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To date numerical simulations of lattice QCD have not found a chiral phase transition of first order that is
expected to occur for sufficiently light pions. We show how the restoration of an exact global chiral
symmetry can strongly decrease the breaking of the approximate, anomalous UAð1Þ symmetry. This is
testable on the lattice through simulations for one through four flavors. In QCD a small breaking of the
UAð1Þ symmetry in the chirally symmetric phase generates novel experimental signals.
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One of the most beautiful phenomena in quantum field
theory is the axial anomaly of Adler, Bell, and Jackiw
[1–4]. In four spacetime dimensions massless fermions are
chiral, whose spin is either opposite or along the direction
of motion, and so respectively left or right handed. For
chirally symmetric interactions, as with a gauge field, the
current for the total number of fermions, left plus right, is
always conserved. In contrast, the axial current, equal to the
difference of the left and right handed currents, is conserved
classically but not quantum mechanically. Instead, the
divergence of the axial current is proportional to the density
of the topological charge for the gauge field.
In the vacuum of quantum chromodynamics (QCD),

large fluctuations in the topological charge explain why the
flavor singlet meson, the η0, is not a Goldstone boson [5–7].
It also affects other phenomena, albeit more indirectly
[8–16]. The axial anomaly also appears in condensed
matter systems [17,18].
The relationship between the divergence of the axial

vector current and topological charge density, computed at
one loop order, is exact [1,3,4]. Even so, this does not tell
one how large the topologically nontrivial fluctuations are
[19,20]. At zero temperature they must be large in order to
make the η0 heavy. In contrast, at high temperature
instantons are the dominant topologically nontrivial fluc-
tuations [21,22]. In this limit the density of instantons can
be computed semiclassically, which implies that the mag-
nitude of the topological charge susceptibility vanishes as a
high power of the temperature T, as T → ∞. Even though it

vanishes at infinite T, it is natural to expect that the density
of topologically nontrivial fluctuations is nonzero for any
finite T.
This leaves the relationship between the restoration of

the exact chiral symmetry, and the approximate, anomalous
UAð1Þ symmetry, obscure. Based upon extensive results
from numerical simulations in lattice QCD, in this Letter
we outline how the restoration of an exact chiral symmetry
strongly affects the approximate restoration of the anoma-
lous UAð1Þ symmetry. This can be tested in lattice QCD
with different numbers of flavors, especially for a single
flavor. The approximate restoration of the anomalous
UAð1Þ symmetry has dramatic implications for the colli-
sions of heavy ions, and surely implications for condensed
matter systems as well.
Effective Lagrangians.—We consider QCD-like theo-

ries, with a SUðNcÞ gauge field coupled to Nf flavors of
massless quarks in the fundamental representation. As
massless fields, the Lagrangian is invariant under the global
chiral rotations qL;R → eiðθV∓θAÞ=2UL;RqL;R, where qL and
qR are left and right handed quarks, and UL and UR
elements of the global symmetry groups SULðNfÞ and
SURðNfÞ, respectively. There are two Uð1Þ groups, one for
quark number, θV , and one for axial quark number, θA.
We assume that, in vacuum, the exact global chiral

symmetry is characterized by an expectation value for a
color singlet, spin-zero field Φ, Φ ¼ q̄LqR, where Φ
transforms under the fundamental representation of the
global symmetry group of Gcl ¼ SULðNfÞ × SURðNfÞ ×
UAð1Þ asΦ → eiθAU†

LΦUR. AsΦ is invariant underUVð1Þ,
this symmetry can be ignored.
Through the axial anomaly, the UAð1Þ symmetry is

violated quantum mechanically by topologically nontrivial
fluctuations such as instantons. The exact chiral symmetry
that remains is just Gqu ¼ SULðNfÞ × SURðNfÞ.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 251903 (2024)

0031-9007=24=132(25)=251903(8) 251903-1 Published by the American Physical Society

https://orcid.org/0000-0002-7862-4759
https://orcid.org/0000-0003-1448-677X
https://ror.org/02ex6cf31
https://ror.org/033eqas34
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.251903&domain=pdf&date_stamp=2024-06-21
https://doi.org/10.1103/PhysRevLett.132.251903
https://doi.org/10.1103/PhysRevLett.132.251903
https://doi.org/10.1103/PhysRevLett.132.251903
https://doi.org/10.1103/PhysRevLett.132.251903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In vacuum, it is expected that chiral symmetry breaks to
the maximal diagonal subgroup of SUVðNfÞ, hΦabi ¼
ϕ0δ

ab, where a; b ¼ 1…Nf are the indices for the
SULðNfÞ and SURðNfÞ groups. Phenomenologically, this
pattern certainly occurs in QCD, whereNc ¼ 3 andNf ¼ 2

or 3. Coleman andWitten proved that it arises in the limit of
large Nc and small Nf [23].
The appropriate effective Lagrangian for chiral sym-

metry breaking is well known [5–7,11,12,19,24–45].
There are two types of terms that enter. The first type
are terms invariant under Gcl. Up to terms of sixth order in
Φ, these are

Lcl ¼ trðj∂μΦj2Þ þm2 trðΦ†ΦÞ
þ λ1ðtrðΦ†ΦÞÞ2 þ λ2trðΦ†ΦÞ2
þ κ1ðtrðΦ†ΦÞÞ3 þ κ2trðΦ†ΦÞtrðΦ†ΦÞ2
þ κ3trðΦ†ΦÞ3: ð1Þ

Our trace is normalized, so tr1 ¼ 1. For a gauge theory in
3þ 1 dimensions, a phase transition at a nonzero temper-
ature T is characterized by an effective theory in three
dimensions. Couplings to sixth order then represent the
relevant operators: the mass squared, m2; two quartic
coupling constants, λ1 and λ2, with dimensions of mass;
and the six point couplings: κ1, κ2, and κ3, with dimension-
less coupling constants. Terms of eighth and higher order
are irrelevant operators, whose coupling constants have
negative mass dimension.
The second class of terms are invariant under Gqu but not

UAð1Þ, and so are generated by topologically nontrivial
fluctuations [5–7,11,12,19,30,34,36–38]:

Vqu ¼ − ξ1ðdet Φþ det Φ†Þ
− ξ11ðtrΦ†ΦÞðdet Φþ det Φ†Þ
− ξ2½ðdet ΦÞ2 þ ðdet Φ†Þ2�: ð2Þ

For three flavors, these are terms to third, fifth, and sixth
order in Φ.
The Atiyah-Singer index theorem relates the change in

the axial fermion number to the topological charge as
nL − nR ¼ NfQ. An instanton with topological charge
Q > 0 has NfQ left handed zero modes, qL, while for
an anti-instanton with Q < 0, the quark zero modes are
right handed [46]. Thus, the first two terms, ∼ detΦ, arise
from instantons with charge 1, [5–7,24], while the last term,
∼ðdetΦÞ2, is due to instantons with charge 2 [11,12].
We comment that instead of the term ∼ξ1, for three

flavors, Refs. [30,36–38] use ξ1 ¼ ξ11 ¼ 0, and just a single
anomalous coupling, ∼ξ02½ðdet ΦÞ2 − ðdet Φ†Þ2�. The oper-
ators ∼ξ2 and ∼ξ02 differ by a term ∼ det Φ† detΦ ¼
detðΦ†ΦÞ. This operator is invariant under UAð1Þ, and
so for three flavors, the coupling ∼ξ02 is equivalent to that

∼ξ2, plus a modification of the UAð1Þ invariant couplings
of sixth order in Eq. (1). A similar relation applies for any
number of flavors ≥ 2. We prefer to use the coupling ∼ξ2,
as that is uniquely generated by instantons with charge 2.
The anomalous couplings in Eq. (2) are the first terms in

an infinite series

Vqu ¼
X∞

i¼1

X∞

j¼0

ξjif
j
iðΦ†ΦÞððdetΦÞi þ ðdetΦ†ÞiÞ; ð3Þ

where fjiðΦ†ΦÞ involves all independent terms of order
ðΦ†ΦÞj [47]. Terms with couplings ∼ξji are generated by
fluctuations with topological charge jQj ¼ i. For ease of
notation we denote ξ0i ≡ ξi.
A conjecture about anomalous couplings.—At the outset

we recognize that especially in vacuum, the topologically
nontrivial configurations are surely truly quantum objects
and far from any semiclassical approximation [20]. For
ease of discussion, we refer to the dominant configurations
in vacuum as quantum instantons, and those that dominate
when T → ∞ as semiclassical instantons. The contribution
of a single semiclassical instanton to the partition function
is ∼ exp½−8π2=g2ðTÞ�, so by asymptotic freedom this falls
off as a high power of the temperature [48]. Numerical
simulations of lattice QCD indicate that the topological
susceptibility falls off close to this power down to temper-
atures of Tqu ∼ 300 MeV [49]. While astonishingly low,
this is still about twice the temperature for the chiral
crossover in QCD, at Tχ ∼ 156 MeV [50–54]. Thus, we
can take Tqu as an estimate of the change from quantum to
semiclassical instantons [55].
The essential question is what is the relative magnitude

of the anomalous coupling constants in vacuum and as the
temperature increases. The standard assumption with
effective Lagrangians is that the couplings with the highest
mass dimension dominate. For the UAð1Þ symmetric
Lagrangian of Eq. (1), that is the mass squared, followed
by the quartic couplings, etc. In the standard Wilsonian
paradigm, this is inescapable, because the only way of
differentiating these different operators is through their
mass dimension.
Of course some operators have a larger symmetry than

others: m2trðΦ†ΦÞ and λ1½trðΦ†ΦÞ�2 are invariant under
Oð2N2

fÞ, while the coupling λ2trðΦ†ΦÞ2 is only invariant
under Gcl. But this is standard, and does not affect the
renormalization group flow [56]. The only time that
couplings of sixth order need to be included is at isolated
points where both λ1 and λ2 vanish; then there is a tricritical
point, controlled by the evolution of the six-point coupling
constants, κ1, κ2, and κ3.
For the anomalous coupling constants, the operator with

the lowest mass dimension is ξ1 det Φ. Thus, naively one
expects that this operator dominates the infrared behavior
near the chiral phase transition [19].
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However, there is something special about the anoma-
lous couplings that is not true in standard effective theories.
Terms ∼ det Φ are due, uniquely, to the zero modes of an
instanton with charge 1; those∼ðdet ΦÞ2, to the zero modes
of an instanton with charge 2, etc. [5–7,11,12].
In vacuum, when chiral symmetry breaking occurs the

effective coupling for the first anomalous coupling,
∼ det Φ, is a sum of an infinite number of terms

ξeff1 ðTÞ ¼
X∞

i¼1

X∞

j¼0

ξjiðTÞfjiðϕ0ðTÞ2Þiϕ0ðTÞði−1ÞNf : ð4Þ

As indicated, all of the anomalous coupling constants, the
ξji , and the expectation value of the scalar field, ϕ0, are
functions of temperature. At very high temperature, the
anomalous coupling constants ξi can be computed semi-
classically, and are all nonzero [5–7,11,12].
We conjecture the following. In vacuum, the contribution

of ξ1ð0Þ to the total coupling, ξeff1 ð0Þ, is small. Instead,
terms nominally of higher order in Φ in the effective action
are enhanced by corresponding powers of the chiral con-
densate, such as ∼ϕ0ð0ÞNfξ2ð0Þ, ∼ϕ0ð0Þ2Nfξ3ð0Þ, etc. Our
conjecture is that these terms dominate ξ1ð0Þ numerically.
In contrast, in the chirally symmetric phase for T ≥ Tχ,

the chiral condensate vanishes, ϕ0ðTÞ ¼ 0. For T > Tqu,
the ξiðTÞ ∼ ½ξ1ðTÞ�i, and then ξ1ðTÞ certainly dominates
over ξi≥2ðTÞ. This is just because in weak coupling, semi-
classical instantons necessarily form a dilute gas [11,12].
Why should our conjecture be valid? Consider forming

an effective Lagrangian for chiral symmetry breaking from
the underlying gauge theory. We integrate out quarks and
gluons to form an effective theory for Φ over some volume
Vχ . The essential question is, then, what is the distribution
of quantum instantons that contributes in Vχ .
If in Vχ quantum instantons with net charge 1 dominate,

then so will the operator ∼ξ1 det Φ. If instead Vχ pre-
dominately contains quantum instantons with net charge 2,
then the operator ∼ξ2ðdet ΦÞ2 will be more important. We
suggest, then, that in vacuum quantum instantons with
charge 2 and greater dominate Vχ . Of course in all, the
topological charge of the vacuum vanishes. But it need not
within a finite volume Vχ [57].
We now discuss the implications of our conjecture,

beginning with the case of three flavors that motivated it.
Three flavors.—In QCD there is no true phase transition,

only a crossover (albeit with a large increase in the
pressure). If ξ1ðTχÞ ≠ 0, however, for three flavors the
operator ∼ detΦ is a cubic operator. The presence of a
cubic operator implies that the standard effective
Lagrangian for a second-order phase transition, with only
terms quartic and quadratic in the fields, cannot be reached,
and so the transition is of first order. Hence, a chiral phase
transition of first order must emerge for sufficiently light
pions, mπ < mcrit

π [19]. For simplicity we discuss the case
of three degenerate quark flavors.

How large mcrit
π is depends upon the magnitude of

ξ1ðTχÞ. We suggest that in vacuum the η0 is heavy not
because ξ1 is large, but because the higher order terms, such
as ξ2, ξ3, etc., contribute and overwhelm ξ1. At the chiral
phase transition, however, ϕ0 ¼ 0, and one is left with just
ξeff1 ðTχÞ ¼ ξ1ðTχÞ. If ξ1ðTχÞ is small, then so is mcrit

π .
In mean field theory, it is customary to assume that ξ1ðTÞ

is independent of temperature. Since the η0 is so heavy at
zero temperature, in vacuum ξ1ð0Þ must be large, and mcrit

π

should also be large. In a quark meson model, one finds
mcrit

π ≈ 150 MeV if the vacuum fluctuations of quarks are
ignored [58], and mcrit

π ≈ 86 MeV if they are included [59].
Similarly, using mean field theory in a chiral matrix model
yields mcrit

π ≈ 110 MeV [60].
Going beyond mean field theory, mesonic fluctuations

can be included by using the functional renormalization
group. This gives rise to a critical mass that is dramatically
smaller but still nonzero, mcrit

π ≈ 17 MeV [59]. Presumably
this occurs because the functional renormalization group is
including, at least in part, higher-order anomalous contri-
butions as in Eq. (4) [61].
In contrast, no simulation of lattice QCD has ever found

evidence of a first order transition, with mcrit
π < 50 MeV

from Ref. [63] and mcrit
π < 100 MeV in Ref. [64]. By

considering the position of the tricritical point as a function
of Nf, Ref. [65] finds that even for three flavors, the
chiral transition is of second order in the chiral limit. This is
also consistent with Ref. [66], by extrapolation from
mcrit

π ∼ 80 MeV.
We note that a small value of ξ1ð0Þ is perfectly consistent

with hadronic phenomenology at zero temperature, for both
hadronic masses and decay widths. In fact, these quantities
can be reproduced successfully in low-energy models even
with ξ2 as the only anomalous coupling [30,31,36–38].
This will be analyzed in greater detail in future work [67].
While we assume that ξ1ðTχÞ ≠ 0, we stress that we

cannot exclude the possibility that ξ1ðTχÞ ¼ 0. From the
viewpoint of effective Lagrangians, this is most unnatural,
as then two parameters—m2ðTÞ and ξ1ðTÞ—vanish as one
thermodynamic parameter, the temperature, is varied.
If the result of Ref. [65] holds and the chiral transition is

of second order, then we speculate that not just ξ1ðTχÞ, but
all of the anomalous couplings vanish at the critical
temperature

ξjiðTχÞ ¼ 0: ð5Þ

This implies that the anomalous UAð1Þ symmetry is
restored at Tχ . This can only happen precisely at Tχ , since
as T → ∞ semiclassical instantons are present and give
ξjiðTÞ ≠ 0. It certainly is not a generic property of effective
models, as seen by different approaches [40,44,68,69].
Thus, it must be specific to its origin from the properties of
fermion zero modes at Tχ , which must then decouple from
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the critical modes. The relation of Eq. (5) to the ’t Hooft
anomaly condition is also of interest [70,71].
A necessary condition for a second order transition is the

existence of an infrared stable fixed point in the underlying
critical theory. So far, no stable fixed point in the Gqu
universality class has been found [19,45,72]. Regarding Gcl
universality, analyses with the ϵ expansion in 4 − ϵ dimen-
sions [19,73,74], perturbation theory in three dimensions
[75], and Monte Carlo simulations [76,77] found no fixed
point, indicating a first order transition. In contrast, recent
results from the functional renormalization group [45] and
the conformal bootstrap [78–80] find a stable fixed point.
Hence, from critical physics a second order transition
seems more likely if Uð1ÞA is restored at Tχ . While
unsettled, we therefore assume that if ξ1ðTχÞ ¼ 0, three
massless flavors could have a chiral transition of second
order in the universality class of Gcl.
This is in accord with recent results using Dyson-

Schwinger equations [81], where a second-order chiral
transition is found in the chiral limit. In this case scaling
analysis shows that the universal physics is described by
mean field behavior without further external input. A
second order transition then arises if ξ1ðTχÞ ¼ 0, e.g.,
Refs. [59,67], providing strong indications that this is also
true in Ref. [81].
Two and four flavors.—For two flavors, the term ∼ξeff1 is

a mass term that splits the η meson from the pions. The
couplings ∼ξ11 and ∼ξ2 are of quartic order. Thus, in the
chiral limit, ξ1 ≠ 0 implies that the η meson is massive at
Tχ , and the universality class is that of Gqu ¼ SULð2Þ×
SURð2Þ≡Oð4Þ. Numerical simulations using Wilson fer-
mions by Brandt et al. [82] find that the mass of the η
meson is much smaller near Tχ than at T ¼ 0, in accord
with our conjecture. If the speculation of Eq. (5) holds, then
the η meson is massless at Tχ , and the universality class is
then Oð4Þ ×Oð2Þ. Interestingly, recent analyses show that
stable fixed points exist not only for Oð4Þ, but also for
Oð4Þ ×Oð2Þ universality [34,78,80].
For four flavors, the coupling ∼ξ1 detΦ is of quartic

order, and a relevant quartic coupling, of the same mass
dimension as the couplings ∼λ1 and ∼λ2. The critical
behavior of Gqu forNf ¼ 4 is unknown. Preliminary studies
indicate that very light quarks are necessary to see a first
order transition [83].
One flavor.—An interesting test of our conjecture is for a

single, massless flavor [25,28,29]. TakingΦ ¼ ϕþ iη, where
Φ†Φ ¼ ϕ2 þ η2, and ðdet Φþ det Φ†Þ ¼ 2ϕ. Including all
couplings to quartic order, the effective Lagrangian is

Lqu ¼ ð∂iϕÞ2 þ ð∂iηÞ2 þ ξ1ϕ

þm2ðϕ2 þ η2Þ þ ξ2ðϕ2 − η2Þ
þ ξ3ϕðϕ2 − η2Þ þ ξ11ϕðϕ2 þ η2Þ
þ λðϕ2 þ η2Þ2
þ ξ4ðϕ4 − 6ϕ2η2 þ η4Þ þ ξ12ðϕ4 − η4Þ: ð6Þ

If ξ1 ≠ 0, instantons directly induce a vacuum expectation
value for ϕ.
If our conjecture is correct, then while there may be no

true chiral phase transition, there could well be a sharp
crossover from a low temperature phase, dominated by
quantum instantons with large ξ1ðTÞ and ϕ0ðTÞ, to a phase
dominated by semiclassical instantons, with small ξ1ðTÞ
and ϕ0ðTÞ. As T → ∞, ξ1ðTÞ and ϕ0ðTÞ → 0.
If the speculation of Eq. (5) is true, only λðTχÞ ≠ 0, with

m2ðTχÞ and all ξjiðTχÞ ¼ 0. There is then a chiral phase
transition of second order for an emergentUAð1Þ symmetry
at Tχ . This would be most dramatic.
Implications for QCD.—We have worked exclusively in

the chiral limit. What are the implications for QCD, where
numerical simulations on the lattice find no true phase
transition, but cross over [84–86]?
If QCD is close to the chiral limit for three massless

flavors, then the restoration of the axial UAð1Þ symmetry at
Tχ surely implies that the approximate restoration of the
axial UAð1Þ symmetry is closely tied to the crossover
temperature.
In numerical simulations of lattice QCD, it is common to

measure the violation of the anomalous UAð1Þ symmetry
by computing the difference in the two point functions of
pions and a0 mesons [87–92]. This is useful for two light
flavors, but since for three flavors a term ∼ detΦ is cubic in
Φ, when ϕ0 ¼ 0 anomalous terms do not affect mesonic
two point functions [93–96]. In lattice QCD, at present the
situation is unsettled [50,97]: Refs. [87,89,92,98–102] find
that the anomalous symmetry is not even approximately
restored by Tχ, while Refs. [65,66,82,88,90,91,103] find
that it is.
Our analysis also applies to nonzero quark chemical

potential, μ. For a theory at T ≠ 0, the effective theory is
three dimensional. If T ≪ μ, though, the relevant effective
theory is then in four dimensions. Assuming that confine-
ment gaps the quarks and gluons, the effective theory is
again that of Eqs. (1) and (2). While the mass dimensions of
the coupling constants change, the conclusion remains that
if ξ1ðTχÞ ≠ 0, the chiral phase transition is of first order in
the chiral limit.
Our analysis predicts that the breaking of the anomalous

UAð1Þ symmetry is uniformly small in a chirally symmetric
regime. The η0 meson, which is heavy is vacuum, must
become light.
There is an interesting possibility that arises. Like the

UAð1Þ invariant coupling constants, the anomalous cou-
pling constants are all functions of both temperature and
chemical potential, ξjiðT; μÞ. Analogous to the critical
endpoint, where for two light flavors the Oð4Þ invariant
quartic coupling constant vanishes, λðTcr; μcrÞ ¼ 0 [104–
107], since we have two thermodynamic parameters to
vary, it is possible that there is a single point in the phase
diagram where ξ1ðTA; μAÞ ¼ 0. About this point, instead of
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SUVð3Þ flavor eigenstates, the π0, η, and η0 are eigenstates
of flavor, and there is a large violation of isospin [19]. It is
very intriguing that such a violation has been reported by
the NA61/SHINE Collaboration recently [108,109].
If ξ1ðT; μÞ vanishes at a point in the plane of T and μ,

then perhaps there is a region where ξ1ðT; μÞ is of opposite
sign to that in the vacuum. If chiral symmetry is broken,
then instead of the σ meson condensing, the η0 does. This
implies that CP symmetry is spontaneously broken by an η0
condensate.
Other signals that have been suggested include Hanbury-

Brown-Twiss correlations [110–112], possibly confirmed
by the PHENIX experiment [113], and an excess of soft
dileptons [114]. The HADES experiment finds that the η
meson is about twice as abundant as expected from a
statistical distribution [115,116]. Certainly when the η0
meson becomes light, so does the η meson [117].
Besides the other implications of our results, it is also

natural to wonder how the suppression of topologically
nontrivial fluctuations in a chirally symmetric phase affects
baryogenesis in the early Universe [119].

Note added.—After this Letter was submitted for publica-
tion, Ref. [120] showed in the local potential approximation
of the functional renormalization group that if the UAð1Þ
symmetry is restored at Tχ , then the chiral transition can be
of second order for all Nf ≥ 2, contrary to the ϵ expansion.
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