BEC is negligible over
times ∼10 ms [28].
Given that the BEC has a size comparable to the light

wavelength λ and exhibits a dense atomic density
n ∼ 3.4 × 1013 cm−3, we estimate nλ3 ∼ 16 ≫ 1 in a
regime characterized by the emergence of collective optical
response of the atomic cloud to a resonant light [36–39].
Consequently, we observe a collective, density-dependent
dissipation rate ΓðnÞ arises, distinct from noninteracting
scenarios. Figure 2(b) illustrates the measured Γ as a
function of the excitation laser power, for various phase
space density of atoms, below and above the critical phase
space density ∼2.6 for condensation. We observe enhanced
dissipation for increased density, particularly at higher laser
intensities, which indicates modifications to the single-
particle dissipation rate g2=γ. A comprehensive study of
this light-induced many-body dissipation of BECs will be
presented in a separate work. To check if the dissipation
beam causes any resonance shift, we measure the transfer
efficiency from jF ¼ 1; mF ¼ −1i to jF ¼ 2; mF ¼ 0i,
sweeping the detuning Δ3 of jF ¼ 2; mF ¼ 0i, for a wide
range of Γ [Fig. 2(c)]. After extracting the center frequency
(inset), we find no visible systematic shift. Below, we
denote the measured dissipation rate as Γ̄ ¼ Γ=Ω1.
The density-dependent dissipation rate in the implemented

three-state system gives rise to intriguing decay dynamics
over a relatively long time scale of∼0.2 ms. Experimentally,
after preparing a BEC in jF ¼ 1; mF ¼ −1i, we sweep the
biasmagnetic field to 16Gwithin 100msandwait 100ms for
the bias field to stabilize.Once stabilized,we abruptly turn on
the MW field, rf field, and the resonant laser [28] to drive the
time evolution of the BEC. After an evolution time t, we
utilize the Stern-Gerlach absorption imaging technique to
measure the atomic populations in the two Zeeman levels
[Fig. 2(a)], respectively. Figure 2(d) shows the measured
(normalized) total atom number NðtÞ=N0, for various w
and Γ̄ [28]. The dashed curves denote simulations using
Hamiltonian (1) with Γ̄. The simulation closely matches the
experiment at transient times. Nevertheless, discrepancies
may arise after some time, particularly as Γ̄ increases. This
deviation can be understood since the atomic cloud becomes
dilute over time, so that the density-dependent dissipation
rates at later times may differ considerably from that at initial
stages. Further comparisons between the experiment and the
simulation with HðΓ̄Þ (dashed curves) seem to suggest

FIG. 2. Implementation with BECs of 87Rb atoms. (a) Energy
level diagram. Three hyperfine states in the ground-state mani-
fold, jF ¼ 1; mF ¼ 0i, jF ¼ 1; mF ¼ −1i, and jF ¼ 2; mF ¼ 0i,
are used to encode j1i, j2i, and j3i. A resonant radio frequency
field couples jF ¼ 1; mF ¼ 0i and jF ¼ 1; mF ¼ −1i with
the coupling rate Ω1. A microwave field resonantly couples
jF ¼ 1; mF ¼ −1i and jF ¼ 2; mF ¼ 0i with the coupling rate
Ω2. A resonant laser drives a transition between jF ¼ 2; mF ¼ 0i
and an electronically excited state jF0 ¼ 3i with spontaneous
emission rate γ ¼ 2π × 6.06 MHz (out of system); the coupling
rate g is controlled via laser power. The BEC is initialized in
jF ¼ 1; mF ¼ −1i. After an evolution time t, the Stern-Gerlach
absorption image is taken after 10 ms time of flight.
Illustrated images are taken at t ¼ 0 and t ¼ 0.04 ms when
w ¼ Ω2=Ω1 ¼ 2.8, with Ω1 ¼ 10.36 and Ω2 ¼ 29.01 kHz.
(b) Measured dissipation rate Γ as a function of laser intensity,
for various phase space densities. Inset: Though a fit (dotted
curve) of the short-time population dynamics in jF ¼ 2; mF ¼ 0i
asN3ðtÞ=N0 ¼ e−2Γt, one obtains Γ for the phase space density of
19.4 and the laser power of 10 μW. (c) Measurement of transfer
efficiency from jF ¼ 1; mF ¼ −1i to jF ¼ 2; mF ¼ 0i under a
wide range of Γ, when Ω2 ¼ 31.41 kHz. By fitting the data (solid
curve), the center frequency Δc

3 is extracted and shown as a
function of Γ in the inset. (d) Measured total atom number
NðtÞ=N0 (normalized to the initial number N0) as a function of
(dimensionless) time. Purple, yellow, red, and black dots denote
the data for ðw¼ 2.8; Γ̄¼ 1Þ, ðw¼ 3.8; Γ̄¼ 2Þ, ðw ¼ 4.5; Γ̄ ¼ 8Þ,
ðw ¼ 4.5; Γ̄ ¼ 17Þ, respectively, with Γ̄ ¼ Γ=Ω1. Dashed curves
denote simulations using HðΓ̄Þ. Solid curves denote two-param-
eter fit to the data using HðΓ̄1Þ and HðΓ̄2Þ; see text and
Supplemental Material [28]. Each data is the average of
(b) 5, (c) 5, and (d) 3 measurements. The error bars are 1σ
standard deviations.
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decreased dissipation rates < Γ̄ at long times, as illustrated,
for instance, by the black curves representing the Zeno limit.
Motivated by the observations that HðΓ̄Þ remains a good

description of the system dynamics at short timescales,
while long-time dynamics may exhibit decreased dissipa-
tion rates, we adopt a minimal strategy to effectively model
the full dynamics, which is referred to as the two-parameter
fit below. The approach consists of using two Hamiltonians
of the form (1), HðΓ̄1Þ, and HðΓ̄2Þ, to model the dynamics
at times 0 ≤ t < tm and t ≥ tm, respectively, with three
parameters, Γ̄1, Γ̄2, and tm, to be determined from the best
fit to the data. In the fitting process, we first choose the
initial values of Γ̄1;2 and tm according to the following
considerations: For Γ̄1, we take its initial value to be ∼Γ̄,
because HðΓ̄Þ offers a good short-time description as
mentioned earlier; For tm, we take its initial value to be
the instant when the experimental data is observed to

deviate notably from the model with HðΓ̄Þ; For Γ̄2, we
choose its initial value to be ∼Γ̄=2. Then, starting from
these initial values, we iteratively improve the fitting
parameters until the difference of the calculated NðtÞ=N0

and the measured dynamics are minimized in the least-
square sense. As shown in Fig. 2(d) and detailed in [28],
such a two-parameter fit leads to a much better agreement
with the experiment compared to utilizing a single dis-
sipation rate.
Despite complications caused by the density dependence

of the dissipation rate, we can probe some generic features
associated with the different interplays of dissipation and
coherent processes in the weak and strong dissipation limits
as expected from the model (1). In Fig. 3(a), the measured
Nðt0Þ=N0 at some fixed time Ω1t0 ¼ 0.8� 0.05 is shown
as a function of Γ̄ [28]. For Γ̄=w < 1, Nðt0Þ=N0 decreases
with Γ̄, indicating enhanced atomic loss; the curves with

FIG. 3. Measurement of EAs and EX. (a) Measured total atom number Nðt0Þ=N0 at time Ω1t0 ¼ 0.8 as a function of the dissipation
rate Γ̄. The experimental data are shown for the coupling rate w ¼ 2.8, 3.8, 4.5 [28], respectively. Data within the time window
Ω1t0 ¼ 0.8� 0.05 are shown. The solid curves are the numerical fittings of the experimental data as a function of Γ̄. (b) Exponent
α as a function of Γ̄. Assuming the fitted Nðt0Þ=N0 in (a) is of the form Nðt0Þ=N0 ≃ expð−γt0Þ with the scaling γ ∝ Γ̄α, we extract
the exponent α as a function of Γ̄, for w ¼ 2.8, 3.8, 4.5 (red, pink, and purple), respectively. (c) Measured time evolution of the atom
number N2ðtÞ=N0 in jF ¼ 1; mF ¼ −1i, for w ¼ 3.8. Left panel: Γ̄=w ≲ 1. Right panel: Γ̄=w≳ 1. Solid curves are two-parameter fit to
the data [28]. (d)–(g) Measured eigenvalues as a function of Γ̄, when (d) w ¼ 4.5, (e) w ¼ 3.8, (f) w ¼ 3, and (g) w ¼ 2.8. In (d)–(f),
both real (top) and imaginary (bottom) parts of the eigenvalues are shown. The gray shaded area indicates regions between the two EP2s.
In (g), where w ¼ 2.8 < wEX, only the real part of the eigenvalues is shown. The experimental data of eigenvalues are obtained through
the fitted HðΓ̄1Þ (see text). By further fitting (solid curves) the measured eigenvalues as a function of Γ̄, we identify the EPs. Insets of
(d)–(f) are enlarged plots of the measured eigenvalues near EPs. (h) Experimental EAs and EX in a two-dimensional parameter space
ðΓ̄; wÞ shown on top of the theoretical results (solid curves). In (a) and (c), each data is the average over 3 measurements, and error bars
denote 1σ standard deviations. In (d)–(h), error bars denote the fitting errors.
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different w significantly overlap, which signals that the
underlying eigendecay rates are insensitive to w. These
features agree with previous predictions in the strong
coupling limit (i). When Γ̄=w ≫ 1, in contrast, we observe
a revival of population when Γ̄ increases, in such a way that
depends on w, consistent with previous analysis in Zeno
regime (ii). To further reveal how the atom loss behaves
under different Γ̄, we fit the measured Nðt0Þ=N0 as a
function of Γ̄ (solid curve) and assume Nðt0Þ=N0 ≃
expð−γt0Þ with γ ∝ Γ̄α. We extract the exponent α as a
function of Γ̄ in Fig. 3(b). The α under various w exhibits
similar asymptotic behaviors, turning from α ≃ 1 when
Γ̄=w → 0 toward α → −1 when Γ̄=w ≫ 1, as expected in
this two limits. We also measure the atom population
N2ðtÞ=N0 in jF ¼ 1; mF ¼ −1i [Fig. 3(c)]. In the left panel
with Γ̄≲ w, clear oscillation is observed, but the oscillation
frequency is reduced with Γ̄. This indicates the underlying
energy spectrum is non-degenerate and decreases with Γ̄.
The oscillation seems to revive at strong dissipations Γ̄≳ w
[right panel of Fig. 3(c)]. But the full oscillation cannot be
observed within the measurement timescale, which needs
more sophisticated techniques [40].
Finally, we probe the existence of EX, which is not only

an EP3 but also the cusp singularity of EAs, using the
Hamiltonian HðΓ̄1Þ that appropriately yields the short-time
system dynamics. The measured eigenvalues are shown in
Figs. 3(d)–3(g) as a function of the nominal Γ̄, for w ¼ 4.5,
3.8, 3, 2.8, respectively. By fitting the measured eigenval-
ues as a function of Γ̄, we identify potential EPs as the
degenerate points. In Figs. 3(d)–3(f), we observe two EP2s
that gradually merge when reducing w. In Fig. 3(f), the two
sufficiently close EP2s strongly evidence the existence of
an EP3. When further reducingw below EP3 as in Fig. 3(g),
all three eigenvalues become nondegenerate again. This
signals the trajectories of EP2s to terminate at EP3, i.e., to
form the cusp singularity. Finally, we collect the exper-
imental data of EPs to construct their trajectories in the
ðΓ̄; wÞ plane [Fig. 3(h)]. The good agreement between the
experiment and theory (solid curves) evidences the two
EAs with different EP geometries, whose coalescence leads
to an EX.
Summarizing, using dissipative BECs, we realize an EX

formed by the coalescence of EAs with different EP
geometries, despite the absence of symmetry. In our
implementation, tunable dissipation has a many-body
nature, and features density dependence. This feature
makes dissipative BECs under resonant light a unique
platform in the study of non-Hermitian physics.
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