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Applying the quantum field theoretic perturbiner approach to Einstein gravity, we compute the metric of
a Schwarzschild black hole order by order in perturbation theory. Using recursion, this calculation can be
carried out in de Donder gauge to all orders in Newton’s constant. The result is a geometric series which is
convergent outside a disk of finite radius, and it agrees within its region of convergence with the known de
Donder gauge metric of a Schwarzschild black hole. It thus provides a first all-order perturbative
computation in Einstein gravity with a matter source, and this series converges to the known non-
perturbative expression in the expected range of convergence.
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Introduction.—The recent surge of interest in gravita-
tional-wave physics associated with the merging of two
black holes has led to a number of powerful new analytical
approaches to Einstein gravity. This has put the post-
Minkowskian expansion, the perturbative evaluation of
physical observables as a power series in Newton’s constant
G around flat Minkowski space, into focus. Because of its
close connection to the classical limit of quantum field
theoretical scattering amplitudes in gravity [1–4], rapid
progress has led to the exact analytical evaluation of physical
observables up to (and including) fourth order in the
perturbative expansion in the coupling constant G [5–36],
also in some cases including low orders in the spinmultipole
expansion. Such a successful program, which has already
reached fifth order in the expansion [36], prompts the
question as to whether the perturbative series expansion
in Einstein gravity is convergent. One of the first examina-
tions of this issue dates back to Ref. [37]; see also Ref. [38].
Here we shall investigate the question of convergence of the
post-Minkowskian expansion in its simplest possible set-
ting: that of vacuum solutions to theEinstein equations in the
presence of a pointlike source. The surprising difficulty in
deriving the metric perturbatively in this context was noted
first by Florides and Synge [39]. Low-order perturbative
calculations of the gravitational metric of such a nonspin-
ning black hole have since been pursued bymeans of several
different quantum field theoretical formalisms [40–47].
Eventually, and typically at quite low orders, they run into

a problem posed by the complexity of the perturbatively
expanded Einstein-Hilbert action. This pushes the calcu-
lations to prohibitively complicated levels beyond the first
few orders. In the amplitude-based approach to general
relativity this problem is partly circumvented by the use of
on-shell unitarity methods. Such techniques are, however,
not immediately amenable to the off-shell situation needed
for the calculation of the gravitational metric itself. Instead,
as we shall demonstrate below, a judicious choice of
variables, combined with off-shell recursion relations of
the current as well as relevant loop integrals, can lead to
drastic simplifications.
Our tool shall be the perturbiner approach to quantum

field theory [48–60]. This method provides an alternative
path toward scattering amplitudes and in the case of the
gravitational field yields an analog of Berends-Giele [61]
off-shell recursion relations for gravity. The perturbiner
method combines very well with the post-Minkowskian
expansion of gravity [54–59], leading to the pertinent two-
body scattering amplitudes in a manner that is closely
linked to the classical equations of motion or, at loop level,
the Schwinger-Dyson equations. Combining the per-
turbiner method with good variables for the gravitational
field is the first key ingredient toward obtaining an all-order
result in perturbation theory. This still leaves us with the
problem that the Einstein-Hilbert action expanded in
coupling G becomes immensely complicated beyond low-
est orders. An important observation is that the complexity
arises to a large degree from iterations of lower-point
vertices and this can be used to advantage, leading us to the
second key ingredient of our approach which is to expand
the Einstein-Hilbert action perturbatively in a doubled set
of fields. The required constraint among the two sets of
fields is imposed afterward. Finally, we will need to
evaluate a series of momentum-space integrals. Our third
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key observation is that these integrals reduce to generalized
one-loop bubble diagrams. They are then all solvable by
iteration. The various new recursive identities that have
been discovered in the theory of scattering amplitudes rely
on the observation that each new order can be built up from
combinations of lower-order terms. This is also the mecha-
nism behind the present calculation and it illustrates how
modern quantum field theory methods can provide a
surprising new avenue to general relativity.
Metric.—The Schwarzschild metric in harmonic gauge is

given by

ds2 ¼ −Ndt2 þ
�
Fδij þG2M2

N
xixj

r4

�
dxidxj; ð1Þ

where r2 ¼ x21 þ x22 þ x23, and

NðrÞ¼ r−GM
rþGM

; FðrÞ¼ ðrþGMÞ2
r2

: ð2Þ

We choose to work with Landau-Lifshitz variables and
expand perturbatively around flat Minkowski space as
follows:

gμν ≡ ffiffiffiffiffiffi
−g

p
gμν ¼ ημν − hμν: ð3Þ

With this choice of variables, the fluctuation field hμν reads

h00¼−1þ ðrþGMÞ3
r2ðr−GMÞ ; hij¼G2M2xixj

r4
: ð4Þ

Expanding h00 as a Laurent series around 1 we get

h00 ¼ 8

�
1 −

GM
r

�
−1

− 8 −
4GM
r

−
G2M2

r2

¼ 4GM
r

þ 7G2M2

r2
þ 8G3M3

r3
þ � � � : ð5Þ

Except for the few low-order corrections h00 is thus a
geometric series inGM=rwith fixed coefficient 8, while hij

truncates at second order. The fluctuation field hμν satisfies
the de Donder gauge condition ∂μð ffiffiffiffiffiffi−gp

gμνÞ ¼ ∂μhμν ¼ 0

which is equivalent to the harmonic-gauge condition in
these variables.
Perturbiner method.—We now set up the post-

Minkowskian perturbative expansion for the Schwarzschild
black hole metric as defined in Eq. (3). We do this by
generalizing the usual perturbiner method for scattering
amplitudes to solutions of the perturbative Einstein equations.
Specifically, we wish to generate the perturbative vacuum
solution of Einstein gravity for a pointlike source at the origin,
corresponding to a Schwarzschild black hole.

The action is thus given by

S ¼
Z

d4x

�
1

2κ2
ffiffiffiffiffiffi
−g

p
Rþ 1

2
jμνðxÞgμνðxÞ

�
; ð6Þ

where R is the Ricci scalar and the source jμνðxÞ is

jμνðxÞ¼Mvμvνδ3ðxÞ; vμ ¼ð−1;0;0;0Þ: ð7Þ
Here x denotes the position three-vector. Let us consider the
one-point function of hμνx ≡ hμνðxÞ in the presence of the
source jμν,

hμνx ¼ h0jhμνx j0ij ¼
δW½j�
δjμνx

; ð8Þ

where W½jμν� is the generating functional:

eW½jμν� ≡
Z

Dhμν exp

�
i
ℏ
S½hμν; jμν�

�
: ð9Þ

Note that hμνx satisfies the classical equations of motion at
tree level. Since we are considering a time-independent
solution, we restrict hμνðxÞ ¼ hμνðxÞ.
Expanding the generating functional in powers of jμν,

hμνx is given in terms of connected correlation functions,

hμνx ¼
X∞
n¼1

1

n!

Z
y1;…;yn

h0jT½hμνx hκ1λ1y1 � � � hκnλnyn �j0ic

×
ijκ1λ1y1

ℏ
� � � ij

κnλn
yn

ℏ
; ð10Þ

whereZ
x;y���

¼
Z

ddxddy… and
Z
p;q;���

¼
Z

ddp
ð2πÞd

ddq
ð2πÞd…:

ð11Þ
Hereafter, we will ignore the position of indices while
keeping the summation convention for repeated indices.
Next, we substitute jμν as defined in (7). It is useful to

represent the delta function as

jμνx ¼ Mvμvν
Z
l
e−il·x: ð12Þ

Then hμνx reduces to

hμνðxÞ ¼
X∞
n¼1

1

n!

Z
l1;l2;…;ln

Jμνl1l2���ln
e−il12…n·x; ð13Þ

where

Jμνl1l2���ln
¼

�
iM
ℏ

�
n
h0jT½h̃μν−l12…n

h̃00l1
� � � h̃00ln

�j0ic; ð14Þ
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and l12…n ¼ l1 þ l2 þ � � � þ ln. Here h̃μνl is the Fourier
transform of hμνx . It is convenient to shift the loop
momentum l1 → −l12…n so that

hμνðxÞ ¼
X∞
n¼1

Z
l1

eil1·xJμνðnÞjl1
; ð15Þ

where

JμνðnÞjl1
¼

Z
l2;…;ln

1

ðn − 1Þ! J
μν
−l12���nl2���ln

: ð16Þ

We denote the number of loop momenta of an off-shell
current by its “rank.” For instance, the rank of Jμνl1���ln is n.
We then expand hμν according to this rank, i.e.,

hμν ¼
X∞
n¼0

GnhμνðnÞ; hμνðnÞ≡
Z
l
JμνðnÞjle

il·x: ð17Þ

We now proceed to organize the perturbative expansion
of the Einstein-Hilbert action. Because hμν satisfies the
classical equations of motion at tree level, we substitute (3)
into (6) and expand the equation of motion in powers of G,

□hμν ¼ −2jμν −
X∞
n¼1

τμν½n�; ð18Þ

where the τμν½n�’s arise in the well-known manner from

gravitational self-interactions (and they will be given in
very compact forms below). This expansion is by con-
struction also ordering the number of fields hμν so that τμν½n�
contains (nþ 1) fields. The off-shell recursion relations are
now obtained by substituting the perturbiner expansion.
The initial condition of the recursion is given by the rank-1
current,

Δhμνð1Þ ¼ −2jμν ¼ −2Mvμvν
Z
k
eik·x; ð19Þ

where Δ is the Laplacian. Substituting the perturbiner
expansion (17) for hμνð1Þ this provides us with the initial

condition for the off-shell recursion relation,

Jμνð1Þjl ¼ 16πM
jlj2 vμvν; ð20Þ

or

J00ð1Þjl ¼
16πM
jlj2 ; J0ið1Þjl ¼ 0; Jijð1Þjl ¼ 0: ð21Þ

We now proceed to rank-2 level. According to the initial
condition in (21), the only nonvanishing component of hμνð1Þ
is h00ð1Þ. Inserting the equations of motion to this order, we

get the off-shell recursion relations at rank-2 from the
perturbiner expansion,

J00ð2Þj−l1
¼ 1

jl1j2
Z
l2

�
5

4
jl2j2−

7

8
l12 ·l2

�
J00ð1Þj−l12

J00ð1Þjl2
;

Jijð2Þj−l1
¼ 1

jl1j2
Z
l2

"
lði
12l

jÞ
2

4
−
δijl12 ·l2

8

#
J00ð1Þj−l12

J00ð1Þjl2
;

ð22Þ

which shows how Jij components build up from the
recursion. Performing the integrals, we get

J00ð2Þjl ¼
14π2M2

jlj ; Jijð2Þjl ¼ π2M2

�
δij

jlj−
lilj

jlj3
�
: ð23Þ

Computational tedium would seem to prevent us from
proceeding to rank-3 level (and beyond). However, we do
need the explicit evaluation for rank-3 in order to establish
an all-order result by induction. This is the first level at
which we need to regularize the integrals and we choose
to work with dimensional regularization by going to
d ¼ 3 − 2ϵ dimensions at intermediate steps. We first find
hμνð3Þ from the explicit forms of τμν½1� and τμν½2� by using the

expansion of hμν in (17). This gives

J00ð3Þjl ¼ M3πϵþ3=2

2−4ϵ−1jlj2ϵ
ðϵð2ϵþ 5Þ þ 6ÞΓ½1 − 2ϵ�

Γ½5
2
− 2ϵ� Γ½ϵ�;

Jijð3Þjl ¼ M3πϵþ3=2

4−2ϵ−1jlj2ϵ
δijϵΓ½3 − 2ϵ�Γ½ϵ − 1�
ð2ϵ − 1ÞΓ½5

2
− 2ϵ� : ð24Þ

Fourier transforming all of these results according to (17)
and going to d ¼ 3 dimensions, we obtain

hμνð1Þ ¼
4M
r

vμvν; ð25Þ

so that

h00ð1Þ ¼
4M
r

; h0ið1Þ ¼ hijð1Þ ¼ 0; ð26Þ

at rank-1 level. At rank-2,

h00ð2Þ ¼
Z
l
eil·xJ00ð2Þjl ¼ 7M2

r2
;

hijð2Þ ¼
Z
l
eil·xJijð2Þjl ¼ M2xixj

r4
; ð27Þ

while at rank-3, we get

h00ð3Þ ¼
8M3

r3
; hijð3Þ ¼ 0: ð28Þ

These results match the metric of (3) to OðG3Þ.
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Iterated loop integrals.—As an intermediate step toward
extending the above analysis to all orders, we now
demonstrate that the loop integrals to any order are iterated
one-loop bubble integrals, and hence solvable recursively.
We use the fact that a generic one-loop bubble integral is of
the form

Z
l

lρ1 � � �lρm

jljα1 jlþ pjα2 ¼
Mρ1���ρm ½p�

jpjβ ; ð29Þ

and apply it recursively to integrals of the perturbiner
method,

J μν
ðnÞjl1

¼
Z
l2;…;li

Iμν;κ1λ1;κ2λ2;…;κiλi ½l1;…;li�

× Jκ1λ1ðN1Þj−l12…n
Jκ2λ2ðN2Þjl2

� � � JκiλiðNiÞjli
; ð30Þ

where n ¼ N1 þ N2 þ � � �Ni. For off-shell currents of a
single propagator,

JμνðmÞjl ¼
Nμν

ðmÞ½l�
jljαm ; ð31Þ

we will now show that J μν
ðnÞjl1

in (30) again contains a

single propagator by using (31) and (29). For currents (31),
we thus have

J μν
ðnÞjl1

¼
Z
l2;…;ln

Nμν½l1;…;ln�
jl12���njα1 jl2jα2 � � � jlnjαn

; ð32Þ

where the numerator is polynomial in the arguments. We
now perform the l2 integration to get

J μν
ðnÞjl1

¼
Z
l3;…;ln

Nμν
2 ½l1;l3…;ln�

jl13…njβ2 jl3jα3 � � � jlnjαn
; ð33Þ

with a new numerator Nμν
2 . Since the structure of the

integrand is the same as before integration, we may repeat
the previous procedure and perform the l3 integral to get

J μν
ðnÞjl1

¼
Z
l4;…;ln

Nμν
3 ½l1;l4;…;ln�

jl14…njβ3 jl4jα4 � � � jlnjαn
; ð34Þ

with numerator Nμν
3 . This continues until all loop integrals

are exhausted, leading to

J μν
ðnÞjl1

¼ Nμν
n ½l1�
jl1jβn

; ð35Þ

where Nμν
n follows recursively in the manner indicated.

Perturbative solution to all orders.—So far we have
exploited off-shell recursion relations and iterated momen-
tum integrals. Our third step toward deriving an all-order
result is to encode the fact that the metric and its inverse

expanded around flat Minkowski space are related by a
geometric series which again is of iterative form. We
implement this by first considering gμν and its inverse
gμν as independent fields, introducing an auxiliary field g̃μν
whose value is fixed to be the inverse of gμν: gμρg̃ρν ¼ δμν.
We thus introduce perturbations of both gμν and g̃μν [52],

gμν¼ ημν−hμν; g̃μν¼ ημνþ h̃μν; ð36Þ

which we expand in Newton’s constant G,

hμν¼
X∞
n¼1

GnhμνðnÞ; h̃μν ¼
X∞
n¼1

Gnh̃μνðnÞ; ð37Þ

with the constraint

h̃μνðnÞ ¼ hμνðnÞ þ
Xn−1
m¼1

h̃μρðn−mÞh
ρν
ðmÞ: ð38Þ

We also introduce off-shell currents for h̃μνðnÞ,

h̃μνðnÞ ¼
Z
l
eil·xJ̃μνðnÞjl; ð39Þ

where J̃μνðnÞ satisfies the following recursion relation:

J̃μνðnÞjp ¼ JμνðnÞjp þ
Xn−1
m¼1

Z
l
J̃μρðn−mÞjp−lJ

ρν
ðmÞjl: ð40Þ

We will now show that the expansion of hμν is

h00ðnÞ ¼
8Mn

rn
; hijðnÞ ¼ 0; for n≥ 3; ð41Þ

while h̃00 and h̃ij are given by

h̃00¼
X∞
n¼1

ð−1Þnþ1
ðnþ1Þ2Mn

rn
; h̃ij¼

X∞
n¼1

M2nxixj

r2nþ2
: ð42Þ

As a first step, we will show by induction that the
corresponding off-shell currents are given by

J̃00ðnÞjl ¼ ð−1Þnþ1
ðnþ 1Þ2Mnπd=2Γ½d−n

2
�

2n−dΓ½n
2
�

1

jljd−n ;

J̃ijð2nÞjl ¼ M2nπd=22d−2nΓ½d−2n
2
�

2Γ½nþ 1�jljd−2n
�
δij −

ðdþ 2nÞlilj

jlj2
�
;

J00ðnÞjl ¼ 8Mnπd=2Γ½d−n
2
�

2n−dΓ½n
2
�

1

jljd−n ; for n ≥ 3: ð43Þ

We begin by expressing the 00 component of the Einstein
tensor in terms of the new variables. From this we find that
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h00ðnÞ (n ≥ 4) satisfies

Δh00ðnÞ ¼ ∂i

�
hijð2Þ∂jh

00
ðn−2Þ þ h̃klðn−2Þ∂

ihklð2Þ − h̃klðn−4Þ∂jh
kl
ð2Þh

ij
ð2Þ

−
Xn−1
m¼1

h̃00ðn−mÞ
�
∂
ih00ðmÞ − ∂jh00ðm−2Þh

ij
ð2Þ
��

: ð44Þ

We recast this in terms of the off-shell currents whose 00

components we write as J00ðnÞj−l ¼ E½1�
ðnÞj−l − E½2�

ðnÞj−l, with

E½1�
ðnÞj−l1

¼ −li
1

jl1j2
�
Xi
ðnÞj−l1

− Yi
ðnÞj−l1

�
;

E½2�
ðnÞj−l1

¼ −li
1

jl1j2
Z
l2

�
Xj
ðn−2Þj−l12

− Yj
ðn−2Þj−l12

þ lj
12J

00
ðn−2Þj−l12

�
Jijð2Þjl2

; ð45Þ

where

Xi
ðnÞj−l1

¼
Z
l2

li
2

Xn−1
m¼1

J̃00ðn−mÞj−l12
J00ðmÞjl2

;

Yi
ðnÞj−l1

¼
Z
l2

li
2J̃

kl
ðn−2Þj−l12

Jklð2Þjl2
: ð46Þ

We start the proof by induction at n ¼ 3, where we have
explicitly verified that (43) holds. Assuming the currents
are given by (43) up to the (n − 1)th order, we next show
that it also holds for the nth order term. Dividing into odd
and even n, and assuming that (43) holds up to order n − 1,
we find

E½1�
ð2nÞj−l ¼ M2nπd=22d−2nþ3Γ½d

2
− n�

Γ½n�
1

jljd−2n ;

E½2�
ð2nÞj−l ¼ 0; ð47Þ

and

E½1�
ð2nþ1Þj−l ¼ M2nþ1πd=2ð4nþ 1Þ2d−2nΓ½d−2n−1

2
�

Γ½nþ 3
2
�jljd−2n−1 ;

E½2�
ð2nþ1Þj−l ¼ M2nþ1πd=22d−2nΓ½d−2n−1

2
�

Γ½nþ 3
2
�jljd−2n−1 : ð48Þ

For both odd and even n these terms combine to yield
Eq. (43). Going to four space-time dimensions, we find

h00ðnÞ ¼
8Mn

rn
; ð49Þ

for all n ≥ 3.

The hardest parts to compute are the ij components. We
find it convenient to first introduce

Zij
kl ¼ gim∂mgjn∂kg̃nl;

Wi
l ¼ gki∂kg00∂lg̃00;

di ¼ 1

2ðd − 1Þ g
ijgρσ∂jg̃ρσ: ð50Þ

Δhij ¼ hkl∂k∂lhij − ∂lhki∂khlj þ 2ðd − 1Þdidj þ 2gij∂kdk

þ Zkði
k
jÞ − 2Zðijkj

k
jÞ þ 1

2
ZðijkjjÞ

k þ
1

2
Wij

−
1

2

	
2Zkði

kl − 4Zðijkj
kl þ Zðijkj

lk þWi
l



hjÞl: ð51Þ

In terms of currents, we have

diðnÞj−l1
¼ i
2ðd−2Þ

�
Di

ðnÞj−l1
−
Z
l2

Dj
ðn−mÞj−l12

JijðmÞjl2

�
;

ð52Þ

where

Di
ðnÞj−l1

¼ 	
li
1J

00
ðnÞj−l1

− li
1J

kk
ðnÞj−l1

þ Xi
ðnÞj−l1

þ Yi
ðnÞj−l1



:

ð53Þ

Iterating, we find

Di
ð2nÞj−l1

¼ πd=22d−2nþ1Γ½d
2
− n�

Γ½nþ 1�
li

jljd−2n ;

Di
ð2nþ1Þj−l1

¼ −
πd=22d−2nΓ½d−1

2
− n�

Γ½nþ 3
2
�

li

jljd−2n−1 ; ð54Þ

so that

dið1Þj−l1
¼ 2d−1πðd−1Þ=2jl1j1−dΓ

�
d − 1

2

�
li;

dið2Þj−l1
¼ −2d−3πd=2jl1j2−dΓ

�
d
2
− 1

�
li;

diðnÞj−l1
¼ 0; for n ≥ 3: ð55Þ

Similarly, we find

Wij
ð3Þj−l1

¼ Γ½d−5
2
��jl1j2δij − ðd − 5Þli

1l
j
1

�
2−d−115πð1−dÞ=2

jl1j3−d; ð56Þ

and, for n > 2,
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Wij
ð2nÞj−l ¼ 5πd=2Γ½d−2n−2

2
�

22nþ1−dΓ½nþ 2�
ð2nþ 2 − dÞlilj − jlj2δij

jljd−2n ;

Wij
ð2nþ1Þj−l ¼ πd=2Γ½d−2n−3

2
�

22n−dΓ½nþ 5
2
�
ðd − 2n − 3Þlilj − jlj2δij

jljd−2n−1 :

ð57Þ

Substituting these results all terms with auxiliary fields di

and Wij cancel for n ≥ 4. Finally, also all terms with the Z
fields combine to cancel separately. Thus, in total,

hijðnÞ ¼ 0; n≥ 3: ð58Þ

To summarize this part, we have shown to all orders
in perturbation theory that hμν satisfies the expansions (4)
and (5). The expansion for h00 is convergent for GM=r < 1
and sums to the correct expression in that region while the
expansion for hij truncates at order G2, in agreement
with Eq. (4).
As is well known, the harmonic-gauge condition does

not determine uniquely the standard harmonic-gauge met-
ric (4) due to a residual choice of coordinate freedomwithin
the harmonic gauge itself [62]. This prompts the question
as to how such a residual freedom should manifest itself
within our recursive solution that seems to uniquely
provide the standard form (4). The issue is resolved by
noticing that the perturbative solution requires regulariza-
tion of the pertinent loop integrals beyond the first few
leading orders. Indeed, up to order G2 there is no need for
regularizing the integrals and there is correspondingly no
additional coordinate freedom of the harmonic-gauge
metric [62]. At order G3 we need to regularize the loop
integrals. Simultaneously, we encounter constant numer-
ators in the loop integrands. Those terms lead to (unregu-
larized) integrals that are scale-free and they are set to zero
in dimensional regularization. Other equally valid regu-
larization schemes may set those integrals to other constant
values, and thus introduce new scheme-dependent con-
stants in the metric. By iteration, such constants will enter
at all higher orders as well. This is in agreement with the
arbitrariness stemming from residual coordinate freedom
in this gauge.
Conclusion.—Applying the perturbiner method to

Einstein gravity we have shown how to derive the har-
monic-gauge metric of a Schwarzschild black hole to all
orders in perturbation theory. This is the first example of a
post-Minkowskian expansion in general relativity that has
been carried through to all orders and which therefore
teaches us about the convergence of such expansions. We
find that the series is convergent within the expected
range based on the closed expression of Eq. (4). What
makes this all-order result possible in spite of the over-
whelming complexity of perturbative gravity is the iterative
systematics of the perturbiner expansion for gravitational

equations of motion, combined with recursive structures of
the involved loop integrals. In addition, complications
arising from the perturbative expansion of the Einstein-
Hilbert action can be controlled by a doubling of degrees of
freedom at intermediate steps. This highlights the fact that
also the weak-field expansion of the action contains
iterative structures, here inherited from the geometric series
relation between metric and inverse metric, an observation
made earlier in Ref. [63]. The perturbiner approach used
here is an efficient recursive technique for solving classical
equations of motion. The resulting expressions resemble
closely the classical parts of the loop expansion of
perturbative gravity, and we have a few times used the
language of the loop expansion even though all integrations
here arise only from the fact that the Green function
technique works well through its Fourier transform. The
way classical contributions can arise in general relativity
from the loop expansion was clearly explained in Ref. [64].
In a broader perspective, one may hope that the perturbiner
approach to post-Minkowskian gravity [54–59] could lead
to related simplifications for the general relativistic two-
body problem.
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