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Applying the quantum field theoretic perturbiner approach to Einstein gravity, we compute the metric of
a Schwarzschild black hole order by order in perturbation theory. Using recursion, this calculation can be
carried out in de Donder gauge to all orders in Newton’s constant. The result is a geometric series which is
convergent outside a disk of finite radius, and it agrees within its region of convergence with the known de
Donder gauge metric of a Schwarzschild black hole. It thus provides a first all-order perturbative
computation in Einstein gravity with a matter source, and this series converges to the known non-
perturbative expression in the expected range of convergence.
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Introduction.—The recent surge of interest in gravita-
tional-wave physics associated with the merging of two
black holes has led to a number of powerful new analytical
approaches to Einstein gravity. This has put the post-
Minkowskian expansion, the perturbative evaluation of
physical observables as a power series in Newton’s constant
G around flat Minkowski space, into focus. Because of its
close connection to the classical limit of quantum field
theoretical scattering amplitudes in gravity [1-4], rapid
progress has led to the exact analytical evaluation of physical
observables up to (and including) fourth order in the
perturbative expansion in the coupling constant G [5-36],
also in some cases including low orders in the spin multipole
expansion. Such a successful program, which has already
reached fifth order in the expansion [36], prompts the
question as to whether the perturbative series expansion
in Einstein gravity is convergent. One of the first examina-
tions of this issue dates back to Ref. [37]; see also Ref. [38].
Here we shall investigate the question of convergence of the
post-Minkowskian expansion in its simplest possible set-
ting: that of vacuum solutions to the Einstein equations in the
presence of a pointlike source. The surprising difficulty in
deriving the metric perturbatively in this context was noted
first by Florides and Synge [39]. Low-order perturbative
calculations of the gravitational metric of such a nonspin-
ning black hole have since been pursued by means of several
different quantum field theoretical formalisms [40-47].
Eventually, and typically at quite low orders, they run into
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a problem posed by the complexity of the perturbatively
expanded Einstein-Hilbert action. This pushes the calcu-
lations to prohibitively complicated levels beyond the first
few orders. In the amplitude-based approach to general
relativity this problem is partly circumvented by the use of
on-shell unitarity methods. Such techniques are, however,
not immediately amenable to the off-shell situation needed
for the calculation of the gravitational metric itself. Instead,
as we shall demonstrate below, a judicious choice of
variables, combined with off-shell recursion relations of
the current as well as relevant loop integrals, can lead to
drastic simplifications.

Our tool shall be the perturbiner approach to quantum
field theory [48—60]. This method provides an alternative
path toward scattering amplitudes and in the case of the
gravitational field yields an analog of Berends-Giele [61]
off-shell recursion relations for gravity. The perturbiner
method combines very well with the post-Minkowskian
expansion of gravity [54-59], leading to the pertinent two-
body scattering amplitudes in a manner that is closely
linked to the classical equations of motion or, at loop level,
the Schwinger-Dyson equations. Combining the per-
turbiner method with good variables for the gravitational
field is the first key ingredient toward obtaining an all-order
result in perturbation theory. This still leaves us with the
problem that the FEinstein-Hilbert action expanded in
coupling G becomes immensely complicated beyond low-
est orders. An important observation is that the complexity
arises to a large degree from iterations of lower-point
vertices and this can be used to advantage, leading us to the
second key ingredient of our approach which is to expand
the Einstein-Hilbert action perturbatively in a doubled set
of fields. The required constraint among the two sets of
fields is imposed afterward. Finally, we will need to
evaluate a series of momentum-space integrals. Our third
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key observation is that these integrals reduce to generalized
one-loop bubble diagrams. They are then all solvable by
iteration. The various new recursive identities that have
been discovered in the theory of scattering amplitudes rely
on the observation that each new order can be built up from
combinations of lower-order terms. This is also the mecha-
nism behind the present calculation and it illustrates how
modern quantum field theory methods can provide a
surprising new avenue to general relativity.

Metric.—The Schwarzschild metric in harmonic gauge is
given by

o GPMPXX)
ds? = —NdP + [F(S’f I ]dx’dx/, (1)
r
where 12 = x} 4+ x3 + x3, and
r—GM (r+GM)?
Ny =""22 pry =T 2
(="M p =S @)

We choose to work with Landau-Lifshitz variables and
expand perturbatively around flat Minkowski space as
follows:

¢ = \/=gg" =" — . (3)
With this choice of variables, the fluctuation field #** reads

+GM)? . GPMPxix/
hOOZ_l 7(" s hY = —— 4
* r*(r—GM) r (4)

Expanding 4% as a Laurent series around 1 we get

-1 2842
h00:8<1_GM> _8_4GM_G12\/I
r r r
AGM  1G’M? 8G*M?
=t (5)

Except for the few low-order corrections h% is thus a
geometric series in GM /r with fixed coefficient 8, while h"/
truncates at second order. The fluctuation field 4* satisfies
the de Donder gauge condition d,(,/=g¢") = 9,h*" =0
which is equivalent to the harmonic-gauge condition in
these variables.

Perturbiner method.—We now set up the post-
Minkowskian perturbative expansion for the Schwarzschild
black hole metric as defined in Eq. (3). We do this by
generalizing the usual perturbiner method for scattering
amplitudes to solutions of the perturbative Einstein equations.
Specifically, we wish to generate the perturbative vacuum
solution of Einstein gravity for a pointlike source at the origin,
corresponding to a Schwarzschild black hole.

The action is thus given by

1 1.
= [ @[z vEr i) ©
where R is the Ricci scalar and the source j,,(x) is

Ju(%) =Muv,v,8 (x), =(-1,0,0,0). (7)
Here x denotes the position three-vector. Let us consider the
one-point function of /5" = h**(x) in the presence of the

source j s

sWljl
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where W[j,, ] is the generating functional:

W[j;w] = / Dh/ﬂ/ eXp [%S[hﬂl/?jﬂl/}:| ° (9)

Note that h¥” satisfies the classical equations of motion at
tree level. Since we are considering a time-independent
solution, we restrict h**(x) = h*(x).

Expanding the generating functional in powers of j,,,
hy” is given in terms of connected correlation functions,

v v Kli] Kphn
WY R
l];iﬁl . ljy: ! (10)
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Hereafter, we will ignore the position of indices while
keeping the summation convention for repeated indices.

Next, we substitute j,, as defined in (7). It is useful to
represent the delta function as

o= Mﬂ”v”/e_if‘x. (12)
14

Then h%” reduces to

0

1 .
0 =Y [, e 1)

where
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and €y, _, =€, +€,+ -+ ¢, Here I’ is the Fourier
transform of A4°. It is convenient to shift the loop
momentum ¢, — —¢, , so that

h# (x) = E:I/fl eit’,.le(l:)lfl’ (15)

where

1
s o uv
Toje, = /fz , ottt (16)

------

We denote the number of loop momenta of an off-shell
current by its “rank.” For instance, the rank of J’;’ljmf is n.

We then expand h** according to this rank, i.e.,

v — npHY - Hy itx
h _Z;G hi- h(n)_/met,e . (1)

We now proceed to organize the perturbative expansion
of the Einstein-Hilbert action. Because h*¥ satisfies the
classical equations of motion at tree level, we substitute (3)
into (6) and expand the equation of motion in powers of G,

Ot = 2 =3 e, (18)

00
n=1

where the f[‘:]’s arise in the well-known manner from

gravitational self-interactions (and they will be given in
very compact forms below). This expansion is by con-
struction also ordering the number of fields h** so that f[’:]
contains (n + 1) fields. The off-shell recursion relations are
now obtained by substituting the perturbiner expansion.
The initial condition of the recursion is given by the rank-1
current,

Ah’(‘l”) = 2" = 2Mv* vV l ek, (19)

where A is the Laplacian. Substituting the perturbiner
expansion (17) for h’(‘f) this provides us with the initial

condition for the off-shell recursion relation,

v 16zM
e = Tpp " (20)
or
16zM . iy
00 __ 0i _ 1] —
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We now proceed to rank-2 level. According to the initial
condition in (21), the only nonvanishing component of h’(‘ ]”>

is h(()?). Inserting the equations of motion to this order, we

get the off-shell recursion relations at rank-2 from the
perturbiner expansion,

1 5 7
00 _ 2 00 00

Ji _ 1 fgizfé)_ﬁiijZ'fZ J0o0 Joo
(2)\—f17|f1‘2 2, 4 8 Ml=2" ()£’

(22)

which shows how J“ components build up from the
recursion. Performing the integrals, we get

J0 1472 M?

i
Q=" 7

5 g
Q) ] (23)

— 2 MZ = .
s
Computational tedium would seem to prevent us from
proceeding to rank-3 level (and beyond). However, we do
need the explicit evaluation for rank-3 in order to establish
an all-order result by induction. This is the first level at
which we need to regularize the integrals and we choose
to work with dimensional regularization by going to
d = 3 — 2¢ dimensions at intermediate steps. We first find
h’g) from the explicit forms of 1’[‘1"] and Tflzli by using the
expansion of h* in (17). This gives
Jo M3zet3/2 (e(2e +5) + 6)[[1 — 2¢] I
B)F — p—de-1 |f’29 F[% — 2¢] [e],
Ji M37¢3/2 §7el[3 — 2€]Tfe — 1]
G 42212 (2¢ — 1)I[3 — 2¢]

(24)

Fourier transforming all of these results according to (17)
and going to d = 3 dimensions, we obtain

. 4M
hl(ll) = T’U”UD, (25)
so that
4M . .
00 __ 0i _ W __
hoy=——hi=hy =0 (26)

at rank-1 level. At rank-2,

, TM?
hOO :/ tt"xJOO — ,
@~ ¢ TorT 2
y o M?xix/
h¥/ :/ itx i — , 27
@~ ¢ JoeT 4 (27)
while at rank-3, we get
00 _ 8M° ij
h(3) = h(3> =0. (28)

These results match the metric of (3) to O(G?).
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Iterated loop integrals.—As an intermediate step toward
extending the above analysis to all orders, we now
demonstrate that the loop integrals to any order are iterated
one-loop bubble integrals, and hence solvable recursively.
We use the fact that a generic one-loop bubble integral is of

MPv P p)

the form
/ f/)l ...fpm
et +pl> Pl

and apply it recursively to integrals of the perturbiner
method,

(29)

v )
T o = K1 ALK A KAy [f] e fl]
(n)[Z o

Ko A Kid;
Nl e e (30)

where n = Ny + N, + --- N,. For off-shell currents of a
single propagator,

(m)l¢ — |t1 a, ( )

we will now show that j’(‘;’)‘ ¢, in (30) again contains a

single propagator by using (31) and (29). For currents (31),
we thus have

T |
(n)|# ot

where the numerator is polynomial in the arguments. We
now perform the ¢, integration to get

N
- |a1 |t’2|az - |£n a,’

(32)

” / NY[E), 5.0,
W oy €13l €55 - €]

with a new numerator N%’. Since the structure of the
integrand is the same as before integration, we may repeat
the previous procedure and perform the ¢5 integral to get

T |
(n)| &, ol

with numerator N4”. This continues until all loop integrals
are exhausted, leading to

(33)

NY[8). €y, ... E))]
a5 Ea|% (8"

(34)

v N [21]
N : (35)

ey = g P

where N4 follows recursively in the manner indicated.
Perturbative solution to all orders.—So far we have
exploited off-shell recursion relations and iterated momen-
tum integrals. Our third step toward deriving an all-order
result is to encode the fact that the metric and its inverse

expanded around flat Minkowski space are related by a
geometric series which again is of iterative form. We
implement this by first considering ¢*” and its inverse
g, as independent fields, introducing an auxiliary field g,
whose value is fixed to be the inverse of g: ¢*’g,, = &,.
We thus introduce perturbations of both ¢** and g, [52],

gﬂb = ’7”1/ - h/"/’ g;w =M + ﬁ/,tl/? (36)

which we expand in Newton’s constant G,

e = 2 G"hiy.

with the constraint

ICTNE
n=1

71 N1 n pU
hiy = i + Zh( L7e (38)
We also introduce off-shell currents for ﬁ’;:),
N = / X T (39)
¢
where 7’(‘:) satisfies the following recursion relation:
Y quv Hp pv
aarn —J(n>|p+21 4 (40)
We will now show that the expansion of h*” is
8M" i
00 _ ij o _
h<n>— s h(n) =0, forn>3, (41)
while h% and h¥ are given by
S0 po (HD2MY o SAMP X

As a first step, we will show by induction that the
corresponding off-shell currents are given by

(n+1)*M"z9 T[4 1

_700 = (=1 n+1 ,
(n)l2 ( ) 2n—dl—‘[%] ‘f|d—n
~ij _ M2nﬂd/22d—2nl—*[%] y (d n 2n)fifj
(2n)|¢ zr[n + 1]|f|d—2n |f|2 R
SMnﬂ.d/ZF[u] 1
00 __ 2
(”)lf - 2”—(1]"[%] |t;|d_n 5 for n Z 3. (43)

We begin by expressing the 00 component of the Einstein
tensor in terms of the new variables. From this we find that
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h(()}?) (n > 4) satisfies
ij Skl =kl ij
ARG = 9 {hé)afh?»?—z) + ) 0'h(3) = a9 N
n—1
=00
- At
m=1

We recast this in terms of the off-shell currents whose 00

components we write as J?O = ¢, 1] - & 12 e With

(ohts, - ajhggl_z)h;fz))} . (44)

1] _ _fil i _vyi
Ewi-e, = 1g,p (Xtue, = Vi)

2 ma J _yi
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where

ﬂ\ AT / "ﬂéan —m)|- flz )|f2’
i — kl
Vinie, = L O lo-v-eT e (46)

We start the proof by induction at n = 3, where we have
explicitly verified that (43) holds. Assuming the currents
are given by (43) up to the (n — 1)th order, we next show
that it also holds for the nth order term. Dividing into odd
and even 7, and assuming that (43) holds up to order n — 1,
we find

M2nﬂ.d/22d—2n+31—*[¢_21 _ I’l] 1

(1] _
g(2n)|—f - F[l’l] |f|d—2n ’
2] _
Eom—e = 0» (47)
and
gm B M2"+17rd/2(4n 4 1>2d—2nr[d—22n—l]
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M2n+1 d/22d—2n1" d—2n—1
8E22]n+1)\—t’ = i —— (48)

Fn + 3l

For both odd and even n these terms combine to yield
Eq. (43). Going to four space-time dimensions, we find

8M"

00 _
h(n - PR

(49)

for all n > 3.

The hardest parts to compute are the ij components. We
find it convenient to first introduce
Z 1 = 6" 0,8 08y
Wi, = ¢"0,9%09,800,

. 1
d = iigr9.§ . 50
d =189 (50)

Ah = hHgah — ghkighli 4 2(d — 1)did) + 2gii0,d*

. AN B 1.
+ ZM ) — 27k ) 4 Ez(llklj)k + 5 Wii
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In terms of currents, we have

i o i B j ij
A2, = 203=2) {D<n>—f, L,zpm—mn—fd(m)fz ’

(52)
where
i _ [pi 700 _ pi Tkk i i
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Iterating, we find
‘ d/22d 2n+1r‘[g ] i
Dl bl
@n)|-¢, — Ol + 1] |f|d—2n
) d/22d 2nl—‘u fi
D22n+1>\—t’ - [32 d e (54)
! I'[n +3] 7|
so that
di _2d 1 (d— 1/2|£ |1 dr d f’
()]-#,
i d-3 _d/2|p |2—d d i
d(z)l_fl =-2 T |£1| r 5—1 4 s
iy, =0, forn>3. (55)
Similarly, we find
T3¢, 267 — (d - 5)¢i¢7)
ij 2 171 3—d
W)\ £ 9-d-115,(1-d)/2 2174 (56)

and, for n > 2,
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Wil _ 5”d/2r[%] (2n+2- d)iei — |t’|25’7
@ml-# 22"+l_dr[n + 2] |t’|d—2n s
Wi _ ;;WH“[%] (d=2n=3)¢"¢) - |f|25ij |

(2n+1)|-¢ 2211—d1—~[n +%]
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Substituting these results all terms with auxiliary fields d’
and W/ cancel for n > 4. Finally, also all terms with the Z
fields combine to cancel separately. Thus, in total,

hi,=0, nx3. (58)

To summarize this part, we have shown to all orders
in perturbation theory that h* satisfies the expansions (4)
and (5). The expansion for A% is convergent for GM /r < 1
and sums to the correct expression in that region while the
expansion for h'/ truncates at order G?, in agreement
with Eq. (4).

As is well known, the harmonic-gauge condition does
not determine uniquely the standard harmonic-gauge met-
ric (4) due to a residual choice of coordinate freedom within
the harmonic gauge itself [62]. This prompts the question
as to how such a residual freedom should manifest itself
within our recursive solution that seems to uniquely
provide the standard form (4). The issue is resolved by
noticing that the perturbative solution requires regulariza-
tion of the pertinent loop integrals beyond the first few
leading orders. Indeed, up to order G2 there is no need for
regularizing the integrals and there is correspondingly no
additional coordinate freedom of the harmonic-gauge
metric [62]. At order G® we need to regularize the loop
integrals. Simultaneously, we encounter constant numer-
ators in the loop integrands. Those terms lead to (unregu-
larized) integrals that are scale-free and they are set to zero
in dimensional regularization. Other equally valid regu-
larization schemes may set those integrals to other constant
values, and thus introduce new scheme-dependent con-
stants in the metric. By iteration, such constants will enter
at all higher orders as well. This is in agreement with the
arbitrariness stemming from residual coordinate freedom
in this gauge.

Conclusion.—Applying the perturbiner method to
Einstein gravity we have shown how to derive the har-
monic-gauge metric of a Schwarzschild black hole to all
orders in perturbation theory. This is the first example of a
post-Minkowskian expansion in general relativity that has
been carried through to all orders and which therefore
teaches us about the convergence of such expansions. We
find that the series is convergent within the expected
range based on the closed expression of Eq. (4). What
makes this all-order result possible in spite of the over-
whelming complexity of perturbative gravity is the iterative
systematics of the perturbiner expansion for gravitational

equations of motion, combined with recursive structures of
the involved loop integrals. In addition, complications
arising from the perturbative expansion of the Einstein-
Hilbert action can be controlled by a doubling of degrees of
freedom at intermediate steps. This highlights the fact that
also the weak-field expansion of the action contains
iterative structures, here inherited from the geometric series
relation between metric and inverse metric, an observation
made earlier in Ref. [63]. The perturbiner approach used
here is an efficient recursive technique for solving classical
equations of motion. The resulting expressions resemble
closely the classical parts of the loop expansion of
perturbative gravity, and we have a few times used the
language of the loop expansion even though all integrations
here arise only from the fact that the Green function
technique works well through its Fourier transform. The
way classical contributions can arise in general relativity
from the loop expansion was clearly explained in Ref. [64].
In a broader perspective, one may hope that the perturbiner
approach to post-Minkowskian gravity [54-59] could lead
to related simplifications for the general relativistic two-
body problem.
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