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We present the first results for the next-to-next-to leading order (NNLO) corrections to the semi-
inclusive deep-inelastic scattering process in perturbative quantum chromodynamics. We consider the
quark initiated flavor nonsinglet process and obtain the complete contributions analytically at leading color.
All relevant virtual and real emission Feynman diagrams have been computed using integration-by-parts
reduction to master integrals and two approaches for their subsequent evaluation (parametric phase-space
integration and method of differential equations). The numerical analysis demonstrates the significance of
the NNLO corrections and their great impact on the reduction of the residual scale dependence.
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Landmark inclusive measurements of structure functions
(SF) in deep-inelastic scattering (DIS) experiments provide
a wealth of information on the internal structure of hadrons
at high energies in terms of quarks and gluons and give
valuable insights into the underlying strong interaction
dynamics. Collinear factorization in quantum chromody-
namics (QCD) with the systematic separation of short-
and long-distance phenomena provides the theoretical
foundations for the use of SF data in the extraction of the
process-independent parton distribution functions (PDFs),
which describe the parton dynamics within the colliding
hadrons. Semi-inclusiveDIS (SIDIS)measurements with an
observed hadron in the final state allows, in addition, for the
study of the parton (quark or gluon) to hadron fragmenta-
tion, encoded in universal fragmentation functions (FFs).
This makes SIDIS themost promising and valuable probe of
PDFs and FFs at the upcoming electron-ion collider (EIC) at
the Brookhaven National Laboratory in the USA. The EIC
opens up unique opportunities to explore the nucleon
structure as well as the underlying dynamics of hadrons
in various environments. This includes a thorough under-
standing of the light-quark flavor PDFs and also the spin
structure of the nucleon, using polarized beams, to measure
the polarized PDFs. A quantitative assessment of the
anticipated precision of SIDIS measurements and their

impact on the determination of various hadronic observables
at the EIC has been presented in Ref. [1].
We consider the SIDIS process lðklÞ þHðPÞ → lðk0lÞ þ

H0ðPHÞ þ X with lepton momenta kl, k0l and spacelike
momentum transfer, q ¼ kl − k0l with Q2 ¼ −q2. The
momenta of the incoming and outgoing hadrons are
denoted as P, PH. The computation of SIDIS observables
in perturbation theory can nowadays be performed with an
unprecedented accuracy, thanks to the remarkable theoreti-
cal developments in the calculation of multiloop and
multileg scattering processes. In addition, resummation
techniques applicable in particular kinematical limits allow,
e.g., to obtain approximate predictions based on the
summation of large threshold logarithms to all orders,
see Refs. [2–6].
The longitudinal momentum distribution of the final

state hadron is sensitive to the fragmentation functions and
depends on scaling variables x, y, and z,

d2σe−H
dxdydz

¼ 2πyα2e
Q4

Lμνðkl; k0l; qÞWμνðq; P; PHÞ; ð1Þ

where αe is the fine-structure constant, x ¼ ½Q2=ð2P · qÞ� is
the Bjorken variable, y ¼ ½ðP · qÞ=ðP · klÞ� the fraction of
the initial energy transferred to the hadron and z ¼ ½ðP ·
PHÞ=ðP · qÞ� the scaling variable corresponding to the
fragmenting hadron. The leptonic tensor reads Lμν ¼
2kμl k

0ν
l þ 2k0μl k

ν
l −Q2gμν, while the hadronic tensor Wμν

can be expressed in terms of SFs FIðx; z; Q2Þ; I ¼ 1, 2, as

Wμν ¼ F1ðx; z; Q2ÞT1;μν þ F2ðx; z; Q2ÞT2;μν; ð2Þ
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with tensors T1;μν ¼ −gμν þ ½qμqν=ðq · qÞ� and T2;μν¼
½1=ðP:qÞ�fPμ− ½ðP ·qÞ=ðq ·qÞ�qμgfPν− ½ðP ·qÞ=ðq ·qÞ�qνg.
QCD factorization allows us to express the SFs as

FI ¼ xI−1
X
a;b

Z
1

x

dx1
x1

faðx1; μ2FÞ
Z

1

z

dz1
z1

Dbðz1; μ2FÞ

× F I;ab

�
x
x1

;
z
z1
; μ2F;Q

2

�
; ð3Þ

where fa and Db denote the PDFs and the FFs, subject to
summation over initial state partons “a” from the incoming
hadron and final state partons “b” that fragments into the
observed hadron. The coefficient functions (CFs) F I;ab can
be computed in a perturbative expansion in powers of the
strong coupling asðμ2RÞ ¼ ½αsðμ2RÞ=4π�,

F I;ab ¼
X∞
i¼0

aisðμ2RÞF ðiÞ
I;abðμ2RÞ; ð4Þ

with μF, μR the factorization and renormalization scales.
To date, exact results for CFs are available only at the

next-to-leading order (NLO) in QCD [7,8], covering all
parton combinations ab ¼ qq; q̄ q̄; qg; q̄g; gq; gq̄. In this
Letter, we present the first results at next-to-next-to leading
order (NNLO) for the nonsinglet channels ab ¼ qq; q̄ q̄,
i.e., for SIDIS processeswith an initial quark or an antiquark,
which fragments into the observed final state hadron. The
results are complete to leading color Nc for QCD as an
SUðNcÞ gauge theory. Previously, Refs. [5,6] have derived
the threshold enhanced logarithms using resummed results
for these partonic channels (ab¼qq;q̄q̄) at NNLOand even
up to next-to-next-to-next-to leading order (N3LO). We
confirm that the resummation of Ref. [5] correctly predicts
the dominant threshold logarithms.
The computation of the CFs, F I;ab in perturbative QCD

in powers of as, see Eq. (4), starts from the parton level
cross sections denoted by dσ̂I;ab, appropriately set up with
the corresponding projectors Pμν

I ,

dσ̂I;ab ¼
Pμν

I

4π

Z
dPSXþbΣ̄jMabj2μνδ

�
z
z1

−
pa · pb

pa · q

�
; ð5Þ

where jMabj2 is the squared amplitude for the process
aðpaÞ þ γ�ðqÞ → bðpbÞ þ X, with the parton b tagged to
fragment into hadron H0. dPSXþb stands for the phase
space of the final state consisting of X and the fragmenting
parton b and Σ̄ denotes the average over initial and
summation over final state spin or polarization and color
quantum numbers. In D dimensions, the projectors Pμν

I are
given by Pμν

1 ¼ ½1=ðD − 2Þ�½Tμν
1 þ 2xTμν

2 � and Pμν
2 ¼

½2x=ðD − 2Þx1�½Tμν
1 þ 2xðD − 1ÞTμν

2 �. The partonic scaling
variables are x1 ¼ ðpa=PÞ for the momentum fraction
carried by the initial parton a of incident hadron H and

z1 ¼ ðPH=pbÞ for the corresponding fraction of hadron H0
with respect to the final state parton b.
Beyond leading order in perturbation theory, both ultra-

violet (UV) and infrared divergences resulting from soft
and collinear partons appear in the computation of dσ̂I;ab,
and we work inD ¼ 4þ ε dimension to regulate them. The
ultraviolet divergences are removed by renormalization of
the strong coupling at the scale μR, while all infrared
divergences cancel among virtual and real emission proc-
esses, except for the collinear divergences related to the
“ab” partons in the initial state and the fragmentation into
hadrons. The structure of those divergences is described by
mass factorization in QCD. The partonic cross sections in
Eq. (5) factorize into the Altarelli-Parisi (AP) kernels Γc←a

of PDFs and Γ̃b←d of FFs, which capture the collinear
divergences in 1=ε, and the CFs (F I;cd), which are finite as
ε → 0. Mass factorization at the scale μF reads

dσ̂I;abðεÞ
x0I−1

¼Γc←aðμ2F;εÞ⊗F I;cdðμ2F;εÞ⊗̃Γ̃b←dðμ2F;εÞ; ð6Þ

where x0 ¼ x=x1, summation over c, d is implied, and ⊗
and ⊗̃ denote convolutions over scaling variables corre-
sponding to the PDFs and FFs, respectively, cf. Eq. (3). The
AP kernels are determined by the evolution equations for
PDFs and FFs in terms of space- and timelike splitting
functions, fully known to third order in as [9–14]. Because
of the collinear poles in 1=ε of the AP kernels, the
extraction of the CFs (F I;ab) to NNLO accuracy from
the convolutions in Eq. (6) requires the computation of
NLO dσ̂I;ab up to positive powers of ε.
At NLO, the partonic cross sections in Eq. (5)

get contributions from the one-loop corrections to the
Born process γ� þ qðq̄Þ → qðq̄Þ and the real emission
γ� þ qðq̄Þ → qðq̄Þ þ g. In addition, there is the gluon-
initiated channel γ� þ g → qþ q̄. In the new NNLO
computation of dσ̂i;qq, we restrict ourselves to the quark
flavor nonsinglet case, i.e., we consider the following
three classes, namely, two-loop corrections to γ� þ qðq̄Þ →
qðq̄Þ, one-loop contributions to the single gluon real
emission γ� þ qðq̄Þ → qðq̄Þ þ g, and double real emissions
γ� þ qðq̄Þ → qðq̄Þ þ gþ g.
One- and two-loop virtual corrections to the Born

process can be obtained using the vector form factor which
is known to fourth order in as [15]. For the real-virtual and
double real emission processes we follow the standard
diagrammatic approach. We generate Feynman diagrams
using QGRAF [16] and use a set of in-house routines in
FORM [17,18], which convert the output of QGRAF into a
suitable format that allows one to use the Feynman rules
and to perform Lorentz contractions, color as well as Dirac
algebra. The real-virtual processes contain one-loop and
two-body phase-space integrals, while double real emission
processes contain three-body phase-space integrals. The
phase-space integrals are performed with the constraint
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ðz=z1Þ ¼ ½ðpa · pbÞ=ðpa · qÞ�, because of which, the com-
putation of these phase-space integrals is technically
challenging compared to the fully inclusive ones. Using
the method of reverse unitarity [19,20], we convert all the
phase-space integrals into loop integrals and apply integra-
tion-by-parts identities (IBP) [21,22] to reduce them
to a smaller number of the master integrals (MI). In the
reverse unitary method, we replace the on-shell Dirac delta
functions by the corresponding propagators. The constraint
ðz=z1Þ ¼ ½ðpa · pbÞ=ðpa · qÞ� is imposed by an additional
delta function δfz0− ½ðpa ·pbÞ=ðpa ·qÞ�g, where z0 ¼ ðz=z1Þ,
which is then replaced by a propagatorlike term
−ð1=πÞIm(1=fz0 − ½ðpa · pbÞ=ðpa · qÞ� þ iϵg) with p2 ¼
p1 þ q − k1 or p2 ¼ p1 þ q − k1 − k2 for two- or three-
body final states. We perform the IBP reduction with the
Mathematica package LITERED [23] and obtain at the
NNLO level at leading Nc, 7 MIs for both the real-virtual
and the double real emission subprocesses. We note that the
computation of the double real emission process γ� þ
qðq̄Þ → qðq̄Þ þ qþ q̄ as a part of the flavor pure-singlet
SFs (not considered in this Letter) requires an additional 13
MIs for the color nonplanar contributions, i.e., those sup-
pressed as 1=Nc.
The calculation of the MIs poses one of the primary

challenges in this computation. We have followed two
different approaches, applying either parametric integration
(PI) [24–27] or differential equations (DE) [28–32]. In the
PI method, a convenient choice of the Lorentz frame helps
to solve the integrals. For example, in the case of a two-
body phase space, we use the center-of-mass (c.m.) frame
of the photon and the incoming parton, so that only the one-
loop integrals need to be done, which reduce to hyper-
geometric functions of the scaling variables x0, z0, and ε.
The three-body phase space is conveniently integrated in
the c.m. frame of two outgoing partons that do not fragment
and we need to perform integrals over one of the parametric
variables and two angles. Upon expansion in ε the three-
body phase-space integrals then reduce to multiple poly-
logarithms (MPLs) and Nielsen polylogarithms.
In the second approach, we have used the method of

differential equations to evaluate the MIs. The correspond-
ing system of differential equations has been generated for
each topology by taking derivatives with respect to the
independent variables x0 and z0, using LITERED for the
differentiation and further IBP reduction. We have obtained
a system without any coupled differential equations, which
can easily be arranged in an upper-triangular form, and
allows for the bottom-up approach to solve the MIs one by
one. While solving for each MI, we also perform a Taylor
series expansion in ε and obtain the results in terms of
generalized harmonic polylogarithms (GPLs). The boun-
dary conditions for the MIs are either derived from
regularity conditions or by calculating explicitly the thresh-
old limit. We have used HARMONICSUMS [33–35] and
POLYLOGTOOLS [36] in various intermediate steps of the

computation including the conversion of MPLs and Nielsen
polylogarithms into GPLs. We have cross-checked the
results obtained from both approaches and found perfect
agreement.
The phase-space integrals in D ¼ 4þ ε generally result

into functions of the form

ð1 − x0Þ−1þaε
2ð1 − z0Þ−1þbε

2f1ðx0; z0; εÞ;

which contain simple poles at the thresholds i.e. x0 → 1 and
z0 → 1 for integers a, b. In addition, we find singularities at
x0 ¼ z0 and at x0 þ z0 ¼ 1 in the form

ð1−x0Þaεð1− z0Þbεðz0−x0Þcεð1−z0−x0Þdε
ð1−x0Þð1−z0Þðz0−x0Þð1− z0−x0Þ f2ðx0;z0;εÞ:

The fiðx0; z0; εÞ are regular functions in the threshold limits
x0 → 1 and/or z0 → 1. The sign of the imaginary part of the
term ðz0 − x0Þaε depends on whether x0 > z0 or x0 < z0,
while for the term ð1 − z0 − x0Þbε, it depends on whether
x0 þ z0 > 1 or x0 þ z0 < 1. We introduce the identities
θðx0 − z0Þ þ θðz0 − x0Þ ¼ 1 and θð1 − x0 − z0Þ þ θðz0 þ
x0 − 1Þ ¼ 1 to separate the different sectors. Note that
these scaling variables should be understood as x0 − iϵ and
z0 − iϵ with Feynman’s iϵ prescription. The divergences
resulting from the threshold region can be isolated by using
the following identity:

ð1 − wÞ−1þnε ¼ 1

nε
δð1 − wÞ þ

X∞
k¼0

ðnεÞk
k!

Dw;k; ð7Þ

where w ¼ x0; z0 and Dw;k ¼ ½logkð1 − wÞ=ð1 − wÞ�þ
denote the usual “plus” distributions, as defined by

Z
1

0

dw gþðwÞfðwÞ ¼
Z

1

0

dw gðwÞ½fðwÞ − fð1Þ�: ð8Þ

Because of the presence of these singularities, it is
henceforth necessary to compute the phase-space integrals
in closed form in ε, or at least partially. At NLO level, the
leading double poles (1=ε2) from the virtual contributions
and the real emission diagrams cancel each other and the
remaining collinear divergence (1=ε) is removed by mass
factorization with the AP kernels Γ and Γ̃, see Eq. (6). At
NNLO level, the leading 1=ε4 and 1=ε3 terms cancel among
the pure virtual, real-virtual, and double real-emission
contributions. All remaining 1=ε2 and 1=ε terms cancel
against those of the AP kernels during mass factorization.
After mass factorization given by Eq. (6) we obtain the

finite CFsF ðiÞ
I (≡F ðiÞ

I;ab as a short-hand now) for i ¼ 0, 1, 2.

The Born contribution F ð0Þ
I is proportional to δð1 −

x0Þδð1 − z0Þ and our NLO results for F ð1Þ
I are in complete

agreement with Refs. [3,7]. It is convenient to separate the
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dependence on distributions δð1 − x0Þ; δð1 − z0Þ;Dx0;k;Dz0;k
and on regular functions in x0, z0 such as MPLs as follows,

F ðiÞ
I ¼ F ðiÞ

I;2 þ F ðiÞ
I;1 þ F ðiÞ

I;r: ð9Þ

At NNLO, the first term F ð2Þ
I;2 contains only distributions in

x0 and z0, often called soft-plus-virtual (SV) terms and is in
agreement with Ref. [5], which provides the first verifica-
tion of those results from an explicit computation. The
remaining contributions in Eq. (9), consisting of single

distributions denoted by F ð2Þ
I;1 and pure regular terms F ð2Þ

I;r ,
are new. As the latter are too lengthy, we present here only

the single distributions F ð2Þ
1;1 and introduce the following

abbreviations for compact presentation: x̄ ¼ ð1 − x0Þ,
z̄ ¼ ð1 − z0Þ, x̃ ¼ ð1þ x0Þ, z̃ ¼ ð1þ z0Þ, δx̄ ¼ δð1 − x0Þ,
δz̄ ¼ δð1− z0Þ, lx ¼ logðx0Þ, lz¼ logðz0Þ, lx̄ ¼ logð1 − x0Þ,
lz̄ ¼ logð1 − z0Þ. The full results for F ðiÞ

I in Eq. (9) are
attached as Supplemental Material [37]. We also note that,
although our NNLO results consist of the leading color
contributions, we retain their full Casimir structure in
the presentation, since all subleading color contributions
(to be presented in future work) are proportional to
CFðCA − 2CFÞ. Thus, the NNLO result for the single

distributions of F ð2Þ
1 reads

F ð2Þ
1;1 ¼ C2

F

�
δx̄

�
2l2zð1− 4z̄Þ þ 4ð1− 8z̄Þ− 8Li3ðz̄Þz̃þ

25

3
l3z z̃− 4lzl2z̄ z̃− 4l3z̄ z̃þ 52S12ðz̄Þz̃þLi2ðz̄Þ½4ð1− 6z̄Þ

þ 40lzz̃� þ
1

z̄

�
8Li3ðz̄Þ− 64Li2ðz̄Þlz −

40

3
l3z þ 12lzl2z̄ − 88S12ðz̄Þ þ lz̄

�
−8Li2ðz̄Þ− 12l2z

�þ lzð−64þ 24ζ2Þ
�

þ lz̄
�
14þ 24z̃þ 4lzð1− 2z̄Þ þ 8Li2ðz̄Þz̃þ 10l2z z̃þ 16z̃ζ2

�þ lzð−2þ 38z̃− 16z̃ζ2Þ þ 8z̄ζ2 − 16z̃ζ3

�

þDx;0

�
12þ 24z̃þ 4lzð1− 3z̄Þ þ 12Li2ðz̄Þz̃þ 16l2z z̃− 4lzlz̄z̃− 12l2z̄ z̃−

1

z̄

�
16Li2ðz̄Þ þ 24l2z − 16lzlz̄

�þ 16z̃ζ2

�

þDx;1fð4lzz̃− 24lz̄z̃Þg− 12z̃Dx;2 þ δz̄

�
−4− 48x̄− 2l2x þ

11

3
l3xx̃þ 16lxl2x̄x̃− 4l3x̄x̃− 24S12ðx̄Þx̃

þLi2ðx̄Þð4þ 8x̄− 12lxx̃Þ þ
1

x̄

�
−8Li3ðx̄Þ þ 16Li2ðx̄Þlx − 4l3x − 28lxl2x̄ þ 48S12ðx̄Þ þ lx̄ð8Li2ðx̄Þ þ 32l2x

�

þ lxð64þ 32ζ2ÞÞ þ lx̄ð14þ 26x̃þ 4lx − 20l2xx̃þ 16x̃ζ2Þ þ lxð−8− 34x̃− 20x̃ζ2Þ þ 8x̄ζ2 − 16x̃ζ3

�

þDz;0

�
12þ 28x̃þ 4lxð1þ x̄Þ− 4Li2ðx̄Þx̃− 12l2xx̃þ 28lxlx̄x̃− 12l2x̄x̃þ

1

x̄
ð16Li2ðx̄Þ þ 16l2x − 48lxlx̄Þ þ 16x̃ζ2

�

þDz;1

�
−
32

x̄
lx þ 20lxx̃− 24lx̄x̃

�
− 12x̃Dz;2

	
þCACF

�
δx̄

�
4Li2ðz̄Þð1− 2z̃Þ þ 2

3
l2zð3− 11z̃Þ þ 1

27
ð396þ 179z̃Þ

þ 1

9
lzð1þ 70z̄Þ− 4Li3ðz̄Þz̃−

5

3
l3z z̃þ

11

3
l2z̄ z̃þ 6S12ðz̄Þz̃þ

1

z̄

�
6Li2ðz̄Þ þ 8Li3ðz̄Þ þ

62

9
lz þ

49

6
l2z þ

10

3
l3z þ 6lzlz̄

− 12S12ðz̄Þ
�
þ lz̄

�
4

9
ð15− 41z̃Þ− 6lzz̃þ 4z̃ζ2

�
−
4

3
ð3þ 4z̃Þζ2 − 14z̃ζ3

�
þDx;0

�
2

9
ð39− 82z̃Þ− 4Li2ðz̄Þz̃− 6lzz̃

− 2l2z z̃þ
22

3
lz̄z̃þ

1

z̄
ð8Li2ðz̄Þ þ 6lz þ 4l2zÞ þ 4z̃ζ2

�
þ 22

3
z̃Dx;1 þ δz̄

�
46

3
þ 197

27
x̃þ 8Li3ðx̄Þx̃þ

55

6
l2xx̃þ

11

3
l2x̄x̃

þ 2S12ðx̄Þx̃þLi2ðx̄Þ
�
−4lxx̃−

4

3
ð3þ 4x̃Þ

�
þ lx

�
1

3
ð−13þ 77x̃Þ− 4x̃ζ2

�
þ 1

x̄

�
−16Li3ðx̄Þ−

83

6
l2x

þ 2

3
Li2ðx̄Þð13þ 12lxÞ þ

70

3
lxlx̄ − 4S12ðx̄Þ þ lx

�
−
116

3
þ 8ζ2

��
þ lx̄

�
−
44

3
lxx̃−

4

9
ð−15þ 41x̃Þ þ 4x̃ζ2

�

−
4

3
ð3þ 4x̃Þζ2 − 14x̃ζ3

�
þDz;0

�
4Li2ðx̄Þx̃−

44

3
lxx̃þ

22

3
lx̄x̃þ

26

9
ð3− 7x̃Þ þ 1

x̄

�
−8Li2ðx̄Þ þ

70

3
lx

�
þ 4x̃ζ2

�
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þ 22

3
x̃Dz;1

	
þ 1

3
CFnF

�
δx̄

�
4 −

2

3

1

z̄
lzð10þ 3lzÞ −

74

9
z̃þ l2z z̃ − 2l2z̄ z̃þ

8

3
lz̄ð−3þ 4z̃Þ þ 2

3
lzð−12þ 11z̃Þ þ 4z̃ζ2

�

þDx;0

�
32

3
z̃ − 8 − 4lz̄z̃

�
− 4z̃Dx;1 þ δz̄

�
4Li2ðx̄Þx̃ − 4 −

38

9
x̃ − 5l2xx̃ − 2l2x̄x̃þ 2lxð2 − 7x̃Þ þ 1

x̄
ð20lx þ 10l2x

− 8Li2ðx̄Þ − 16lxlx̄Þ þ lx̄

�
32

3
x̃ − 8þ 8lxx̃

�
þ 4x̃ζ2

�
þDz;0

�
32

3
x̃ − 8 −

16

x̄
lx þ 8lxx̃ − 4lx̄x̃

�
− 4x̃Dz;1

	
: ð10Þ

where Sn;pðzÞ ¼ ½ð−1Þnþp−1=ðn − 1Þ!p!� R 1
0 ðdy=yÞ×

logn−1ðyÞlogpð1 − zyÞ, LinðzÞ ¼ Sn−1;1ðzÞ, and ζn denote
values of the Riemann zeta function.
A few points are in order. As a check of our results, we

have reproduced the inclusive SF results of Refs. [25,38]
for the channels considered by integrating over the scaling
variable z0, including all the scale-dependant terms. The
terms that are proportional to the Dirac delta functions and
“plus” distributions are in complete agreement with
Ref. [5], which uses the framework of threshold resum-
mation. Our results from an explicit Feynman diagram-
matic approach confirm those predictions including the
next-to-SV (NSV) terms quoted in Ref. [5].
In the following we illustrate the numerical impact of the

new results for the F 1;qq CF for a future EIC with a c.m.

energy
ffiffiffi
s

p ¼ 140 GeV. We have convoluted the CFs with a
set of order independent, but sufficiently realistic model
distributions for both, PDFs and FFs,

xqðx; μ2FÞ ¼ 0.6x−0.3ð1 − xÞ3.5ð1þ 5.0x0.8Þ;
xgðx; μ2FÞ ¼ 1.6x−0.3ð1 − xÞ4.5ð1 − 0.6x0.3Þ: ð11Þ

In Fig. 1 we present the K factor, defined by the ratio K ¼
NiLO=LO for i ¼ 1, 2 as function of z for EIC after
integrating x between 0.1 to 0.8 and y between 0.1 to 0.9.
We also show the variation of the renormalization scale μ2R
in the range μ2R ∈ ½Q2=2; 2Q2�, keeping μ2F ¼ Q2 fixed. We
use nF ¼ 5 for the number of active quarks, the value of
αe ¼ 1=128 and for the strong coupling constant αsðMZÞ ¼
0.120 at NLO and αsðMZÞ ¼ 1.118 at NNLO.
We find, for example, at z ¼ 0.5, that the new NNLO

contributions increase theK factor from 1.26 at NLO to 1.32
at NNLO level, while reducing the renormalization scale
dependence from variations of μ2R by a factor of 2 around
Q2 from f1.51%;−1.31%g at NLO to f−0.32%; 0.06%g
at NNLO.
In this Letter, we report the first results for the complete

NNLO QCD corrections to the quark-initiated SIDIS
process, based on calculating the complete set of
Feynman diagrams including all relevant interference
terms. However, as mentioned earlier, we have selectively
excluded the flavor pure-singlet parts of the double real
emission process γ� þ qðq̄Þ → qðq̄Þ þ qþ q̄. The contri-
butions from these diagrams along with the detailed
description of the computational method will be presented
in a future publication.
The primary challenge resides in the computation of the

Feynman integrals, especially the phase-space integrals. To
obtain them analytically, we have used state-of-the-art loop
computation techniques, namely the reverse unitarity
method, the IBP reduction technique, and the method of
differential equations. The parametric integration delivers
the MIs in terms of MPLs and Nielsen polylogarithms,
although their arguments are not simple, due to the
presence of two variables, x0 and z0. Simplification arise
from a conversion to GPLs. Our results have been exposed
to a number of cross-checks, in particular the comparison of
the SV and NSV limits with Ref. [5], finding complete
agreement.

FIG. 1. The upper panel contains the K factor as a function of z
for the NLO and NNLO results, using kinematics of the EIC atffiffiffi
s

p ¼ 140 GeV and different approximations: the SV terms at
NLO (blue dashed), full NLO (blue solid), SV terms at NNLO (red
dashed), and full (nonsinglet, leading color) NNLO (red solid).
The lower panel contains the corresponding uncertainty due to the
renormalization scale variation in the range μ2R ∈ ½Q2=2; 2Q2�.
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The new NNLO results display a moderate increase of
the K factor over a large range of kinematics, except for the
threshold limits, where additional resummations need to be
performed. At the same time, the residual scale uncertain-
ties are significantly reduced. As such, they mark a mile-
stone in the precision study of the SIDIS process, and soon
will play a very important role in shedding light on the
physics of the hadron structure and the mechanism of
fragmentation, facilitating new determinations of PDFs
and FFs.

AMathematica notebook with all results for the CFsF ðiÞ
I

has been deposited at [39] with the sources of this Letter.
They are also available from the authors upon request.

Note added.—Recently, Ref. [40] appeared with the full
NNLO QCD corrections to the SIDIS coefficient functions.
Our results agree with those of Ref. [40] in all regions of x0
and z0.
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